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Abstract

In this thesis, we review and investigate on three different topics that
are related to Information theory, discrete mathematics and a little bit
of graph theory. First topic is about unique decodability of a code, how
the definitions known in literature adapt when we are dealing with con-
strained sources; referring to Dalai’s [3] work, we see that, redefining the
definitions given by Cover and Gallager about unique decodability, the
Kraft inequality which was always verified for the previous definitions of
uniquely decodable codes (McMillan theorem) is no longer verified for
constrained sources. This implies that the expected length of a code can
be less than the joint entropy of the symbols for which the code is con-
structed (proof given by Dalai using a first-order Markovian source). We
give a proof of the equivalence (in terms of eigenvalues) between Mealy
and Moore representation of the same Markovian source which can be
useful to represent a source with fewer number of states. The transforma-
tion process to derive the Mealy form of a Markov chain given the Moore
representation is implemented in Matlab and some useful examples are
given. We show a Sardinas-Patterson Matlab code for testing unique de-
codability of codes and trying to adapt the codewords accordingly to the
feedback that the test provides (like colliding codewords). Second topic
is about fix-free codes, how they are defined and how can be constructed.
We review the work of Ahlswede [7] and Yekhanin [8] whom theorems are
the basis to understand correctly this topic. A modified Kraft inequality
for this types of codes and its upper-bound conjectured by Ahlswede are
seen. We review the complete proof of Yekhanin theorem for the con-
struction of a fix-free codes under the 5/8-constraint related to the Kraft
sum and an implementation of the Yekhanin’s construction process of
fix-free codes is given and some tests are carried out. The last topic is
about Graph entropy, how it is defined and how it is related to the classi-
cal entropy function defined by Shannon. Graph entropy was introduced
by Korner [11] in 1973 for a source coding problem about distinguisha-
bility of symbols. We review the work of Simonyi[12] about the proof of
Korner theorem in terms of rate distortion theory and graph theory.

i



Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Prof.
Dalai for the continuous support of my thesis work, for his patience, mo-
tivation, and immense knowledge.

I would like to thank my parents for supporting me spiritually through-
out writing this thesis and my life in general. Thank you both for giving
me strength to reach my dreams.

A special thank to Veronica, my partner, for the patience and support
that she always gave to me. For encouraging me before every exam and
for having celebrated every success with me.

Last but not least a thank goes to all my family that has always sup-
ported me and encouraged me in difficult moments.

ii



Contents

Abstract i

Acknowledgements ii

Introduction 1

1 Constrained Sequences 4
1.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Unique decodability . . . . . . . . . . . . . . . . . . . . . 6
1.3 Karush’s proof for constrained uniquely decodable codes 12
1.4 Generalized Sardinas-Patterson test . . . . . . . . . . . . 15
1.5 Mealy and Moore Markov chains . . . . . . . . . . . . . 21

1.5.1 Mealy-Moore equivalence . . . . . . . . . . . . . . 22
1.5.2 Examples of the Moore-Mealy equivalence . . . . 24

1.6 Future works . . . . . . . . . . . . . . . . . . . . . . . . 28

Appendices 29
1.A Moore to Mealy transformation in Matlab . . . . . . . . 29
1.B Implementation of Sardinas-Patterson

test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Fix-Free Codes 40
2.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2 Modified Kraft inequality upper bound . . . . . . . . . . 41
2.3 Improved upper bound of Kraft sum . . . . . . . . . . . 45
2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.5 Future work . . . . . . . . . . . . . . . . . . . . . . . . . 55

Appendices 56
2.A Fix-free codes construction implemented in Matalb . . . 56

2.A.1 Kraft sum . . . . . . . . . . . . . . . . . . . . . . 57
2.A.2 Check correctness . . . . . . . . . . . . . . . . . . 57
2.A.3 Create regular . . . . . . . . . . . . . . . . . . . . 58



CONTENTS

2.A.4 Mregular . . . . . . . . . . . . . . . . . . . . . . . 60
2.A.5 Fix-free construction . . . . . . . . . . . . . . . . 62

3 Entropy of Graphs 68
3.1 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2 Korner entropy . . . . . . . . . . . . . . . . . . . . . . . 69
3.3 Simonyi’s proof of Korner Theorem . . . . . . . . . . . . 73
3.4 Graph entropy properties . . . . . . . . . . . . . . . . . . 76
3.5 Some examples of graph entropy . . . . . . . . . . . . . . 79
3.6 Future work . . . . . . . . . . . . . . . . . . . . . . . . . 84

Conclusions 85

References 87



Introduction

Source coding is a technique used in communication systems to describe
information sources with probabilistic descriptions. The simplest class of
source models are the discrete memoryless sources in which each symbol
produced by the source does not depend on previous symbols. Each
symbol is taken from a source alphabet with a certain probability. The
goal of Source coding is to assign to each sequence of symbols a codeword
that will be sent to the Channel encoder which adds some redundancy in
order to make possible the reconstruction of the sequence of codewords
at the receiver also if there are some errors due to noisy channels.

Source Source
Encoder 

Channel
Encoder 

Channel

Destination Source
Decoder 

Channel
Decoder 

Noise

0010....ABCA....

0010....ABCA....

Figure 1: Communication scheme. Separate Source and Channel en-
coders.

The first topic in our work is about constrained sources (sources with
memory) where some sequences of symbols cannot be constructed due to
the probabilistic description of the source under consideration. We have
dealt with first-order Markovian sources in order to bring out some prop-
erties that are not easily derivable from the definitions that can be found
in literature. Unique decodability is a fundamental property that a code
must have in order to allow the decoder to correctly decode a message.
We will see different definitions about unique decodability in a classic
sense (Cover, McMillan) and in an extended sense (Dalai [3]). It is well
known that the uniquely decodable codes par excellence are the prefix-
free codes. In this thesis we study the work of Ahlswede and Yekhanin
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INTRODUCTION 2

about fix-free codes which are codes that can be instantaneously decoded
in both directions and can improve the channel noise resistance and make
faster the decoding process.
In a bigger picture, if we consider a memoryless and stationary informa-
tion source where the emitted symbols are not all distinguishable these
types of sources may be defined as constrained sources which are de-
scribed by graphs where each edge determines if two symbols are distin-
guishable. Korner provides an information measure to define the min-
imum number of codewords for representing these types of information
sources.

The structure of the thesis is as follows:

In Chapter 1 the main topic is the unique decodability of constrained
sources, the review of all the definitions and theorems about unique de-
codability allows us to focus on the Mealy and Moore representation of
first-order Markovian sources proving the equivalence between two forms.
Dalai [3] showed that codes created for constrained sources do not respect
anymore the Kraft inequality; we will see in details the proof and how
this affects the lower bound on the expected length of the code. Sardinas-
Patterson procedure is used to determine if a code is uniquely decodable,
it is adapted and implemented in Matlab to carry out some tests on dif-
ferent Markovian sources.

In Chapter 2 the main topic is Yekhanin proof of the improved Kraft-
like bound for the existence of fix-free codes with given codewords lengths.
We review the fundamental theorems about fix-free codes known in the
literature and we give an implementation of the construction process de-
fined by Yekhanin in order to produce some tests with different sets of
codeword lengths.

In Chapter 3 Korner entropy is defined and different definitions are
stated (Simonyi [12]). The proof of Korner’s theorem in terms of rate
distortion theory is reviewed and some direct properties of the graph
entropy are described. The work of Simonyi has highlighted correlation
between graph theory and information theory. This leads to different
formulations of graph entropy and also to different proofs of its properties.





Chapter 1

Constrained Sequences

1.1 Basics
We start with some useful definitions (given by Cover [1]) needed in the
following sections. Basic knowledge of probability theory is taken for
granted.

Definition 1. The entropy of a discrete random variable X with an
alphabet X and probability mass function p(x) = P (X = x) is defined as:

H(X) = −
∑
x∈X

p(x) · log2 p(x). (1.1)

= E[− log2 p(x)].

where E[·] is the Expected value.

H(X) gives a measure on the uncertainty of the random variable X;
if X is deterministic H(X) = 0 instead if we have a uniform probability
mass function so that each symbol has the same probability of each other
H(X) = log2(|X |). H(X) is a strictly concave function with a global
maximum when p(x) = u (uniform distribution).

Definition 2. A stochastic process {Xi} is an indexed sequence of ran-
dom variables. The process is characterized by the joint probability mass
function:

P{(X1, X2, ..., Xn) = (x1, x2, ..., xn)} = p(x1, x2, ..., xn) (1.2)

with (x1, x2, ..., xn) ∈ X n

for all n = 1, 2, ...

4



CHAPTER 1. CONSTRAINED SEQUENCES 5

Definition 3. A discrete stochastic process X1, X2, ... is said to be a
Markov chain or a Markov process if for n = 1, 2, ...:

P (Xn+1 = xn+1|Xn = xn, Xn−1 = xn−1, ..., X1 = x1) = (1.3)

P (Xn+1 = xn+1|Xn = xn)

for all n = 1, 2, ...
The joint probability mass function can be written as:

p(x1, x2, ..., xn) = p(x1)p(x2|x1)p(x3|x2) · · · p(xn|xn−1). (1.4)

The expression 1.4 can be easily obtained by expressing the joint prob-
ability mass function with the chain-rule and then applying the Markov
property on each term.

Definition 4. The Markov chain is said to be homogeneous if the con-
ditional probability p(xn+1|xn) does not depend on n for n = 1, 2, ... :

Pr{Xn+1 = b|Xn = a} = Pr{X2 = b|X1 = a} ∀a, b ∈ X . (1.5)

Definition 5. A markov chain is said to be irreducible if it is possible
to go with positive probability from any state of the Markov chain to any
other state in a finite number of steps.

This means that if we have a transition probability matrix P then
there exists kmin (minimum number of steps) such that (Pk)ij > 0 for all
the indices i, j, for k ≥ kmin.

Definition 6. Given a Markov chain a cycle is a sequence of state
transitions that starts from a specific state and ends in the same state.

Definition 7. A Markov chain is said aperiodic when the GCD(Greatest
common divisor) of the lengths of all cycles is 1.

Definition 8. π is called a stationary distribution for a homogeneous
Markov chain if:

π(xn) = π(xn+1) =
∑
xn

π(xn)Pxnxn+1 , (1.6)

where Pij is the transition probability from state i to j.
If the finite-state homogeneous Markov chain is irreducible and aperiodic,
the stationary distribution is unique, and from any starting distribution,
the distribution of Xn tends to the stationary distribution π as n→∞.

If the probability distribution of the first symbol P (X1) is equal to
the stationary distribution π the Markov source is stationary.
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Definition 9. The entropy (entropy rate) of a stochastic process {Xi} is
defined by:

H(X ) = limn→∞
1

n
H(X1, X2, ..., Xn) (1.7)

if the limit exists. For stationary processes the limit always exists.

Invoking the weak law of large numbers (see [1]), it can be proved by
means of the Asymptotic Equipartition property (AEP) that:

− 1

n
log P (X1, X2, ..., Xn)→ H(X ) in probability. (1.8)

Theorem 1. For a stationary first-order Markov chain, the entropy rate
is given by:

H(X ) = H(X2|X1) =
∑
i

πi
∑
j

Pij log
1

Pij
(1.9)

where π is the stationary distribution and P is the transition probability
matrix of the Markov chain associated.

1.2 Unique decodability
In this chapter we consider the problem of encoding a source with codes
that are not decodable in the classic sense, but are decodable for some
sources with memory with different constraints on the possible generated
sequences. As previously defined we consider first order Markov sources,
the output alphabet is binary (bits) and codes are fixed-to-variable which
means mapping a fixed number of source symbols (for simplicity we al-
ways consider one symbol) into a variable number of output symbols as
shown in Figure 1.1.

X1 X2 X3

00101 101 01

Figure 1.1: First-order Markovian source encoding.

From now on, we always consider lossless encoding of discrete sources.
The model defined in Figure 1.1 leads to a problem in the definition of
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“uniquely decodable” and expected length of codes. Shannon showed that,
asymptotically, it is not possible to encode a source at rates below the
entropy. Nothing was said about the minimum rate required for the rep-
resentation of a finite number of symbols.
McMillan [6] showed that a uniquely decodable code must satisfy the
Kraft inequality, and so the minimum expected length of a lossless code
is always greater or equal to the entropy of the source (see Theorem 2.1
and the following section). We will see an example [3] of a code associ-
ated to a Markovian source in which this assumption is not satisfied due
to a non-complete definition of uniquely decodable codes.

