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Let S be a subset of size k of a finite abelian group G of order n.
Let x = (21,2, ...,2k) be an ordering of the elements of S and

define its partial sums by y = (yo,v1,¥2, .., Yx) where

Yo=0,y1 =T1,Y2 =21 +T2,...,Yyp = T1 + T2+ ... + T}

Call an ordering of S with distinct partial sums, with the only
exception that » S can be equal to 0, a sequencing.

If S admits a sequencing then it is called sequenceable.

Conjecture

Let G be a finite abelian group. Then, every subset S C G\ {0}
s sequenceable.
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Some motivation

This problem has connections to:
o Heffter arrays
® Non-zero sum Heffter arrays
® graph-decomposition
e graceful-labelings

For example:

The truth of the conjecture would show that any NH(n; k)
provides two orthogonal path decompositions of the complete

graph Koppy1.
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Some known results

Let G be an abelian group of order n and S C G\ {0} of size k.
Then S is sequenceable in the following cases:

® k <9 [Alspach and Liversidge]

® k = 10 when n is prime [Hicks, Ollis and Schmitt]

® k =n — 3 when n is prime and ) .S =0 [H.O.S.]

® k =n—2 when G is cyclic and ) S # 0 [Bode, Harborth)]
® k =n — 1 [Alspach, Kreher and Pastine - Gordon]

® n <21 andn <23 when ) S=0][C. M. P. P. |

@ n < 25 when G is cyclic and ) S = 0 [Archdeacon, Dinitz]



The Non-Vanishing Corollary

Theorem (Alon "99)

Let F be a finite field, f(x1,x2,...,x%) be a polynomial

in Flz1, 22, ..., 2] and let C1,Cy,...,Cy be subsets of F. If
there exists a monomial of marimum degree with non-zero
coefficient in f that divides m|101\71 . m‘kck‘*l then there are
e1 € Cy,...,ex € Cy such that f(e1,ea, ..., ex) #0.

Call x|101|—1 e xf’“'fl the bounding monomial.



The Non-Vanishing Corollary

Theorem (Alon "99)

Let F be a finite field, f(x1,x2,...,x%) be a polynomial

in Flz1, 22, ..., 2] and let C1,Cy,...,Cy be subsets of F. If
there exists a monomial of maximum degree with non-zero
coefficient in f that divides m|101\71 . m‘kc’“‘*l then there are
e1 € Cy,...,ex € Cy such that f(e1,ea, ..., ex) #0.

Call x|101|—1 e xf’“'fl the bounding monomial.

Let p be prime and take S C Z,, \ {0} with |S| = k. To use the
NVC, we take each C; = S and we need a polynomial f that is
nonzero exactly when (z1,...,x) is a sequencing of S.



Z,, set up

Hicks, Ollis and Schmitt introduced the following polynomial

I - 11 (yj — vi)

1<i<j<k 0<i<j<k
(4,5)#(0,k),j#i+1

That gives
f= 11 @i-=) 11 (J;i_H—l—...+mj)/(x1+...+a:k)
1<i<j<k 0<i<j<k,j#i+1

To apply the NVC we need a nonzero coefficient on a monomial
in f that divides 2§~ *---2f~! which has degree k(k — 1). Since
deg(f) = k(k — 1) — 1 there are k monomials that could work.
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7, results

Theorem (Hicks, Ollis and Schmitt "18)

For G =7y, with p an odd prime and |S| < 10, S is
sequenceable.

Theorem (Costa, Della Fiore, Ollis and R-Frydman ’22)
For G =7, with p an odd prime and |S| = 11,12, S is
sequenceable.

For S C Z, \ {0}, |S| = 12 we have

monomial coefficient
0232l ol 21329 12953077208391719881
oilzl0zIl. g1l 2332771901 - 786640832519761
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Ly, X Ly example

Suppose we have S C Z, x Z3 \ {(0,0)}, |S| =5 and 3 of the
elements are in coset 0 and 2 of them in coset 1.

We look for a sequencing of the form
x = ((21,0), (22,1), (23,0), (x4,0), (x5, 1))
which has partial sums
y = ((%0,0), (y1,0), (y2, 1), (y3, 1), (y4, 1), (y5,0))
Factors of the polynomial needed:
(w3 — 1) (24 — 21) (24 — 23) (25 — 22) (Y5 — ¥1) (Y4 — ¥2)

This has degree 6. The monomial x3z3z4x5 has coefficient —1
and it divides x2x9232325. Therefore S has a sequencing.



General method for Z, x Z;

The type of S C Z, x Z¢ \ {(0,0)} is (Ao, ..., A\e—1), where \; is
the number of elements of S in coset 3.

Given k = |S], for each type we choose an ordering a of the
cosets (with repetition) with partial sums b. Following the
previous example we construct the polynomial

f= 11 @-=) J[ w-w

1<i<i<k 0<i<j<k
a;=aj; bi:bj
JAi+1

(,7)7#(0,k)



General method for Z, x Z;

The type of S C Z, x Z¢ \ {(0,0)} is (Ao, ..., A\e—1), where \; is
the number of elements of S in coset 3.

