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Some notation

Let S be a subset of size k of a finite abelian group G of order n.

Let x = (x1, x2, . . . , xk) be an ordering of the elements of S and
define its partial sums by y = (y0, y1, y2, . . . , yk) where

y0 = 0, y1 = x1, y2 = x1 + x2, . . . , yk = x1 + x2 + . . .+ xk

Call an ordering of S with distinct partial sums, with the only
exception that

∑
S can be equal to 0, a sequencing.

If S admits a sequencing then it is called sequenceable.

Conjecture

Let G be a finite abelian group. Then, every subset S ⊆ G \ {0}
is sequenceable.
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Some motivation

This problem has connections to:

• Heffter arrays

• Non-zero sum Heffter arrays

• graph-decomposition

• graceful-labelings

• . . .

For example:

The truth of the conjecture would show that any NH(n; k)
provides two orthogonal path decompositions of the complete
graph K2nk+1.
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Some known results

Let G be an abelian group of order n and S ⊆ G \ {0} of size k.
Then S is sequenceable in the following cases:

1 k ≤ 9 [Alspach and Liversidge]

2 k = 10 when n is prime [Hicks, Ollis and Schmitt]

3 k = n− 3 when n is prime and
∑
S = 0 [H.O.S.]

4 k = n− 2 when G is cyclic and
∑
S 6= 0 [Bode, Harborth]

5 k = n− 1 [Alspach, Kreher and Pastine - Gordon]

6 n ≤ 21 and n ≤ 23 when
∑
S = 0 [C. M. P. P. ]

7 n ≤ 25 when G is cyclic and
∑
S = 0 [Archdeacon, Dinitz]
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The Non-Vanishing Corollary

Theorem (Alon ’99)

Let F be a finite field, f(x1, x2, . . . , xk) be a polynomial
in F[x1, x2, . . . , xk] and let C1, C2, . . . , Ck be subsets of F. If
there exists a monomial of maximum degree with non-zero

coefficient in f that divides x
|C1|−1
1 · · ·x|Ck|−1

k then there are
e1 ∈ C1, . . . , ek ∈ Ck such that f(e1, e2, . . . , ek) 6= 0.

Call x
|C1|−1
1 · · ·x|Ck|−1

k the bounding monomial.

Let p be prime and take S ⊆ Zp \ {0} with |S| = k. To use the
NVC, we take each Ci = S and we need a polynomial f that is
nonzero exactly when (x1, . . . , xk) is a sequencing of S.
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Zp set up

Hicks, Ollis and Schmitt introduced the following polynomial∏
1≤i<j≤k

(xj − xi)
∏

0≤i<j≤k
(i,j)6=(0,k),j 6=i+1

(yj − yi)

That gives

f =
∏

1≤i<j≤k
(xj−xi)

∏
0≤i<j≤k,j 6=i+1

(xi+1+. . .+xj)

/
(x1+. . .+xk)

To apply the NVC we need a nonzero coefficient on a monomial
in f that divides xk−1

1 · · ·xk−1
k which has degree k(k − 1). Since

deg(f) = k(k − 1)− 1 there are k monomials that could work.



Zp results

Theorem (Hicks, Ollis and Schmitt ’18)

For G = Zp with p an odd prime and |S| ≤ 10, S is
sequenceable.

Theorem (Costa, Della Fiore, Ollis and R-Frydman ’22)

For G = Zp with p an odd prime and |S| = 11, 12, S is
sequenceable.

For S ⊆ Zp \ {0}, |S| = 12 we have

monomial coefficient

x10
1 x

11
2 x

11
3 · · ·x11

12 24 · 3 · 29 · 12953077208391719881

x11
1 x

10
2 x

11
3 · · ·x11

12 23 · 3 · 277 · 1901 · 786640832519761
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Zp × Z2 example

Suppose we have S ⊆ Zp × Z2 \ {(0, 0)}, |S| = 5 and 3 of the
elements are in coset 0 and 2 of them in coset 1.