Let us see some definitions and theorems on uniquely decodable codes
that can be found in literature [1] and then alternative definitions based
on Dalai’s [3] work.

Definition 10. An information source X is an infinite sequence of ran-
dom variables X1, X2, X3, ... taking values in a finite alphabet X . The
source X is said to be memoryless if X1, X2, ... are independent and iden-
tically distributed (i.i.d.). So we say that the source has memory if the
random variables X1, ..., Xn are not independent.

Definition 11. A variable-length code for a random variable X is a map
from the alphabet X to D*, where D* is the set of finite length sequences
of symbols from a D-ary alphabet. For each possible symbol x ∈ X the
codeword associated to x is C(x) and with l(x) we identify its length.

Definition 12. A code is said to be non-singular if:

∀xi, xj ∈ X , xi 6= xj implies C(xi) 6= C(xj). (1.10)

Definition 13. The extension C* of a code C is the mapping from finite
length sequences of X to finite length sequences of D defined by:

C(x1x2...xn) = C(x1)C(x2)...C(xn) (1.11)

where the strings represent the concatenation of different source symbols
and coding symbols.

Definition 14. In the classic sense a code C is said uniquely decodable
if its extension is non-singular.

Definition (14) makes the assumption that all the combinations of
symbols can be produced by the source with positive probability. It
means that if we represent the source with a first-order Markov chain
the transition probability matrix P has all its entries positive meaning
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that all the transitions between different states are always possible. When
we are in this configuration (when all combinations of symbols are pos-
sible) then we call these sources: unconstrained sources ; at the other
end if some combinations are impossible to obtain we call these sources:
constrained sources .
Gallager [2] gives his own definition for uniquely decodable codes that is
not based on the extension of the code but he talks about “sequence of
code letters” so it is a different definition with respect to the one given
by Cover (14), but implicit in the definition memoryless sources are con-
sidered.

Definition 15 (Dalai [5]). Let X be a discrete information source on
the alphabet X . We say that X is a constrained source if for at least one
finite n there exists an element of X n that cannot be obtained as outcome
of the first n symbols of the source. Otherwise we say that the source is
unconstrained.

Definition 16 (Dalai [5]). Generalization of uniquely decodable code that
works also with constrained sources. Let X be an information source with
alphabet X . A code C is said to be uniquely decodable for the source X if
no two different finite sequences of source symbols producible by X have
the same codeword.

With these definitions (15, 16) we have a complete coverage of all the
possible sequences of symbols outcome from a source. All the uniquely
decodable sources in the “classic sense” and also codes for constrained
sources are incorporated in the new definitions.

Definition 17. A code is called a prefix-code (prefix-free) if no codeword
is a prefix of any other codeword.

Under prefix-free conditions the code is said to be instantaneous :
this means that the decoder can decode the received messages in linear
time (O(N) where N is the length of the received sequence and O(·) is
the computational complexity). Given a sequence of code symbols the
decoder can identify a unique sequence of the received symbols in order
to reconstruct the message correctly.

Theorem 2 (Kraft Inequality). Let li, i = 1, ..., n, be the lengths of the
codewords of a prefix code and let D = |D| be the size of the code alphabet
D. It states that

n∑
i=1

D−li ≤ 1. (1.12)

Conversely, if a set of integers li, i = 1, ..., n satisfy the Kraft inequality
then a prefix-free code can be constructed with those codeword lengths.
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Corollary 2.1. It follows from the Kraft inequality that if a prefix code
is used for encoding a random variable X, then the expected length of the
codeword generated is always greater or equal to the entropy of X.

E[l(X)] ≥ HD(X). (1.13)

Proof. If pi are the probabilities of the symbols in X and li the lengths
of the related codewords, we have that

H(D)− E[l(X)] =

|X |∑
i=1

−pi logD pi −
|X |∑
i=1

pi · li (1.14)

=

|X |∑
i=1

pi logD
D−li

pi

≤
|X |∑
i=1

pi(
D−lI

pi
− 1) logD e

≤ 0.

The upper bound of logarithm logD(x) ≤ (x − 1) logD e and the Kraft
inequality allow to prove the 1.13 inequality.

Corollary 2.2. For every prefix code the expected length of the code for
n symbols of a source X satisfies:

E[l(X1, X2, ..., Xn)] ≥ H(X1, X2, ..., Xn) (1.15)

This corollary on prefix-code is a strong result with respect to the
asymptotic lower bound given by Shannon (infinite number of symbols)
because it is applied to finite sequences of symbols.

In the previous theorem we consider prefix-codes or non-constrained
uniquely decodable codes. For these codes McMillan [6] proved that
both uniquely decodable and prefix-free codes satisfy the Kraft inequality,
meaning that there is no advantage in using a uniquely decodable code
instead of a prefix-free because both have the same lower bound on the
expected length seen in Corollary 2.2. Using a uniquely decodable code
only makes the decoder more complex. As we said before there are some
sources that do not produce some of the possible sequences of symbols;
in these cases the Kraft inequality does not hold anymore [3] and this
brought to a new theorem (Theorem 3).

So the Kraft inequality is no longer a necessary condition for the code
to be uniquely decodable (in the larger sense).

Theorem 3. (Dalai [5]) There exists at least one source X = (X1, X2, ...,
Xn) and a uniquely decodable code for X such that, for every n ≥ 1:

E[l(X1, X2, ..., Xn)] < H(X1, X2, ..., Xn) (1.16)
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Proof. Let us see an example with a first order Markovian source, con-
sidering a source X generating symbols X1, X2, ... where each Xi ∈ X =
{A,B,C,D}. The sequence of generating symbols is based on the fol-
lowing transition probability graph:

Figure 1.2: Graph related to Markov source with some impossible transi-
tions (Moore form), from [5].

The associated transition probability matrix is

P =


1/2 0 1/2 0
0 1/2 0 1/2
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4

 . (1.17)

It can be easily shown that the unique stationary distribution is the uni-
form distribution over the set of source symbols, that is π = (1/4, 1/4,
1/4, 1/4).
If we set the distribution P (X1) = π then the source is stationary. P is
also irreducible and aperiodic and so the source is ergodic.

First we consider a classic encoding algorithm (Huffman) that generates
the optimal code in the classic sense for a sequence of symbols. In this
particular case all the entries of P are powers of the coding dictionary
cardinality |D| = 2 and this implies that the H(Xn

1 ) can be reached with
a prefix-free code. The Huffman code is constructed by encoding the first
symbol independently and all the successive symbols are encoded using
the transition probability matrix P creating different Huffman codes for
all the P-rows.

Example 1. An Huffman code for the stationary Markov chain based
on the transition probability matrix P (eq. 1.17) can be constructed as
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follows

P (X1) = (1/4, 1/4, 1/4, 1/4),

C1 = (A→ 00, B → 01, C → 10, D → 11),

where C1 is the Huffman code for the first symbol. Then for all the possible
state transitions an Huffman code is constructed:

P (X2|X1 = A) = (1/2, 0, 1/2, 0),

CA = (A→ 0,−, C → 1,−),

where CA is the Huffman code related to transitions which start from
symbol A. With the same procedure we carry out

CB = (−, B → 0,−, D → 1),

CC = (A→ 00, B → 01, C → 10, D → 11),

CD = (A→ 00, B → 01, C → 10, D → 11),

which are the codes for the remaining state transitions.

The expected length of the Huffman code for the first n symbols
reaches the entropy of the sequence which can be expressed as

H(Xn
1 ) = H(X1)+

n∑
i=2

H(Xi|X i−1
1 ) = H(X1)+(n−1)H(X2|X1), (1.18)

H(Xn
1 ) = 2 +

3

2
(n− 1), (1.19)

for all n ≥ 1. This result is achieved using the chain rule of the entropy
and the fact that the source is stationary.
As we said before since the entries of the P matrix are power of 2 and
P (X1) = (1/4, 1/4, 1/4, 1/4), then the expected length of the codeword
equals the entropy of the sequence:

E[l(Xn
1 )] = H(Xn

1 ) = 2 +
3

2
(n− 1). (1.20)

In [3], a different code is proposed: a fixed map from X → D* such
that A → 0, B → 1, C → 01, D → 10. This code is not uniquely
decodable in the classic sense because the concatenation BA produces 10
that is also produced by symbol D. The advantage of this coding scheme
is that the impossible transitions are exploited. In fact, the transition
A→ B and vice versa are not allowed by the Markovian source, so this
encoding scheme does not produce ambiguity and the source sequence can
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be correctly reconstructed at the decoder (making it uniquely decodable
code in this sense).
Evaluating the expected length of the code, we see that:

E[l(Xn
1 )] =

n∑
i=1

E[l(Xi)] =
3

2
n. (1.21)

We have now proved that the expected length of this code is strictly
smaller than the entropy of the symbols.
The difference between the two expected code lengths can be calculated
as

r = E[l(Xn
1 )]−H(Xn

1 ) = −
1

2
, (1.22)

where r is called the redundancy of the code and is usually a non-negative
quantity.
Thinking about the asymptotic equipartition (AEP) for ergodic sources
(McMillan) shown in Gallager’s book [2], intuitively, the minimum ex-
pected length per symbol for both constrained and unconstrained Mako-
vian ergodic sources is the entropy rate of the source.

E[l(Xn
1 )] ≥ nH(X ) with n ≥ 1. (1.23)

With the fix-mapped code the gain obtained with respect to the Huff-
man code is only at the first symbol because H(X2|X1) = 3/2 and so,
there is no gain when we have state transitions. The Huffman code is
more expensive in terms of computational complexity because the de-
coder must have stored all the codes for each possible transition, while
for the custom-code the decoder needs to know the impossible transitions
but the matching between encoding bits and symbols is faster.

1.3 Karush’s proof for constrained uniquely
decodable codes

As we said in the previous section, McMillan proved that the uniquely
decodable codes (classic sense) satisfy the Kraft inequality. When con-
strained sources are used this necessary condition is no more correct.
Karush’s proof of McMillan theorem is useful to determine a new neces-
sary condition for constrained sources. Considering the following quan-
tity for k > 0 (

n∑
i=1

D−li

)k

(1.24)
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where n is the number of codewords and the number of terms produced is
nk (e.g. one term is D−l1D−l2 · · ·D−ln). This expression produces all the
possible product combinations of D−li . Each term can be associated to a
unique sequence of symbols by means of the length indices in the product
term. Given r the total codeword length of k symbols, the associated
term is D−r. If the code must be uniquely decodable there are at most
Dr sequence with a code of length r meaning that each sequence of k
symbols contributes in the sum with a quantity that is at most 1.(

n∑
i=1

D−li

)k

=
klmax∑
r=klmin

N(r)D−r ≤ k(lmax − lmin + 1) (1.25)

where lmin = min
i
(li), lmax = max

i
(li) andN(r) is the number of sequences

of length r. This inequality must hold for every k > 0. But at the left-
hand side of the inequality we have an exponential function in k while
at the right-hand side we have a linear function in k. This implies that

n∑
i=1

D−li ≤ 1. (1.26)

In this proof we have implicitly supposed that N(r) > 0, ∀r = klmin, ...,
klmax: meaning that the code is uniquely decodable in classic sense.
Hence we need an expression which incorporates the possibility that one
sequence of symbols is forbidden. Consider the following matrix:

Q(D) =


D−l1 0 D−l3 0
0 D−l2 0 D−l4

D−l1 D−l2 D−l3 D−l4

D−l1 D−l2 D−l3 D−l4

 , (1.27)

and also the following row vector:

L = (D−l1 , D−l2 , D−l3 , D−l4), (1.28)

where D = |D| = 2 related to the Markov source in Figure 1.2 and
l1, l2, l3, l4 are the lengths of the codewords associated to the symbols
A,B,C,D.
The inequality 1.25 for constrained sources can be rewritten using Q and
L:

L ·Q(D)k−1 · 1T4 ≤ k(lmax − lmin + 1)1, (1.29)
where 14 = (1, 1, 1, 1). It is shown in [3] that a necessary condition
for this inequality to be satisfied for every k is that the spectral radius
ρ(Q) = max

i
|λi| (λi are the eigenvalues of the matrix Q(D)) of Q must

be less than or equal to 1.
1AT means the transpose of the matrix or vector A.
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Theorem 4 (Dalai [3]). Let P be an irreducible N ×N transition prob-
ability matrix of a Markov chain and l = (l1, l2, ..., lN) a set of integers.
Let the matrix Q be defined as

Qij(D) =

{
D−li Pij > 0
0 Pij = 0

. (1.30)

A necessary condition for a code with lengths li to be uniquely decodable
(extended sense) is that ρ(Q) ≤ 1.