Given k = |S], for each type we choose an ordering a of the
cosets (with repetition) with partial sums b. Following the
previous example we construct the polynomial

f= 11 @-=) J[ w-w

1<i<j<k 0<i<y<k
a;=aj; bi:bj
JAi+1

(4,3)#(0,k)

Extra trick. If the degree of f is sufficiently smaller than the
degree of the bounding monomial, then we can decide to fix the
positions of some elements of S to get a lower-degree
polynomial to work with.
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Let G =Zp X Zy, S € G\ {(0,0)}, |S| =7 and type (5, 2),
a=(0,0,1,0,0,0,1), b = (0,0,0,1,1,1,1,0).
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Additional trick - Z, X Z example

Let G =Zp X Zy, S € G\ {(0,0)}, |S| =7 and type (5, 2),
a=(0,0,1,0,0,0,1), b = (0,0,0,1,1,1,1,0).

We desire a sequencing of the form
((z1,0), (22,0), (23, 1), (24,0), (5, 0), (x6,0), (x7,1))
with partial sums
((50,0), (y1,0), (y2,0), (y3,1), (ya, 1) (y5, 1), (6, 1), (47, 0))
The polynomial is

f :(962 - 961)(904 - 331)(375 - 331)(336 - 961)(964 - 362)(305 - 362)
(z6 — z2)(v7 — 23) (w5 — 24) (26 — 24)(T6 — 25) (Y2 — Yo)
(y7 — y1)(y7 — y2)(ys — y3) (Y6 — y3) (Y6 — ya)



Additional trick - Z, X Z example

The polynomial f has degree 17. We need to find a monomial
that divides xizjzsziririrr of degree 22.

Fix 23 = ¢; and xg = ¢o where (¢1,1), (c2,0) € S.

Hence we get the following simplified polynomial

fr=(x — x1)(z4 — 1) (25 — 21) (24 — T2) (W5 — T2) (w5 — T4)
(21 4 22) (x4 + 25) (22 + €1 + T4 + 35 + C2 + T7)
(c1 + x4+ x5 + c2 + x7) (T4 + 25 + 2) (25 + ¢2)

In this case we need a monomial that divides z3x3z3z3. The

degree of f’ is 12 and the monomial x3x3z323 has coefficient —2

in f’. Therefore S has a sequencing.



A result

Theorem (Costa, Della Fiore, Ollis, Rovner-Frydman)

Let p > 5 be prime and let G = Zy x Za = Zgp, S C G\ {(0,0)},
|S| = 10. Then S is sequenceable.

There are 11 types to consider in this case

Type a deg monomial/s coefficient /s
9. 9990
(10,0)  (0,0,0,0,0,0,0,0,0,0) 89 2 e,
(9,1) (0,0,0,0,0,1,0,0,0,0) 52 z3adz]adalalafa —1.22
(8,2) (0,1,0,0,0,0,1,0,0,0) 45  T1T3TFTLTLTTTZTIT], 1.2.3.7
(7,3) (0,0,0,0,1,0,0,0,1,1) 42 2§a§alrizialaofadal, —1.2-3.7
(6,4) (0,0,0,1,0,0,0,1,1,1) 39  zjajzjaiziadedadadal, 2.5
(5,5) (0,0,0,1,0,0,1,1,1,1) 40 1%z§1§132i1§1i$§132%0 22 . 157
(0,1,0,1,0,1,0,1,0,1) 40 efadaiataetadataiadat, 5.19-41-83




A result

Theorem (Costa, Della Fiore, Ollis, Rovner-Frydman)

Let p > 5 be prime and let G = Z, x Lo = Zap, S C G\ {(0,0)},
|S| = 10. Then S is sequenceable.

There are 11 types to consider in this case

Type a deg monomial/s coefficient /s
T 5. 3.5 5.5.5.3.5.3
T1ToT3TYT5LEL7LT9T 0 4.3.5.

(4,6) (0,1,0,1,1,1,1,0,1,0) 41 3435555 3 53 3_33423 18
T1TT3TYT5LTELTTT9 T
2.6.2 66 6 6 6 6

(3,7) (0,0,1,0,1,1,1,1,1,1) 46 THTZTYTELET7 LT T —1.2%.32

6. 7.7 7.7 7.7

T1T2TITYT5TEL7TT9T 0 —1-2.1277

(2,8) (0,1,0,1,1,1,1,1,1,1) 51 7T T T T T _1.9.172
T1TITYTETEL7TITHT] ()
2 2 8 8 8 8 8 8 8

(1,9) (1,0,1,1,1,1,1,1,1,1) 60 FITBTATSTGTTISTIT 10 2172

, ,0,1,1,1,1,1,1,1, 2.3 7 8 8 8 8 8 8 2

TITZTYTETGL7TITHTT () 2 .647
2.2 4.9 7.9 .9 .9 9 9

(0, 10) (1,1,1,1,1,1,1,1,1,1) 69 TITT3TYT5TELT LT T 25 .32 .5




Overall results

Theorem (Costa, Della Fiore, Ollis, Rovner-Frydman)

Let n = pt with p prime. Then subsets S of size k of Zy \ {0}
are sequenceable in the following cases:

° <1l andt <5,
® k=12 andt <4,

® k=13 and t € {2,3}, provided S contains at least one
element not in the subgroup of order p,

® k=14 and t = 2, provided S contains at least one element
not in the subgroup of order p,

® k=15 andt =2, provided S does not contain
exactly 0, 1, 2 or 15 elements of the subgroup of order p.



Asymptotic results

Using linear algebra arguments we have obtained the following
asymptotic results.
Theorem (Costa, Della Fiore, Ollis, Rovner-Frydman)

Let n = mt where all the prime factors of m are bigger than
k!/2. Then subsets S of size k of Z,, \ {0} are sequenceable in
the same cases of the previous theorem.



Thank you.
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