We look for a sequencing of the form

x = ((x1, 0), (x2, 1), (x3, 0), (x4, 0), (x5, 1))

which has partial sums

y = ((y0, 0), (y1, 0), (y2, 1), (y3, 1), (y4, 1), (y5, 0))

Factors of the polynomial needed:

(x3 − x1)(x4 − x1)(x4 − x3)(x5 − x2)(y5 − y1)(y4 − y2)

This has degree 6. The monomial x2
1x

2
3x4x5 has coefficient −1

and it divides x2
1x2x

2
3x

2
4x5. Therefore S has a sequencing.
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General method for Zp × Zt

The type of S ⊆ Zp × Zt \ {(0, 0)} is (λ0, . . . , λt−1), where λi is
the number of elements of S in coset i.

Given k = |S|, for each type we choose an ordering a of the
cosets (with repetition) with partial sums b. Following the
previous example we construct the polynomial

f =
∏

1≤i<j≤k
ai=aj

(xj − xi)
∏

0≤i<j≤k
bi=bj
j 6=i+1

(i,j)6=(0,k)

(yj − yi)

Extra trick. If the degree of f is sufficiently smaller than the
degree of the bounding monomial, then we can decide to fix the
positions of some elements of S to get a lower-degree
polynomial to work with.
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Additional trick - Zp × Z2 example

Let G = Zp × Z2, S ⊆ G \ {(0, 0)}, |S| = 7 and type (5, 2),
a = (0, 0, 1, 0, 0, 0, 1), b = (0, 0, 0, 1, 1, 1, 1, 0).

We desire a sequencing of the form

((x1, 0), (x2, 0), (x3, 1), (x4, 0), (x5, 0), (x6, 0), (x7, 1))

with partial sums

((y0, 0), (y1, 0), (y2, 0), (y3, 1), (y4, 1)(y5, 1), (y6, 1), (y7, 0))

The polynomial is

f =(x2 − x1)(x4 − x1)(x5 − x1)(x6 − x1)(x4 − x2)(x5 − x2)

(x6 − x2)(x7 − x3)(x5 − x4)(x6 − x4)(x6 − x5)(y2 − y0)

(y7 − y1)(y7 − y2)(y5 − y3)(y6 − y3)(y6 − y4)
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Additional trick - Zp × Z2 example

The polynomial f has degree 17. We need to find a monomial
that divides x4

1x
4
2x3x

4
4x

4
5x

4
6x7 of degree 22.

Fix x3 = c1 and x6 = c2 where (c1, 1), (c2, 0) ∈ S.

Hence we get the following simplified polynomial

f ′ =(x2 − x1)(x4 − x1)(x5 − x1)(x4 − x2)(x5 − x2)(x5 − x4)

(x1 + x2)(x4 + x5)(x2 + c1 + x4 + x5 + c2 + x7)

(c1 + x4 + x5 + c2 + x7)(x4 + x5 + c2)(x5 + c2)

In this case we need a monomial that divides x3
1x

3
2x

3
4x

3
5. The

degree of f ′ is 12 and the monomial x3
1x

3
2x

3
4x

3
5 has coefficient −2

in f ′. Therefore S has a sequencing.



A result

Theorem (Costa, Della Fiore, Ollis, Rovner-Frydman)

Let p > 5 be prime and let G = Zp × Z2
∼= Z2p, S ⊆ G \ {(0, 0)},

|S| = 10. Then S is sequenceable.