Proof. Starting from inequality 1.29 and knowing that Q is also a non-
negative matrix by Perron-Frobenius theorem its spectral radius ρ(Q)
is also an eigenvalue with algebraic multiplicity 1 and with a positive
associated eigenvector. If we call this eigenvector wT , we can define the
vector L = αw+ z using the eigenvector w and a non-negative vector z.
Since L is a non-negative vector there exists such positive constant α.

LQk−11Tn = αwQk−11Tn + zQk−11Tn (1.31)

= αρ(Q)k−1w1Tn + zQk−11Tn .

We can see that the coefficient of ρ(Q) is non-negative and zQk−114

is also non-negative. If ρ(Q) > 1 the left-hand side of inequality 1.29
grows exponentially with k while the right-hand side grows linearly in k
meaning that ρ(Q) ≤ 1 for the inequality to be satisfied for every k.

Some considerations can be carried out: if all the entries of the ma-
trix P are positive then the matrix Q has all equal rows, in this case the
spectral radius ρ(Q) =

∑
iD
−li applying the inequality stated before we

obtain the ordinary Kraft inequality.
The limit case is when ρ(Q) = 1. Suppose that we have constructed a
uniquely decodable code with a set of lengths {li} for which the spectral
radius of the matrix Q is equal to 1. If we decrease only just one code-
word length lj this will because an increase in the spectral radius and so
the code is not anymore a uniquely decodable code.

It is important to notice that this is a necessary condition for the code
to be uniquely decodable and not a sufficient condition (contrarily to the
classic Kraft inequality). So there exist codeword lengths which satisfy
the spectral radius inequality but a uniquely decodable (UD) code with
the mentioned lengths can not be constructed. The Sardinas-Patterson
test [9] for UD-codes can be generalized to work also for constrained
sources.
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1.4 Generalized Sardinas-Patterson test
In the previous sections, based on [3], we have seen that the Kraft in-
equality is not a necessary and sufficient condition for the code to be
uniquely decodable in the general sense and thanks to the Karush proof
of the McMillan theorem Dalai was able to derive a new necessary con-
dition (not sufficient): ρ(Q) ≤ 1.

For a better understanding of the Sardinas-Patterson test we will
consider binary codes and transition probability matrices in Moore form
where each vertex of the graph represents a source symbol.
In the following examples we encode each source symbol with its associ-
ated codeword (fix-map) without encoding state transitions.

Example 2. Let us consider a ternary Markov source with transition
graph shown in fig. 1.3.

Figure 1.3: Transition graph where ρ(Q) ≤ 1 is not a sufficient condition,
from [5].

If we set the vector of lengths l = (1, 1, 1) then ρ(Q) = 1 but it is
clearly impossible to decode if we assign only one bit to the three possible
symbols. In general if we have more than 2k codewords of length k the
code is always a non decodable code. Here the transition probability matrix
related to transition graph in Figure 1.3 with lengths l = (1, 1, 1) satisfies

ρ(Q) = ρ

1/2 1/2 0
0 1/2 1/2
1/2 0 1/2

 = 1.
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Example 3. Considering a source shown in fig. 1.4 with three symbols
A,B,C.

Figure 1.4: Transition graph where ρ(Q) < 1 it is not a sufficient condi-
tion, from [5].

If we set the vector of lengths l = (1, 1, 2), we have two codewords of
length 1 and one codeword of length 2, nevertheless a uniquely decodable
code does not exist. Let us give an example: if we assign to symbol A
codeword 1, for B codeword 0 then the only possible codeword for C is 00,
but we can easily see that the sequences of symbols BC and CB produce
the same code so it is not an uniquely decodable code. Here the transition
probability matrix related to transition graph in Figure 1.4 with lengths
l = (1, 1, 2) has spectral radius

ρ(Q) = ρ

1/2 1/2 0
1/2 0 1/4
1/2 1/2 1/4

 < 1.

We have observed that the condition on the spectral radius ρ(Q) ≤ 1
is a necessary condition but not a sufficient condition. In order to
check if a code is uniquely decodable (for both constrained and uncon-
strained sources) the Sardinas-Patterson [9] test can be generalized to
consider also constrained sources. Given a set of codewords, the Sardinas-
Patterson test allows us to determine in a finite number of steps if the
code is uniquely decodable also in the general case. Let us see in details
the Sardinas algorithm modified [5] to work with first-order Markovian
sources.

Let X = {1, 2, ..., n} be our source alphabet, C = {ci}i=1,...,n our code
under test with associated codewords ci and P the transition probability
matrix associated to the source, the following steps define the algorithm
process:

1. ∀i = 1, ..., n let Fi = {cj | Pij > 0, 1 ≤ j ≤ n} be the subset of C
containing all codewords that can be reached from state i (defined
in the transition probability matrix);
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2. we have to build a sequence of sets S1, S2, ..., so that at the first
step (n = 1) for building S1 we consider all pairs of codewords
drawn form the set C this means that (ci, cj) ∈

(C
2

)
; if the code ci

is a prefix of a code cj meaning that cj = ciA (with A non-empty
word) we then put the suffix A into S1 set.
In order to consider only the possible transitions we have to save
the indices related to the codewords that have generated all the
suffixes, so, we have to tag the suffix A with two labels i, j. The
representation of the suffix become iAj;

3. for n > 1 the set Sn is constructed in an iterative way comparing the
elements of Sn−1 with elements of C. For each element lHm ∈ Sn−1
we consider Fl ⊆ C:

(a) if a codeword ci ∈ Fl is equal to lHm the iterative process ends
and the code is not uniquely decodable;

(b) if lHm is a prefix of a codeword cr = lHmB ∈ Fl we label
suffix B (mBr) and we insert it into Sn;

(c) if a codeword cs ∈ Fl is a prefix of lHm = csD we label suffix
D (sDm) and place it into Sn.

(d) if Sn = ∅ or Sn = Sr for some r < n then the algorithm stops
and the code is uniquely decodable.

The algorithm stops after a finite number of cycles (because there are a
finite number of different sets Si). The sequence S1, S2, ... can be finite
or periodic. A code is said to be uniquely decodable with finite delay
if the sequence of Si is finite (from a certain k ≥ 1, Sk becomes equal
to the empty set) while it is said to be uniquely decodable with infinite
delay if the sequence of the Si is periodic.
In case of periodicity the code is always decodable after sending the entire
sequence of symbols but fixing the length of the sequence to n there are
at least two or more sequences of symbols that share the same code and
thus the delay for decoding cannot be bounded.
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Example 4. Let us consider an example of the test applied on the fol-
lowing constrained source:

Figure 1.5: Transition graph where ρ(Q) ≤ 1 is a sufficient condition,
from [5].

We can see from Figure 1.5 that the code associated is C = {0, 1, 01, 10}.
A → 0, B → 1, C → 01 and D → 10. Applying the Sardinas-Patterson
procedure S1 = {A1C , H0D} and S2 = ∅ meaning that the code C is a
uniquely decodable code with finite delay and this delay (in bits) can be
calculated knowing the first index i for which the set Si = ∅.

Example 5. Another similar example can be useful to understand the
procedure:

Figure 1.6: Transition graph where ρ(Q) ≤ 1 is a sufficient condition,
from [5].

We can see from Figure 1.6 that the code is the same as before: C =
{0, 1, 01, 10}. The mapped codewords are: A → 0, B → 1, C → 01 and
D → 10. The suffix sets are S1 = {A1C , B0D}, S2 = {C0D, D1C} and
from now on Si = Si−1 with i > 2 meaning that the code C is uniquely
decodable with infinite delay (it is not possible to distinguish sequences
BCCC... and DDD... until the end of the entire sequence).
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Example 6. Now we see an example of a code that is not easy to de-
termine a-priori if it is a uniquely decodable code. Consider a stationary
Markov source defined by its transition probability matrix P. For the
Sardinas-Patterson test the only important information is the adjacency
matrix relative to the Markov chain so:

P0 =


1 0 1 1 1
0 1 1 1 1
1 1 1 1 0
1 1 0 1 0
1 0 1 1 0

 .

There are five source symbols X = {A,B,C,D,E} and the associated
code that we want to test is C = {00, 001, 101, 010, 10101}.

The first iterations of the test are as follows:

1. S1 = {A1B, C01E};

2. S2 = {B01C , B0101E, E0D};

3. S3 = {C0D, D1E, D0A, D10D};

4. S4 = {D0A, D01B, D01D, A0A, A01B, A10D};

5. S5 = {...};

6. S6 = {A0A, A10D, B10D, D1C , D101E, D01B, D10D};

7. S7 = S6;

8. Si = Si−1 for i > 7.

So, we end up having set S6 which is equal to set S7, meaning that code
C is a uniquely decodable code with infinite delay. It is not possible to
distinguish the sequences CDBBB... and EADDD... until the end of the
entire sequence of symbols.

If we change just only one value of the adjacency matrix defined in
Example 6 the code might become non-uniquely decodable, we see this
in detail in the following example.

Example 7. As we said we change only one value of the adjacency ma-
trix defined before:

P0 =


1 0 1 1 1
0 1 1 1 1
1 1 1 1 0
1 1 1 1 0
1 0 1 1 0

 .
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The code for this Markov chain is the same as before so C = {00, 001, 101,
010, 10101}. The iterations of the test follow:

1. S1 = {A1B, C01E};

2. S2 = {B01C , B0101E, E0D};

3. S3 = {C0D, D1E, D0A, D10D};

4. S4 = {D0A, D01B, D10D, A0A, E01C , A01B, A10D, D1C};

5. S5 = {D0A, D01B, A0A, A01B, A10D, D1C , B0D, C0D, D101E, C01C}.

Set S5 contains the codeword related to the symbol C, so making possible
the transition D → C the code becomes not uniquely decodable. Using
a software implementing the Sardinas-Patterson test (as the one in the
appendix) we can carry out the sequence of codewords that generate the
collision, in this case we have:

101010010101,

which can be split up in two different modes:

1. 101− 010− 010− 101 → CDDC;

2. 10101− 00− 10101 → EAE.

Allowing the transition from state D → C this particular sequence of
coded symbols is not uniquely identified.

Changing the last time the matrix P by avoiding the transition from
C → D, the code is still not uniquely decodable and the colliding sequence
is:

001010010101,

which can be obtained with two sequences of symbols:

1. 001− 010− 010− 101 → BDDC;

2. 00− 101− 00− 10101 → ACAE.

It is interesting to see that if we do not allow the transition from
C → D the code is not uniquely decodable while if we do not allow the
transition from D → C the code becomes uniquely decodable.

The Sardinas-Patterson test can be a useful tool in order to have a
feedback on colliding sequences and to develop a new method for the con-
struction of uniquely decodable code for constrained sources that exploits
the impossible state transitions.



CHAPTER 1. CONSTRAINED SEQUENCES 21

1.5 Mealy and Moore Markov chains
In Figure 1.2 the Markov chain is represented in the Moore form in which
the outputs of the source happen inside each state. We can represent the
same Markov chain in the Mealy form, which is usually more compact.
To do this, states that have the same transition probability distribution
are merged together defining unique states, where output symbols are
determined by state transitions. This form reduces the dimensionality
of the matrix P and also its associated matrix Q(D). In the example
shown in Figure 1.2, we see that

PXi|Xi−1
(x|C) = PXj |Xj−1

(x|D) ∀i, j > 1, (1.32)

thanks to the fact that the Markov chain is homogeneous (time-invariant).
In Figure 1.7 state γ merges together states C and D of the Moore repre-
sentation because the transition probability vectors, fixing the previous
state to C or D, are equal.

Figure 1.7: Mealy form related to the Markov source seen in Figure 1.2,
from [5].

The output symbols are now associated to transitions. We have re-
duced the number of states from 4 to 3.

Theorem 4 can be adapted to the case of Markov sources in Mealy
form.

Theorem 5. (Dalai [3]) Given a Markov chain defined over a source
alphabet X where |X | = n, and let Oij be a subset of X which contains
all possible output symbols when a transition from state i to state j occurs.
A necessary condition for the set of integers l1, l2, ..., ln to be lengths of
a uniquely decodable code for the source is that ρ(Q) ≤ 1, where Q is
defined by

Qij(D) =

{∑
v∈Oij D

−lv Pij > 0

0 Pij = 0
. (1.33)
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The proof can be carried out following the same procedure described for
the Moore form (see Theorem 4).

We can define for the Mealy Markov chain, shown in Figure 1.7, its
associated matrix Q:

Q(D) =

D−l1 0 D−l3

0 D−l2 D−l4

D−l1 D−l2 D−l3 +D−l4

 , (1.34)

It can be easily checked that this current matrix has the same spec-
trum (eigenvalues) as the Moore matrix but with a lower multiplicity
related to eigenvalue λ = 0.

1.5.1 Mealy-Moore equivalence

Theorem 6. Let Q be the associated matrix to an irreducible Markov
chain with transition probability matrix P and a set of N integers l =
(l1, l2, ..., lN) related to codeword lengths. The matrix Q expressed in both
Moore and Mealy form share the same spectrum with the only difference
that the eigenvalue 0 has lower or equal multiplicity in Mealy form than
in Moore form.

Proof. Let Qmoore be the matrix associated to the transition probability
matrix P in Moore form and Qmealy be the matrix associated with the
same matrix P in Mealy form. The dimension of the square matrix
Qmoore is N . The conversion between Moore and Mealy form can be
described with the following procedure and operators:

1. define a set of indices I = {(k, l) ∈ {1, 2, ..., N}2 : r(k) = r(l), l >
k} which contains all the indices pairs (k, l) for which the row r(k)2

is equal to another row r(l) in matrix Qmoore;

2. filtering phase: let Iπ = {(k, l) ∈ I | @l′ : (l, l′) ∈ I} (removing all
the pairs that are redundant inside I);

3. define the matrix Tij =


1 i = j
−1 (i, j) ∈ Iπ
0 otherwise

;

4. Q̂mealy = T·Qmoore·T−1, matrixT represents a linear and invertible
operator on RN ;

2r(i) is the i-esim row of the associated Q matrix
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5. let R = {1, 2, ..., N} \ {k : (k, l) ∈ Iπ} be the set containing all the
row-indices for which the corresponding row has to be preserved.
So the reduction matrix can be defined as:

Zij =
{
1 j = m(R, i)
0 otherwise

,

with i ∈ {1, 2, ..., N−M}, j ∈ {1, 2, ..., N} andM = |Iπ|. Function
m(R, i) returns the i-th minimum of the setR. Matrix Z represents
a linear non-invertible operator;

6. Qmealy = Z · Q̂mealy · ZT .

Lemma 1. By construction the operator matrix T (upper triangular ma-
trix) related to matrix Qmoore is always invertible and det(T) = 1 for all
the transition probability matrices and set of codeword lengths that can
be associated to matrix Qmoore.

The matrix operator Z is a reduction operator which reduces the dimen-
sionality of the matrix to which it is applied by removing a row and the
associated column (i.e. row 3 and column 3).

The matrix Q̂mealy is a similar matrix to Qmoore thanks to the construc-
tion process. This means that these two matrices share the same eigen-
values (and also other properties). Q̂mealy has the same dimensionality
of Qmoore but a certain number M of rows (M ≥ 0) have all zero entries;
this is due to the operator T that subtracts equal rows producing “null”
rows and the operator T−1 that sums/converges probabilities into differ-
ent states.
The last operation is done to obtain a matrix with lower dimensionality
removing the i-th row and the i-th column (with i : (i, l) ∈ Iπ) of Q̂mealy

where the i-esim row of Q̂mealy is equal to 0. This M -reduction brings
the initial dimensionality from N to N −M .
Let Qmealy be matrix the result of this reduction; µ1 = det(λI−Qmoore)
and µ2 = det(λI−Qmealy) then the ratio of µ1 to µ2 is:

µ1

µ2

= λM , (1.35)

where µ1 and µ2 are the characteristic polynomials of Moore and Mealy
matrices.

At the end we can see that we just need N −M states to describe the
Markov source instead of N states, and we have preserved the structure
of the problem in the conversion from Moore to Mealy.
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1.5.2 Examples of the Moore-Mealy equivalence

Let us see some applications of the Mealy-Moore equivalence with differ-
ent Markovian stationary sources.

Example 8. The first example is a trivial example where all transitions
are possible. We set the source alphabet X = {A,B,C}, so there are three
symbols with associated codeword lengths l1, l2, l3 and the Markov source
is described by a transition probability matrix with all positive entries (all
transitions are possible). The matrix Qmoore(D) in Moore form associated
to this Markov source can be stated:

Qmoore(D) =

D−l1 D−l2 D−l3

D−l1 D−l2 D−l3

D−l1 D−l2 D−l3

 ,

where D is the cardinality of the code alphabet. In this case all rows are
the same (unconstrained source), so the set Iπ contains 2 pairs of indices:
Iπ = {(1, 3), (2, 3)}. The operator T can be derived:

T =

1 0 −1
0 1 −1
0 0 1

 .

The inverse of matrix T can be easily calculated:

T−1 =

1 0 1
0 1 1
0 0 1

 .

The matrix Q̂mealy can be derived:

Q̂mealy =

1 0 −1
0 1 −1
0 0 1

 ·
D−l1 D−l2 D−l3

D−l1 D−l2 D−l3

D−l1 D−l2 D−l3

 ·
1 0 1
0 1 1
0 0 1



Q̂mealy =

 0 0 0
0 0 0

D−l1 D−l2 D−l3

 ·
1 0 1
0 1 1
0 0 1


Q̂mealy =

 0 0 0
0 0 0

D−l1 D−l2 D−l1 +D−l2 +D−l3

 .

Now that we have built the matrix Q̂mealy which is similar by construc-
tion to matrix Qmoore, we can reduce the dimensionality of the Mealy
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matrix removing all the rows with zero entries and their relative columns
in order to maintain the same spectrum excepts for the zero eigenvalue
multiplicity.

Qmealy =
(
0 0 1

)
·

 0 0 0
0 0 0

D−l1 D−l2 D−l1 +D−l2 +D−l3

 ·
0
0
1

 ,

Qmealy = D−l1 +D−l2 +D−l3 .

As we can see the reduced matrix Qmealy is a scalar which contains the
sum of D−li for i = 1, 2, 3. This scalar is the spectral radius of the initial
matrix Qmoore. After the reduction we have lost eigenvalue 0 which in
the Moore matrix had multiplicity 2.

Example 9. Let us consider an example using the Markov chain in
Moore form stated before (Figure 1.2):

Qmoore(D) =


D−l1 0 D−l3 0
0 D−l2 0 D−l4

D−l1 D−l2 D−l3 D−l4

D−l1 D−l2 D−l3 D−l4

 .

Here rows 3 and 4 are equal.
The set Iπ will contain only one pair of indices {(3, 4)}. The operator
matrix T can be constructed:

T =


1 0 0 0
0 1 0 0
0 0 1 −1
0 0 0 1


and easily the inverse of T can be calculated:

T−1 =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 .

The Mealy matrix (not reduced) can be carried out as

Q̂mealy = T ·Qmoore ·T−1.
The matrix T operates only on rows of the matrix Qmoore while the T−1

operates only on columns. Let us see the values inside the Q̂mealy matrix:

Q̂mealy =


D−l1 0 D−l3 D−l3

0 D−l2 0 D−l4

0 0 0 0
D−l1 D−l2 D−l4 D−l3 +D−l4

 ,
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the last step consists in removing the third row and the third column,
obtaining the correct Mealy matrix seen before in eq. 1.7:

Qmealy =

1 0 0 0
0 1 0 0
0 0 0 1

·

D−l1 0 D−l3 D−l3

0 D−l2 0 D−l4

0 0 0 0
D−l1 D−l2 D−l4 D−l3 +D−l4

·

1 0 0
0 1 0
0 0 0
0 0 1



Qmealy =

D−l1 0 D−l3

0 D−l2 D−l4

D−l1 D−l2 D−l3 +D−l4

 .

The two spectrums relative to Moore and Mealy can be calculated and they
only differ by a different multiplicity of eigenvalue 0. This multiplicity
differs exactly by d = dim(Qmoore)− dim(Qmealy) = 1.

Example 10. Last example about the equivalence between the two forms
takes the following Moore matrix:

Qmoore(D) =


D−l1 0 D−l3 D−l4 0
0 D−l2 D−l3 D−l4 D−l5

D−l1 D−l2 D−l3 0 0
D−l1 D−l2 D−l3 0 0
D−l1 0 D−l3 D−l4 0

 . (1.36)

We can see that pairs of rows: (1, 5) and (3, 4) are equal, meaning that
set Iπ = {(1, 5), (3, 4)}.
The Moore graph associated to Qmoore matrix follows

A

D

B C

E

Figure 1.8: Markov chain related to Qmoore matrix defined in eq.
1.36, where codeword lengths l1, l2, l3, l4, l5 are associated to symbols
A,B,C,D,E.
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The “transformation” matrix T can be stated:

T =


1 0 0 0 −1
0 1 0 0 0
0 0 1 −1 0
0 0 0 1 0
0 0 0 0 1

 .

Inverting the −1 values to +1 values it is a method to calculate the inverse
of T:

T−1 =


1 0 0 0 1
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

 .

The Mealy form of this matrix can be generated thanks to the following
operations:

Qmealy = Z ·T ·Qmoore ·T−1 · ZT ,

Qmealy =

D−l2 D−l3 +D−l4 D−l5

D−l2 D−l3 D−l1

0 D−l3 +D−l4 D−l1

 , (1.37)

where the matrix Z is constructed in order to remove rows 1, 3 and
columns 1, 3. The new dimensionality related to Mealy form is 3 re-
spect to the initial one that is 5 meaning that we reduce the multiplicity
of the eigenvalue 0 by 2.

α

β γ

C
D

B

B

C A

E

A

C

D

Figure 1.9: Markov chain related to Qmealy matrix defined in eq. 1.37.

We can see from Figure 1.9 that states A and E are merged into state
γ, states C and D are merged into state β while state B remains a single
state which is called α.
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1.6 Future works
Many open questions remain to be clarified. When we are dealing with
one-to-one codes, it is assumed that only one symbol must be coded,
codes are maps from symbols to binary strings without any requirement
on concatenation of codewords. It is well known that for one-to-one codes
the average codeword length can always be made lower than the entropy
(see Wyner [13]). In this type of codes a discrete random variable X
that takes values over an alphabet X has the following inequality always
satisfied: E[l(X)] ≤ H(X); where E[l(X)] is the expected length of
the one-to-one code. So, there is no need to have unique decodability
because there is no concatenation of codewords; it is a one to one mapping
between symbols and codewords. The question that arises spontaneously:
“is there another block-code, also, among variable-to-fixed codes that is
better than the one we have given before for the Markov chain in Figure
1.2?”. The answer is not trivial because if we can easily see that for
fixed-to-variable block-codes the AEP tells us that we cannot do better
than the entropy rate of the source, for variable-to-fixed codes this is not
easy to show. A future work consists in proving that the code we have
constructed is the best code between all the possible block-codes. This
means that if we have constructed a new code which for a particular
length n is better than the code seen before, there must exists a length
m 6= n for which the expected length of the new code is greater than the
old one. In this sense, our code could be claimed to be pareto-optimal.

About the Sardinas-Patterson, further work could be done in or-
der to use feedback information given by the test to adapt our initial
non-uniquely decodable code trying to make it decodable. So, pseudo-
randomic techniques can be applied for the construction of a uniquely
decodable code with constrained sources. Some important information
can be carried out from the sparsity of the transition probability matrix
related to the Markov chain under consideration and this information
can be used to describe a construction process of uniquely decodable
codes (in the large sense). Methods that exploit the sparsity of the state
transition matrix are not known in literature.



Appendix

1.A Moore to Mealy transformation in Mat-
lab

We give an implementation of the Moore-Mealy transformation which
follows step by step the construction process defined in Theorem 6. Let
us divide the construction process in several steps:

1. given a set of codeword lengths l = {l1, l2, ..., lN} with N the number
of codewords, D the alphabet cardinality of our code and the adja-
cency matrix P0 related to the Markovian source that it is taking

into account, we can define matrixQmoore = P0·


l1 0 · · · 0
0 l2 · · · 0
...