There are 11 types to consider in this case

Type a deg monomial/s coefficient/s

(10, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 89
x8
1x

9
2x

9
3x

9
4x

9
5x

9
6x

9
7x

9
8x

9
9x

9
10

x9
1x

8
2x

9
3x

9
4x

9
5x

9
6x

9
7x

9
8x

9
9x

9
10

25 · 7 · 112 · 21966239
2 · 13 · 211 · 256046627

(9, 1) (0, 0, 0, 0, 0, 1, 0, 0, 0, 0) 52 x2
2x

4
3x

7
4x

8
5x

7
7x

8
8x

8
9x

8
10 −1 · 22

(8, 2) (0, 1, 0, 0, 0, 0, 1, 0, 0, 0) 45 x1x3x
7
4x

7
5x

7
6x7x

7
8x

7
9x

7
10 −1 · 2 · 3 · 7

(7, 3) (0, 0, 0, 0, 1, 0, 0, 0, 1, 1) 42 x6
2x

6
3x

6
4x

2
5x

6
6x

6
7x

6
8x

2
9x

2
10 −1 · 2 · 3 · 7

(6, 4) (0, 0, 0, 1, 0, 0, 0, 1, 1, 1) 39 x5
1x

5
2x

5
3x

3
4x

5
5x

5
6x

3
7x

3
8x

3
9x

2
10 2 · 5

(5, 5)
(0, 0, 0, 1, 0, 0, 1, 1, 1, 1)
(0, 1, 0, 1, 0, 1, 0, 1, 0, 1)

40
40

x4
1x

4
2x

4
3x

4
4x

4
5x

4
6x

4
7x

4
8x

4
9x

4
10

x4
1x

4
2x

4
3x

4
4x

4
5x

4
6x

4
7x

4
8x

4
9x

4
10

22 · 157
5 · 19 · 41 · 83



A result

Theorem (Costa, Della Fiore, Ollis, Rovner-Frydman)

Let p > 5 be prime and let G = Zp × Z2
∼= Z2p, S ⊆ G \ {(0, 0)},

|S| = 10. Then S is sequenceable.

There are 11 types to consider in this case

Type a deg monomial/s coefficient/s

(4, 6) (0, 1, 0, 1, 1, 1, 1, 0, 1, 0) 41
x2
1x

5
2x

3
3x

5
4x

5
5x

5
6x

5
7x

3
8x

5
9x

3
10

x3
1x

4
2x

3
3x

5
4x

5
5x

5
6x

5
7x

3
8x

5
9x

3
10

24 · 3 · 5 · 13
2 · 3 · 463

(3, 7) (0, 0, 1, 0, 1, 1, 1, 1, 1, 1) 46 x2
2x

6
3x

2
4x

6
5x

6
6x

6
7x

6
8x

6
9x

6
10 −1 · 23 · 32

(2, 8) (0, 1, 0, 1, 1, 1, 1, 1, 1, 1) 51
x1x2x3x

6
4x

7
5x

7
6x

7
7x

7
8x

7
9x

7
10

x1x3x
7
4x

7
5x

7
6x

7
7x

7
8x

7
9x

7
10

−1 · 2 · 1277

−1 · 2 · 172

(1, 9) (1, 0, 1, 1, 1, 1, 1, 1, 1, 1) 60
x2
1x

2
3x

8
4x

8
5x

8
6x

8
7x

8
8x

8
9x

8
10

x2
1x

3
3x

7
4x

8
5x

8
6x

8
7x

8
8x

8
9x

8
10

2 · 172

22 · 647

(0, 10) (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 69 x2
1x

2
2x

4
3x

9
4x

7
5x

9
6x

9
7x

9
8x

9
9x

9
10 25 · 32 · 5



Overall results

Theorem (Costa, Della Fiore, Ollis, Rovner-Frydman)

Let n = pt with p prime. Then subsets S of size k of Zn \ {0}
are sequenceable in the following cases:

• k ≤ 11 and t ≤ 5,

• k = 12 and t ≤ 4,

• k = 13 and t ∈ {2, 3}, provided S contains at least one
element not in the subgroup of order p,

• k = 14 and t = 2, provided S contains at least one element
not in the subgroup of order p,

• k = 15 and t = 2, provided S does not contain
exactly 0, 1, 2 or 15 elements of the subgroup of order p.



Asymptotic results

Using linear algebra arguments we have obtained the following
asymptotic results.

Theorem (Costa, Della Fiore, Ollis, Rovner-Frydman)

Let n = mt where all the prime factors of m are bigger than
k!/2. Then subsets S of size k of Zn \ {0} are sequenceable in
the same cases of the previous theorem.



Thank you.
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