... . . . ...
0 0 · · · lN

;

2. construction of set I = {(k, l) : r(k) = r(l), l > k} which contains
all pairs of row-indices of matrix Qmoore that are equal;

3. construction of set Iπ = {(k, l) ∈ I | @l′ : (l, l′) ∈ I} in which we
preserve only informative pairs;

4. definition of the transformation matrix T which is an invertible
linear operator;

5. creation of reduction matrix Z that removes rows and columns from
Moore matrix in order to lower the initial dimensionality loosing
only multiplicity of eigenvalue 0;

6. last operation is the calculation of the Mealy matrix:

Qmealy = Z ·T ·Qmoore ·T−1 · ZT . (1.38)

29
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The first code snippet is about point (1) of the construction process
defined before:

L = [ 2 , 3 , 3 , 3 , 5 ] ; % l en g t h s v ec t o r
D = 2 ; % ca r d i n a l i t y o f code d i c t i ona r y

% Adjacency matrix
P0 = [1 0 1 1 0 ; 0 1 1 1 1 ; 1 1 1 0 0 ; . . .

1 1 1 0 0 ; 1 0 1 1 0 ] ;

% Qmoore computation
Q_moore = P0 ∗ diag (D.^(−L ) ) ;

we first define an arbitrary set of codeword lengths L and the cardinality
of our code alphabet then we can calculate the matrix Qmoore with the
formula given before.

Second code snippet produces the set I (point 2 of the construction
process):

I = {} ; % i n i t i a l i z a t i o n o f s e t I to the empty s e t

%loop on a l l the row−pa i r s
for i =1: length (L)

for j=i +1: length (L)
i f i s e q u a l (Q( i , : ) , Q( j , : ) ) == 1

I = [ I , { [ i , j ] } ] ;
end

end
end

The for loop cycles on all the pairs (i, j) of rows, if one of these pairs of
rows are equal then it is inserted into I.

Third code snippet is about the filtering phase meaning that we keep
only the pairs of rows that are significant (point 3):

Ip = {} ; % i n i t i a l i z a t i o n o f s e t Ip to the empty s e t

%loop on a l l the e lements o f I
for i =1: length ( I )

cur = I { i } ; % ge t curren t pa i r
b = cur ( 2 ) ; % take the second element o f the pa i r
i n s = 1 ; % boolean va lue (1− i n s e r t , 0−not i n s e r t )
for j =1: length ( I )

comp = I { j } ;
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a = comp ( 1 ) ;
i f a == b

in s = 0 ;
break ;

end
end
i f i n s == 1

% adding an element to the s e t
Ip = [ Ip , { I { i } } ] ;

end
end

so, we cycle on all the elements of I and we insert the pair indexed by i
into the set Ip(Iπ) if and only if does not exist another pair in I that has
the first element equal to the second element of i-esim pair.

Fourth code snippet is about the construction process of the transfor-
mation matrix T (point 4):

T = zeros ( s ize (P0 ) ) ; % i n i t i a l i z e to zero−matrix T

% loop on a l l the p o s i t i o n s o f T
for i =1: s ize (T, 1 )

for j =1: s ize (T, 2 )
i f i == j % main d iagona l

T( i , j ) = 1 ;
else

for k=1: length ( Ip )
cur = Ip{k } ;
% ( i , j ) b e l ong s to Ip
i f i == cur (1 ) && j == cur (2 )

T( i , j ) = −1;
break ;

end
end

end
end

end

first of all, we initialize the matrix T to a zero-matrix (all entries equal
to 0) then we cycle on all the positions (i, j) and we change the value in
the current position to 1 if the position is on the main diagonal while we
change the value to −1 when (i, j) ∈ Iπ.
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Fifth code snippet produce a set which contains the indices of rows that
must be preserved during the reduction process:

i n d i c e s = [ ] ; % i n i t i a l i z e the s e t to empty vec t o r

% loop from 1 to the number o f codewords
for i =1: length (L)

found = 0 ;
for j =1: length ( Ip )

cur = Ip{ j } ;
i f i == cur (1 )

found = 1 ;
break ;

end
end
i f found == 0

i nd i c e s = [ i n d i c e s ; i ] ;
end

end

this code simply implements a set difference between {1, 2, ..., N} (set
containing all integer numbers from 1 to the number of codewords N)
and the set induced by Iπ (taking only the first element from all the
pairs). The set of indices is implemented as a vector so each inside ele-
ment it’s listed in ascending order.

Sixth code snippet (point 5) defines the construction of Z matrix:

% i n i t i a l i z e matrix Z wi th co r r e c t dimension
Z = zeros ( length ( i n d i c e s ) , s ize (T, 2 ) ) ;

% loop on a l l the p o s i t i o n s o f Z
for i =1: s ize (Z , 1 )

for j =1: s ize (Z , 2 )
% i f j i s equa l to i−esim minimum of i n d i c e s
i f j == i nd i c e s ( i )

Z( i , j ) = 1 ;
end

end
end

this matrix is first initialize to a zero-matrix, then we cycle on all its
positions (i, j) and we set the value in that position to 1 if and only if j
is equal to the i-esim minimum of the set of indices.
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The last code snippet is related to the computation of the Mealy ma-
trix:

Q_mealy = Z ∗ T ∗ Q_moore ∗ inv (T) ∗ Z ’

we apply the formula given in eq. 1.38 using built-in function of matlab
to compute the inverse of matrix T.

1.B Implementation of Sardinas-Patterson
test

In this section we present a Matlab implementation of the extended
Sardinas-Patterson test seen in previous sections. The algorithm fol-
lows exactly the same steps describe in the mentioned section. Let us
show some code snippets from the matlab implementation.

First code snippet:

MAX = 1000 ; % max va lue t ha t v a r i a b l e n can assume
C = { ’ 0 ’ , ’ 1 ’ , ’ 01 ’ , ’ 10 ’ } ; % i n i t i a l code
% adjacency matrix example
A = [1 0 1 0 ; 0 1 0 1 ; 1 1 1 1 ; 1 1 1 1 ] ;
F = c e l l (1 , length (C) ) ;

first of all we have to initialize the needed data structures. C is the code
under test, A is the adjacency matrix where Aij = 1 if Pij > 0 and
Aij = 0 otherwise. The variable F is a cell-array and contains different
sets F = {Fi}i=1,...,n where n = length(C) is the number of codewords in
C.

Second code snippet:

for i =1: length (C)
F{ i } = {} ; % i n i t i a l i z e each s e t to the empty s e t
for j =1: length (C)

% check i f the t r a n s i t i o n i s p o s s i b l e
i f A( i , j ) = 1

add = c e l l (1 , 2 ) ;
add{1} = C{ j } ;
add{2} = j ;
% add a c e l l t h a t con ta ins c_j word
F{ i } = [F{ i } , {add } ] ;

end
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end
end

this section of the matlab code is used for the construction of the sets
Fi. A generic set Fi contains all the codewords that can follow i-esim
symbol:

Fi = {cj ∈ C |Aij = 1}.

So the outer loop cycles on all the codeword indices i = 1, ..., n, the set
Fi is initially set to the empty-set and then will be populated in the
following loop. The inner loop cycles again on all the codeword indices
j = 1, ..., n and add to the set Fi the codeword cj and the index j (will
be useful later) if and only if the the state transition from i to j is possible.

Third code snippet:

% de f i n i t i o n o f the sequence o f s e t s
St = c e l l (1 , MAX) ;

% loop on a l l the codewords c_i
for i =1: length (C)

for j =1: length (C) % loop on a l l the codewords c_j
i f length (C{ j }) <= length (C{ i })

cont inue ;
end
l en = length (C{ i } ) ;
cmp = C{ j } ;

% check i f c_i i s a p r e f i x o f c_j
i f strcmp (C{ i } , cmp ( 1 : l en ) ) == 1

add = c e l l (1 , 3 ) ;
add{1} = i ;
add{3} = j ;
add{2} = cmp( l en +1:end ) ;

% bu i l d i n g the p o s s i b l e c o l l i d i n g sequence
add{4} = s t r c a t (C{ i } , add {2} ) ;

% add the r e s i d u a l s u f f i x to S_1
St {1} = [ St {1} , {add } ] ;

end
end

end

this matlab code is used to construct the set S1 (seen in the related chap-
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ter) which consists cycling on all pairs of codewords (ci, cj) ∈
(C
2

)
and

check if codeword ci is a prefix of a codeword cj meaning that cj = ciA
where A is the residual suffix of cj; if this condition is met then the suffix
A is inserted into S1 set. Together with suffix A are saved in S1 also the
two indices i, j keeping trace of the codewords that generate such suffix.
In all the matlab snippets we used cell-arrays instead of simple arrays
because the non-homogeneity (in length and type) of the data values.

Fourth code snippet:

n = 2 ; % s t a r t i n g from 2
while n < MAX

S_new = St{n } ; % tak ing the S_n s e t
S = St{n−1}; % tak ing the S_{n−1} s e t
for i =1: length (S)

from = S{ i }{1} ;
to = S{ i }{3} ;
B = S{ i }{2} ;
F_from = F{from } ;
cod = S{ i }{4} ;

in this code section we have an outer while loop that cycles on n, the
number of building sets, which will be broken under some conditions (see
in further code sections). The inner for loop cycles on each codeword
lHm ∈ Sn−1 where l value is defined in variable from and m value is de-
fined in variable to. Then we assign to variable F_from the set Fl which
contains all the codewords cj that can follow the codeword ci (possible
transitions Aij = 1). Variable delay is initially set to 1 (delay is the num-
ber of bits that the decoder needs in order to decode the correct symbol).

Fifth code snippet:

for k=1: length (F_from)
i f length (B) == length (F_from{k}{1}) && . . .

strcmp (B, F_from{k}{1}) == 1

disp ( ’Code␣ i s ␣not␣ unique ly ␣ decodable ’ ) ;

cod
getSequence ( cod , C, X, ’ ’ )
return ;

end
end
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this code section is about checking if the code C under test is not a
uniquely decodable code. This phase consists in comparing all the code-
words inside the set Fl with the codeword lHm, if the two codewords
are equal then the algorithm stops and produce a video message saying:
“Code is not uniquely decodable”. The condition can be simply seen as:

c(lHm,Fl) =
{
1 H ∈ Fl
0 otherwise .

If the code is not uniquely decodable a message containing the colliding
sequence will appear on the screen and the sequences of symbols that
generate such sequence will be calculated using function getSequence
(dealt later).

Sixth code snippet:

for r=1: length (F_from)
l en = length (B) ;
cmp = F_from{ r }{1} ;
i f l en < length (cmp) && . . .
strcmp (B, cmp ( 1 : l en ) ) == 1

add = c e l l (1 , 3 ) ;
add{1} = to ;
add{3} = F_from{ r }{2} ;
add{2} = cmp( l en +1:end ) ;
add{4} = s t r c a t ( cod , add {2} ) ;
S_new = [S_new , {add } ] ;

end
end

this code section is about building the Sn set of codewords starting from
the set Sn−1 and the set Fl. The for loop cycles on all the codewords
cr ∈ Fl and there is a condition that checks if these codewords are pre-
fixed by lHm meaning that cr = lHmC, where C is the residual suffix
generated by the previous operation. We then add the labelled suffix
mCr to the set Sn.

Seventh code snippet:

for s=1: length (F_from)
l en = length (F_from{ s }{1} ) ;
cmp = F_from{ s }{1} ;
i f l en < length (B) && strcmp (B( 1 : l en ) , cmp) == 1

add = c e l l (1 , 3 ) ;
add{1} = F_from{ s }{2} ;
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add{3} = to ;
add{2} = B( l en +1:end ) ;

S_new = [S_new , {add } ] ;
end

end

this code section is about adding to the Sn set some codewords starting
from the set Sn−1 and the set Fl. The for loop cycles on all the codewords
cs ∈ Fl and there is a condition that checks for each of these codewords
if they are prefix of codeword lHm meaning that lHm = csD where D is
the residual suffix generated by the previous operation. We then add the
labelled suffix sDm to Sn.

Eighth code snippet:

St{n} = S_new ;

i f isempty (S_new) == 1 | | checkequal ( St , n ) == 1
break ;

end

n = n + 1 ;

we have the last condition where we check if set Sn = ∅ (finite delay) or
if there is a previous set Sn−k with 0 < k < n that is equal to the current
set Sn(infinite delay), the condition can be expressed mathematically in
this way:

c(Sn, S
n−1
1 ) =


1 Sn = ∅
1 ∃k = 1, ..., n− 1 : Sn = Sk
0 otherwise

,

where Sn−11 represents the vector of all the sets from 1 to n − 1. The
function implementation of checkequal follows:

function equal = checkequal (S , n)

S2 = S{n } ; % s e t t i n g S_2 equa l to S_1

% loop on a l l S_k with k < n
for k=(n−1):−1:1

S1 = S{k } ;
i f length ( S1 ) != length ( S2 )

cont inue ;
end
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bzero = ones (1 , length ( S1 ) ) ;

this function has two parameters the vector S = (S1, S2, ..., Sn) which
contains all the sets Si from 1 to n (n is the length of the vector). The
for loop cycles on all the sets Sk with k that varies from n− 1 to 1. The
main goal of this function is to check if a set Sk is equal to the set Sn.
First condition that we must verify is on the lengths of the sets Sn and
Sk if these lengths differ we will check the next set Sk−1 and we continue
until we find a set that is equal to Sn or the value k < 1.

We initialize the vector bzero to a vector that contains in all positions 1
(this will be useful to check if the two sets are equal).

for i =1: length ( S1 )
from_1 = S1{ i }{1} ;
to_1 = S1{ i }{3} ;
cmp_1 = S1{ i }{2} ;
for j =1: length ( S2 )

from_2 = S2{ j }{1} ;
to_2 = S2{ j }{3} ;
cmp_2 = S2{ j }{2} ;

% check ing i f the two words are equa l
i f bzero ( j ) == 1 && from_1 == from_2 && . . .
to_1 == to_2 && strcmp (cmp_1, cmp_2) == 1

bzero ( j ) = 0 ;

end
end

end

i f sum( bzero ) == 0
equal = 1 ;
return ;

end

equal = 0 ;

In order to check if the set Sn and Sk are equal we have to cycle on each
i-esim codeword lHm of Sk and on each j-esim codeword nIo of Sn. We
then check if l = n, m = o and H = I, if so, we set the vector bzero in
position j equal to 1. At the end of the outer loop we check if the vector
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bzero has zero entries in all its positions, in this case, there is a match
between set Sn and a set Sk and the function returns a true boolean
value, otherwise if we have scanned all the sets Sk the function returns a
false boolean value.

We give now the implementation of the function getSequence seen be-
fore that produces the colliding sequences of symbols for a code that is
not uniquely decodable.

function [ ] = getSequence ( seq , code , X, bu i ld )

% loop on a l l the codewords
for j =1: length ( code )

l en = length ( code{ j } ) ;

% check i f the codeword i s i n s i d e the sequence
i f l en <= length ( seq ) && strcmp ( code{ j } , . . .

seq ( 1 : l en ) ) == 1

i f l en == length ( seq ) && . . .
isempty ( seq ) == 0

r e t = s t r c a t ( bui ld , X{ j } ) ;
r e t
return

else
getSequence ( seq ( l en +1:end ) , . . .
code , X, s t r c a t ( bui ld , X{ j } ) )

end
end

end
end

This is a recursive function whose parameters are: the ambiguous code
sequence (codeword symbols), the code C used for the encoding, the
source alphabet X and variable build that contains the different colliding
sequences of source symbols. All the colliding sequences are printed on
the screen because with Matlab it is difficult to pass variable by reference
(or almost impossible). In our case it was only necessary to know the
colliding sequences so that some retrieved feedback information might be
useful to update current code set making it become a uniquely decodable
code.



Chapter 2

Fix-Free Codes

In this chapter we talk about fix-free codes which are codes where no
codeword is a prefix or suffix of any other codeword. Fix-free codes have
the advantage to be instantaneously decodable from both sides. The
Kraft inequality, unfortunately, is not a necessary and sufficient condition
for building fix-free codes, so researchers have tried to find/prove different
upper bounds for the Kraft sum in order to define a sufficient condition
for the construction of fix-free codes with given codeword lengths.

2.1 Basics
The notation and the definitions are essentially the same stated by Ahls-
welde [7]. Given a finite set X , which is the source alphabet, let X n be
the set of words of length n with symbols in X .

Definition 18. Given X * = ∪∞n=0X n, where X 0 = {e} that is the empty
word.

X * has an associative operation, called concatenation:

(x1, ..., xn)(y1, ..., ym) = (x1, ..., xn, y1, ..., ym).

Definition 19. Let X+ be the set of non-empty words:

X+ = X * \ {e},

Definition 20. A word w ∈ X * is a factor of word x ∈ X * iff ∃u, v ∈ X *

such that x = uwv.

Definition 21. A factor w of x is called proper iff w 6= x.

This means that given def. 20, u or v is different from the empty
word.

40



CHAPTER 2. FIX-FREE CODES 41

Definition 22. A set of words C ⊂ X * is called a code.

If we have two subsets Y ,Z ⊂ X * then:

YZ = {yz ∈ X * : y ∈ Y , z ∈ Z}.

Definition 23. A code that is simultaneously prefix-free and suffix-free
is called fix-free or biprefix:

CX+ ∩ C = ∅ ∧ X+C ∩ C = ∅

Definition 24. A code C with |C| = N over a binary alphabet X is said
to be complete iff the Kraft inequality is satisfied with equality:

N∑
i=1

2−li = 1

Definition 25. A fix-free code C is said to be saturated iff it is impos-
sible to find a fix-free code C ′ for which C ⊂ C ′ (strictly contains).

Definition 26. The shadow of a word w ∈ X * in level l is defined:

δl(w) = {xl ∈ X l : w is prefix or suffix of xl}.

2.2 Modified Kraft inequality upper bound
Theorem 7 (Ahlswelede [7]). The condition

N∑
i=1

2−li ≤ 1/2, (2.1)

implies there exists a fix-free code C over the binary alphabet X with
ordered codeword lengths l1 ≤ l2 ≤ ... ≤ lN .

Proof. Proceeding by induction in the number of codewords, for N = 1
is trivial, so we then assume that we found a fix-free code for N − 1
codewords. Like the proof for the Kraft inequality with prefix-free codes,
we build a binary tree (for binary alphabet) in which each word is a
vertex in the tree; a word of length l will be placed at l-th level in the
tree.
The idea now is to count all the leaves at lN -th level, which have one
of the codewords as a prefix or a suffix (shadow). For each codeword ci
of length li we have 2lN−li leaves that have ci has a prefix and the same
amount that have it as a suffix.
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The worst case is when the shadow of prefixed leaves and the shadow of
suffixed leaves are disjoint but the total number of leaves is always less
or equal to 2

∑N−1
i=1 2−li . This quantity is smaller than 2lN by assumption

and so there is a leaf on the lN -th level which is not counted, and so can
be used for our N -th codeword.

Theorem 8. Ahlswede [7] et al. conjecture that the largest constant γ
for which the fix-free sufficient condition that implies the existence of a
fix-free code with lengths l1, l2, ..., lN in the Kraft sum is γ ≤ 3/4.

Proof by Ahlswede. The proof of the non-existence of a fix-free code for
γ > 3

4
can be easily shown: Let γ = 3

4
+ ε with ε > 0, choose k such

that 2−k < ε (we can make ε as small as we want). Setting vector
(l1, l2, l3, ..., lN) = (1, k, k, ..., k) with N = 2k−2 + 2 then:

N∑
i=1

2−li =
1

2
+ 2−k · (2k−2 + 1) =

3

4
+ 2−k <

3

4
+ ε

But we can build only 2k−2 words of length k with fix-free property and,
since are required 1 + 2k−2 < N words of length k then the theorem is
proved.

Using some constraints on the lengths of the codewords Ahlswede
proved in Theorem 9 the existence of a fix-free code with a Kraft sum
less or equal to 3/4.

Theorem 9. Ahlswede [7] proved that under the conditions

li = li+1 ∨ 2li ≤ li+1 ∀i = 1, 2, ..., N.

the existence of a fix-free code with codeword lengths l1, l2, ..., lN is implied
by the Kraft-like inequality

∑N
i=1 2

−li ≤ 3
4
.

Proof. The proof is again done using induction. Sort the codeword
lengths from the smaller one to the bigger one l1 ≤ l2 ≤ ... ≤ lN .
For N = 1 the construction a fix-free code is obvious. Suppose that we
construct a fix-free code with N − 1 different codeword lengths; we have
to prove that we can add a new codeword without violating the fix-free
property.
Call M the largest index i for which li < lN . In this way we can exclude
all the codewords lengths where li = lN . By construction we know that∑M

i=1 2
−li ≤ 3

4
and by induction we have a fix-free code C ′ with lengths
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l1 ≤ l2 ≤ ... ≤ lM . Thanks to the constraint on the lengths we can
produce an exact formula for the cardinality of the shadow |δlN (C ′)|:

|δlN (C ′)| = 2
M∑
i=1

2lN−li − 2lN (
M∑
i=1

2−2li + 2
∑

1≤i<j≤M

2−li−lj). (2.2)

This formulation can be derived knowing that the maximum cardinality
of the shadow δlN (C ′) is 2

∑M
i=1 2

lN−li (when the set of prefixes and suffixes
are disjoint sets). Then we have to remove all the leaves counted twice,
removing first all the leaves corresponding to codewords in which the
prefix and suffix are equal to a certain codeword i, the second step is
removing all the leaves corresponding to codewords in which the prefix
is equal to codeword i and suffix is equal to codeword j and vice versa,
this can be done without problems because the codeword lengths satisfy
the initial conditions, meaning that if we sum two different codewords
lengths li, lj, their sum does not exceed lN . The code can be constructed
if:

|δlN (C ′)| ≤ 2lN − (N −M).

The quantity N −M identifies the number of the maximum codeword
lengths (li = lN). Setting K = N −M and α =

∑M
i=1 2

−li we get:

2α− α2 ≤ 1− δ,

with δ = K
2lN

, setting β =
∑N

i=1 2
−li = α + δ we get:

(α− 1)2 ≥ δ,

we kept only the upper-bound of this second-grade inequality. Substitute
α = β − δ we obtain:

β ≤ 1 + δ −
√
δ.

So we have a function f(δ) = 1 + δ −
√
δ on the right hand-side of the

inequality; to find the minimum upper-bound we have to calculate the
derivative of f(δ) and imposing it equal to 0:

f ′(δ) = 1− 1

2
√
δ
= 0.

We found δ = 1
4
and inserting it in the β inequality we found that:

β ≤ 3

4
=⇒

N∑
i=1

2−li ≤ 3

4
.
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This means that we can always construct a fix-free code if the Kraft
sum is less or equal to 3/4 when we have the set of codeword lengths that
respect the condition seen in Theorem 9. In this condition the selection
of different words used to construct the code does not affect the success
of the construction of the code. As we will see later, Yekhanin drops this
condition on the lengths of the codewords in order to prove a generalize
method of code costruction (with a different upper bound), the right
selection of codewords will influence the construction process.

In Coding Theory, it is useful to know the minimum expected length
of the codewords. If we are talking about Huffman codes it is well known
that for a probability distribution P (X = x) where X is a random vari-
able over an alphabet X :

H(X) ≤ E[l(X)] ≤ H(X) + 1.

Instead if we are talking about fix-free codes these inequalities change a
little bit.

Theorem 10. Let P (X = x) be a probability distribution of a random
variable X over an alphabet X = {1, 2, ..., N}, there exists a binary fix-
free code C satisfying

H(X) ≤ E[l(X)] < H(X) + 2

Proof. The left inequality is immediately proved because a fix-free code
is also a prefix-free code.
The right inequality can be proved defining li = d− log2(P (X = i))e+1:

N∑
i=1

2−li ≤ 1

2

N∑
i=1

2log2(P (X=i)) =
1

2

N∑
i=1

P (X = i) =
1

2
.

By Theorem 7 there always exists a fix free code C with codewords lengths
l1, l2, ..., lN .
The expected length of this code is:

E[l(X)] =
N∑
i=1

P (X = i) · li

<

−
N∑
i=1

P (X = i)(log2(P (X = i)) + 2) = H(X) + 2

This means that, given a probability mass function related to the
symbols of an alphabet, we can create a fix-free code in which the ex-
pected length of the codeword is always less than the entropy over the
probability distribution under consideration plus 2.
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2.3 Improved upper bound of Kraft sum
In this section we describe the work of Yekhanin [8] on the improvement
of the upper bound related to the Kraft sum respects to the 1/2 upper
bound for unconstrained codeword lengths. We have proved in the pre-
vious section that a fix-free code can always be constructed when the
Kraft sum is less than or equal to 1/2 (Theorem 7). Ahlswede proved
under some constraints on codeword lengths that the Kraft sum less than
or equal to 3/4 is a sufficient condition for the construction of a fix-free
code. Yekhanin proved without any constraints on codeword lengths that
when the Kraft sum is less or equal to 5/8 then a fix-free code can be
constructed. It is important to notice that we are talking about sufficient
conditions, so if the set of codeword lengths satisfy the Kraft sum upper
bound, then a code can be constructed but the converse part does not
hold with respect to the prefix-free codes.
Ahlswede and Yekhanin use slightly different notations when they define
codes. The notation used by Yekhanin is more efficient and facilitates
his proof so we follow his one, which is described below.

Definition 27. Let C(vn) be a binary variable-length code, where vn =
(k1, ..., kn) is a vector of non-negative integers and each ki defines the
number of codewords of length i for all i = 1, ..., n.

Definition 28. The Kraft sum associated to vector of integers vn is
defined as

S(vn) =
n∑
i=1

ki2
−i.

Definition 29. Let w be a binary vector of length n. We call p-prefix
of w the first p-symbols of w ans we denote by pw. Conversely we called
p-suffix of w the last p-symbols of w and we denote by wp.

Definition 30. Fixing a binary fix-free code C(vn), we define four dif-
ferent sets:

0−→F (C) = {w : w is prefix-free over C and 1w = 0};

1−→F (C) = {w : w is prefix-free over C and 1w = 1};

These two sets represent the words that are prefix-free over the code C,
differentiating by the first bit of the words. The words that start with bit
′0′ are collocated in 0−→F (C) while words starting with bit ′1′ are collocated
in 1−→F (C).
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The union of such sets is called
−→
F (C) = 0−→F (C) ∪ 1−→F (C). The converse

part for suffix-free words follows:
←−
F 0(C) = {w : w is suffix-free over C and w1 = 0};
←−
F 1(C) = {w : w is suffix-free over C and w1 = 1};

The union of such sets is called
←−
F (C) =

←−
F 0(C) ∪

←−
F 1(C).

Definition 31. Let P be a subset of {0, 1}n. P is said right regular iff:

∀c1, c2 ∈ P, c1 6= c2 =⇒ cn−11 6= cn−12

Definition 32. Let P be a subset of {0, 1}n. P is said left regular iff:

∀c1, c2 ∈ P, c1 6= c2 =⇒ n−1c1 6= n−1c2

It can be easily seen that 0−→F (C) and 1−→F (C) are right regular sets
while

←−
F 0(C) and

←−
F 1(C) are left regular sets.

Definition 33. Let ⊗ : {0, 1}n × {0, 1}n → {0, 1}n+1 be an operator
defined by

P1 ⊗ P2 = {w ∈ {0, 1}n+1 : nw ∈ P1 ∧wn ∈ P2}, P1, P2 ∈ {0, 1}n.

This operator builds a new set of codewords starting from two sets
in which words overlap in (n − 2) positions (excluding only the first bit
and the last bit), this will be useful when we have to construct a code at
a certain step t from a fix-free code already built at step t− 1.

Theorem 11. Fixing a C(vn) code, then
−→
F (C) ⊗

←−
F (C) is the set of all

words that can be added to C(vn) without violating the fix-free property.

Theorem 12. Supposing that P1 ⊆ {0, 1}n is a right-regular set and
P2 ⊆ {0, 1}n is a left-regular set then:

|P1 ⊗ P2| ≥ |P1|+ |P2| − 2n−1

Proof. We know from basic algebra that |P1∪P2| = |P1|+ |P2|−|P1∩P2|.
Knowing that P1 is a right-regular set then |P1| = |P (n−1)

1 | (see Definition
31), and knowing that P2 is a left-regular set then |P2| = |(n−1)P2|.
From this assumption we can define an upper bound on the union of
these two sets:

|P (n−1)
1 ∪ (n−1)P2| ≤ 2n−1.

The last inequality can be used to find a lower bound of the intersection
between these sets:

|P (n−1)
1 ∩ (n−1)P2| ≥ |P1|+ |P2| − 2n−1.

It can be easily seen that P1 ∩ P2 ⊆ P1 ⊗ P2.
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The main theorem stated by Yekhanin is the following one:

Theorem 13 (Yekhanin [8]). If S(vn) ≤ 5
8
, then there exists a fix-free

code C(vn).

Proof. The proof is basically split in 3 parts:

1. k1 = 1, meaning that we have a C(vn) with one codeword of length
1, and all the other ki can assume arbitrarily values;

2. k1 = 0, k2 = 2, meaning 0 codewords of length 1 and 2 codewords
of length 2;

3. k1 = 0, k2 ≤ 1, meaning 0 codewords of length 1 and 0 or 1 code-
word of length 2.

These 3 cases cover the entire space of ki’s. Proving that S(vn) ≤ 5
8

holds for each of these cases, it means we have proved Theorem 13.
The method for the proof is always by induction (like we have seen with
Ahlswede). So we have to construct a code C(vn) in n steps. At step
t we have to add kt codewords of length t without violating the fix-free
property. So we have to construct a code at step t knowing a fix-free
code at step t− 1.

Proof of case 1. In this particular case the proof can be done considering
not the target inequality of this proof S(vn) ≤ 5

8
but directly the conjec-

tured one S(vn) ≤ 3
4
.

Setting the initial fix-free code C(v1) = {0} and supposing that we found
a fix-free code C = C(vt−1) at step t− 1, we have to prove that at step t
adding kt codewords of length t we do not violate the fix-free constraint.
It is sufficient to prove that |

−→
F (C)⊗

←−
F (C)| ≥ kt for each t ≤ n.

We define the partial sum at step t as δ = S(vt−1), so at step t the
inequality becomes:

δ + kt · 2−t ≤
3

4
.

Expressing the last inequality in terms of an upper bound for kt we find
that:

kt ≤ 3 · 2t−2 − 2t · δ.

The fundamental key of this proof is that 0 ∈ C(vt−1), which implies that

0−→F (C) =
←−
F 0(C) = ∅.

A consequence of the last statement is that
−→
F (C) is a right regular set

and
←−
F (C) is a left regular set. So the cardinality of |

−→
F (C)| = |

←−
F (C)| =
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2t−1 · (1 − δ). This is obtained considering δ as a capacity coefficient
(ex. δ = 1 means that the code is saturated), so at step t − 1 the total
possible codewords are 2t−1 but only the remaining available codewords
can be selected (1 − δ). Using the Definition 33 of the ⊗ operator we
derive that:

|
−→
F (C)⊗

←−
F (C)| ≥ |

−→
F (C)|+ |

←−
F (C)| − 2t−2

= 2 · 2t−1(1− δ)− 2t−2

≥ 3 · 2t−2 − 2t · δ.

That we can rephrase as

|
−→
F (C)⊗

←−
F (C)| ≥ kt.

Proof of case 2. Also for this case we can use the conjectured constraint
for fix-free codes S(vn) ≤ 3

4
.

This time we have 2 codewords of length 2, so our initial code C(v2) =
{00, 11}. Operating by induction we suppose that a fix-free code C =
C(vt−1) at step t − 1 is constructed. We have always to prove that
|
−→
F (C) ⊗

←−
F (C)| ≥ kt, meaning that there are enough available code-

words to assign at step t.
Like the previous proof we have to show that

−→
F (C) is a right-regular set

and
←−
F (C) is a left-regular set (thanks to the two initial words 00 and

11 that are “orthogonal” meaning that ’00’ ⊕ ’11’ = 11 where ⊕ is the
binary sum). Note that for this proof we could use also another set of
initial words {01, 10}.
A more formal proof can be derive using indirect proof, so suppose
that

−→
F (C) is a non right-regular set. This means that exists a vector

b ∈ {0, 1}t−2 such that both words ’0b’ and ’1b’ are prefix free over
C(vt−1). If 0b = 0 then 0b is prefixed by codeword 00 while if 1b = 1
means that 1b is prefixed by codeword 11; this leads to a contradiction
and thus

−→
F (C) is a right-regular set. This procedure can be carried out

also for the
←−
F (C) set proving that it is a left-regular set.

Under these considerations the exact same inequalities seen in the previ-
ous proof can be carried out and so the theorem is proved.

Proof of case 3. This is the main part of the proof where the upper bound
of the Kraft sum is set to 5/8 (S(vn) ≤ 5

8
). Since k1 = 0 and k2 ≤

1, Yekhanin made a clever splitting of the vector vn into four vectors
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v1
n,v2

n,v3
n,v4

n such that:

vn =
4∑
i=1

vin.

We split the Kraft sum 5
8
over the four groups in the following way

S(v1
n) =

1

4
, S(v2

n) =
1

8
, S(v3

n) =
1

8
, S(v4

n) =
1

8
,

this leads to the target sum:

S(vn) =
4∑
i=1

S(vin) =
5

8
.

Such as we have split vector vn, we also split the code C(vn) into four
different subcodes:

C(vn) = C00(v1
n) ∪ C01(v2

n) ∪ C10(v3
n) ∪ C11(v3

n),

where each code Cij(vkn) contains words with i as prefix and j as suffix
(ex. C00(v1

n) contains only words which start with a 0 and end with a 0).
The most important part of the proof is how the four vin vectors are
structured. The idea is to arrange these vectors in an orthogonal-like
way (with only one possible overlap). We start populating the subcodes
from group 1 adding a certain quantity of codewords until the Kraft sum
is reached (S(v1

n) =
1
4
), this is done for all the four subcodes. In a more

concise way the coefficients ki are arranged in this way:

if kit 6= 0, ∀i′ > i, t′ < t =⇒ ki
′

t′ = 0.

The initial code C(v1) = ∅ is an empty code. Suppose we have con-
structed fix-free code C = C(vt−1) a step t− 1; we have to prove that:

|0
−→
F (C)⊗

←−
F 0(C)| ≥ k1t ,

|0
−→
F (C)⊗

←−
F 1(C)| ≥ k2t ,

|1
−→
F (C)⊗

←−
F 0(C)| ≥ k3t ,

|1
−→
F (C)⊗

←−
F 1(C)| ≥ k4t .

This is essentially the same procedure used before with the two previous
proofs. We have to introduce for symmetry four partial sums δi = S(vit−1)
for i = 1, 2, 3, 4. The clever split of the number of codewords in different
vectors vn leads to an important consequence:

if δi = 0 ∨ δi < S(vin) =⇒ δi+1 = 0.
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So we can discriminate four possible cases:

1. δ1 < 1
4
and δ2 = δ3 = δ4 = 0 (case 1);

2. δ1 = 1
4
, δ2 < 1

8
and δ3 = δ4 = 0 (case 2);

3. δ1 = 1
4
, δ2 = 1

8
, δ3 < 1

8
and δ4 = 0 (case 3);

4. δ1 = 1
4
, δ2 = 1

8
, δ3 = 1

8
and δ4 < 1

8
(case 4).

In all these cases we must have the available codewords greater than
the requested ones, this means:

kit ≤ 2t · (S(vin)− δi). (2.3)

Proof of case 3.1. Using the inequality 2.3

k1t ≤ 2t−2 − δ1 · 2t, (2.4)
k2t ≤ 2t−3,

k3t ≤ 2t−3,

k4t ≤ 2t−3.

The cardinalities of the regular sets are |0
−→
F (C)| = |

←−
F 0(C)| = 2t−2 −

δ1 · 2t−1 and |1
−→
F (C)| = |

←−
F 1(C)| = 2t−2. These cardinalities can be easily

carried out thinking about the four different right-regular and left-regular
sets. For example if we take 0−→F (C) set at step t− 1 the total number of
possible codewords that we can select, remembering that in the current
case we are populating the code C00(v1

t ) since δ1 <
1
4
so it is not saturated,

are 2t−2 because two bits are fixed (the first 0 and the last 0). Hence, we
show that the fix-free property is satisfied:

|0
−→
F (C)⊗

←−
F 0(C)| ≥ 2t−2 − δ1 · 2t ≥ k1t ,

|0
−→
F (C)⊗

←−
F 1(C)| ≥ 2t−2 − δ1 · 2t−1 > 2t−3 ≥ k2t ,

|1
−→
F (C)⊗

←−
F 0(C)| ≥ 2t−2 − δ1 · 2t−1 > 2t−3 ≥ k3t ,

|1
−→
F (C)⊗

←−
F 1(C)| ≥ 2t−2 > k4t .

Proof of case 3.2. The procedure is the same as the one used in the pre-
vious proof.
Using the inequality 2.3

k1t = 0,

k2t ≤ 2t−3 − δ2 · 2t,
k3t ≤ 2t−3,

k4t ≤ 2t−3.
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The cardinalities become

|0
−→
F (C)| = 2t−2 − (

1

4
+ δ2) · 2t−1,

|
←−
F 0(C)| = 2t−3,

|1
−→
F (C)| = 2t−2,

|
←−
F 1(C)| = 2t−2 − δ2 · 2t−1.

In this case we have δ1 = 1
4
and δ2 < 1

8
so we must be careful in counting

the correct number of available codewords that satisfy the fix-free con-
straint. For example take the set 0−→F (C), the code C00(v1

t ) is saturated
meaning that S(v1

t ) =
1
4
, so 1

4
of the total amount of codewords are un-

available plus the amount defined by the coefficient δ2. We can show that
the fix-free property is satisfied:

|0
−→
F (C)⊗

←−
F 1(C)| ≥ 2t−3 − δ2 · 2t ≥ k2t ,

|1
−→
F (C)⊗

←−
F 0(C)| ≥ 2t−3 ≥ k3t ,

|1
−→
F (C)⊗

←−
F 1(C)| ≥ 2t−2 − δ2 · 2t−1 > 2t−3 ≥ k4t .

Proof of case 3.3. In a systematical way we continue the known proce-
dure. Using the inequality 2.3

k1t = 0,

k2t = 0,

k3t ≤ 2t−3 − δ3 · 2t,
k4t ≤ 2t−3.

The cardinalities become

|
←−
F 0(C)| = 2t−3 − δ3 · 2t−1,

|1
−→
F (C)| = 2t−2 − δ3 · 2t−1,

|
←−
F 1(C)| = 3 · 2t−4.

We can see that C00(v1
t ) and C01(v1

t ) are full (saturated), so the set 0−→F (C)
is no longer taken under consideration because the words starting with
0 can not be inserted in the code anymore. Thus the fix-free property is
satisfied:

|1
−→
F (C)⊗

←−
F 0(C)| ≥ 2t−3 − δ3 · 2t ≥ k3t ,

|1
−→
F (C)⊗

←−
F 1(C)| ≥ 3 · 2t−4 − δ3 · 2t−1 > 2t−3 ≥ k4t .
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Proof of case 3.4. Using the inequality 2.3

k1t = 0,

k2t = 0,

k3t = 0,

k4t ≤ 2t−3 − δ4 · 2t.

The cardinalities become

|1
−→
F (C)| = |

←−
F 1(C)| = 2t−2 − (

1

8
+ δ4) · 2t−1.

Thus we can verify the inequality:

|1
−→
F (C)⊗

←−
F 1(C)| ≥ 2t−3 − δ4 · 2t ≥ k4t .

Finally we complete the entire proof.

Theorem 14 (Yekhanin [8]). Using the previous proof a new upper bound
on the expected length of the code can be stated. Let P (X = x) be a
probability distribution for a random variable X over an alphabet X with
|X | = n there exists a fix-free code C for which:

H(X) ≤ E[l(X)] ≤ H(X) + 4− log2 5.

Proof. Setting the lengths of the code li = d− log2 p(i) + 3 − log2 5e it
follows:

n∑
i=1

2−li ≤
n∑
i=1

2log2 P (X=i)−3+log2 5 =
5

8

n∑
i=1

P (X = i) =
5

8
.

By Theorem 13 the expected length can be calculated fixing pi = P (X =
i):

E[l(X)] =
n∑
i=1

pi · li

<

n∑
i=1

pi(− log2 pi + 4− log2 5)

= H(X) + (4− log2 5)
n∑
i=1

pi

= H(X) + 4− log2 5.
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2.4 Results
In the appendix, Matlab code related to the implementation of the Yekh-
anin algorithm can be found. The program allowed us to carry out some
tests in order to produce some fix-free codes for different input vectors.
We will start with simple codes and then we move on to codes that are
more difficult to find. We use Yekhanin’s notation that is more user
friendly than Matlab notation.

Example 1. The initial vector v2 = {1, 1} has n = 2 different codeword
lengths with a Kraft sum S(v2) =

3
4
.

The resulting code is C(v2) = {0, 11}. This code can be easily calculated
by hand.

Example 2. The initial vector v9 = {1, 0, 0, 0, 1, 0, 1, 0, 1} has n = 9
different codeword lengths witha Kraft sum S(v9) =

277
512

.
The resulting code is C(v9) = {0, 10001, 1000001, 100000001}.

These 2 examples are solved using the fact that the first position of
the vector vn is equal to 1.

Example 3. The initial vector v6 = {0, 2, 1, 0, 0, 3} has n = 6 different
codeword lengths with a Kraft sum S(v6) =

43
64
.

The resulting code is C(v6) = {00, 11, 010, 011001, 011101, 011110}.
Example 4. The initial vector v8 = {0, 2, 0, 0, 0, 0, 11, 2} has n = 8
different codeword lengths with a Kraft sum S(v8) =

19
32
.

The resulting code follows

C(v8) = {00, 11, 0100001, 0100010, 0100101, 0100110,
0101001, 0101010, 0101101, 0101110, 0110001,

0110010, 0110101, 01000001, 01000110}.

These 2 examples are solved using the fact that the first position of
the vector vn is equal to 0 and second position is equal to 2.

Example 5. The initial vector v8 = {0, 1, 0, 5, 0, 1, 0, 1} has n = 8 dif-
ferent codeword lengths with a Kraft sum S(v8) =

149
256

.
The resulting code is C(v8) = {00, 0101, 0111, 1010, 1110, 1001, 100001,
10000001}.
Example 6. The initial vector v8 = {0, 0, 1, 0, 7, 13, 0, 1} has n = 8
different codeword lengths with a Kraft sum S(v8) =

141
256

.
The resulting code follows

C(v8) = {000, 00100, 00110, 01010, 01100, 00101, 00111, 01001, 010001,
010111, 100010, 101110, 110010, 110100, 110110, 111010,

111100, 111110, 100001, 100011, 101011, 10000001}.
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These 2 examples satisfy the Kraft sum upper bound defined by
Yekhanin (5/8) using the fact that the first position of the vector vn
is equal to 0 and the second position is less or equal to 1.

In all these examples we always consider at inductive step t an overlap
between pairs of codewords of t−1 positions fixing the first bit of the first
codeword and the last bit of the second codeword. If we also consider
overlaps of t−2 positions, fixing the first 2 bits and the last 2 bits, we can
increase the number of available codewords with fix-free property at step
t in order to be able to create fix-free codes under the 11/16-constraint.

Let us now consider some examples of codes that do not satisfy the
5/8 upper bound for the Kraft sum but satisfy the 11/16 upper bound.
What we are trying to show is that tuning the different Kraft sums of the
split vectors vin the conjecture stated by Ahlswede is always satisfied.

Example 7. The initial vector v6 = {0, 0, 3, 0, 3, 11} has n = 6 different
codeword lengths with a Kraft sum S(v6) =

41
64
.

The resulting code follows

C(v6) = {000, 010, 001, 10100, 10110, 11100,
100100, 100110, 100011, 100101, 100111,

101011, 101111, 110011, 110101, 110111, 111111}.

Example 8. The initial vector v8 = {0, 0, 0, 7, 0, 6, 11, 5} has n = 8
different codewords with a Kraft sum S(v8) =

163
256

.
The resulting code follows

C(v8) = {0000, 0010, 0100, 0110, 0001, 0011, 1000,
101010, 101100, 101110, 111010, 100101, 100111, 1001001,

1001101, 1010111, 1011011, 1011111, 1101001, 1101011,

1101101, 1101111, 1110111, 1111001, 10011001, 10101101

11111110, 11111111}.

Example 9. The initial vector v8 = {0, 0, 0, 0, 14, 10, 6, 1} has n = 8
different codeword lengths with a Kraft sum S(v8) =

165
256

.
The resulting code follows

C(v8) = {00000, 00010, 00100, 00110, 01000, 01010,
01100, 01110, 00001, 00011, 00101, 00111,

10000, 10010, 110100, 110110, 111000, 111010,

101001, 101011, 101101, 101111, 110001, 110011,

1001101, 1001111, 1010001, 1010101, 1111110,

1111101, 11111111}.
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2.5 Future work
In this chapter we have seen how fix-free codes are constructed using
Yekhanin procedure when the Kraft sum is less or equal than 5/8. We
also know that Ahlswede conjectured that the tightest possible upper
bound is 3/4, so some of the future works about this topic are related to
increase the 5/8 upper bound and asymptotically reach the conjectured
one 3/4. The following step after 5/8 is 11/16; this upper-bound is
supposed to be achievable allowing codewords to overlap with each other
not only over t− 1 positions (where t is the inductive step) but also over
t − 2 positions (this means that for the construction we go back of 2
inductive steps t− 1 and t− 2).

0

1

1

1

1

1

0

0

0

0

0

1

1

1

Figure 2.1: Construction of a fix-free word fixing four bits.

The extension of the Yekhanin proof to 11/16-constraint brings some
difficulties about the exponentially increasing number of different cases
that must be proved in order to demonstrate that this new upper-bound
is achievable. There could be two different ways to prove the theorem
with 11/16-constraint: the first one is doing it by hand, this means that
all the inequalities and different cases must be carried out and proved
individually; the second one is about trying to setup a computer program,
with all the inequalities coded, that choose pseudo-randomly the Kraft
sums associated to each disjoint subset of the original code set and verify
that these inequalities are all satisfied.



Appendix

2.A Fix-free codes construction implemented
in Matalb

In this section we will see a Matlab implementation of the construction
process of a fix-free code based on the Yekhanin proof.
In this implementation the code is split into 4 subcodes fixing the first
and the last bit of the codewords, but thanks to the generic functions
which we created, it can be extended to work also with a generic number
(power of 2) of subcodes. The implementation follow step-by-step all the
procedure defined by Yekhanin in order to build a fix-free code starting
from a vector of codeword lengths. So the input of the matlab script is
a vector of lengths vn. This vector is defined as:

vn = {k1, k2, ..., kn},

where n is the maximum codeword length (lmax) so there is a constraint
on kn which must be a positive number.
The matlab code is divided into four scripts:

1. kraftsum.m calculates the Kraft sum S(vn);

2. createregular.m is the script that returns the sets left and right
regulars α−→F (C) or

←−
F β(C) where α, β ∈ {0, 1}. The variables α

and β can be defined in different numeral systems such as αD,
βD ∈ {0, 1, ...,D − 1} where D defines the numeral system (classic
case D = 2), so that the construction process that split the initial
code C(vn) in different disjoint sets (Yakhanin split the code into
four codes freezing the first bit and last bit of words that belongs to
a certain code) is totally tunable by the user. Changing the numeral
system defined by D allows to construct different subcodes where
the number of fixed bits at the head of the codeword and at the
tail of the codeword can be easily modified.

56
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3. mregular.m performs the operation: α
−→
F (C)⊗

←−
F β(C), so it produces

a list of all the possible codewords that satisfy the fix-free property
and can be added to the code Cαβ(vn);

4. checkps.m checks at the end of the construction process that the
code C(vn) is a fix-free code;

5. fixfree.m is the core script that control and manage all the opera-
tions in order to achieve the target function which is the construc-
tion of a fix-free code starting from a vector vn.

2.A.1 Kraft sum

This is the first script, it’s a function script that receive in input the
vector vn = (k1, k2, ..., kn) and compute the Kraft sum as defined in
previous sections:

S =
n∑
i=1

ki · 2−i =
n∑
i=1

v(i) · 2−i.

Here, a snippet of the matlab code:

function S = kraftsum (v )
% i n i t i a l i z e the sum to 0
S = 0 ;
for i =1: length ( v )

% sum up a l l the c on t r i b u t i on s
S = S + v( i )∗2^(− i ) ;

end

end

where variable v is the input vector, variable S is the return parameter
that is the Kraft sum.

2.A.2 Check correctness

This function checks if the input code C(vn) is a correct fix-free code,
this means that it does not contain any codewords which are prefix or
suffix of other codewords. For the correct definition of fix-free codes see
def. 23.
Here, a snippet of the matlab code:

function ok = checkps ( code )
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ok = 1 ; % boolean s e t i n i t i a l l y to 1
for i =1: length ( code )

for j=i +1: length ( code )
a = code{ i } ;
b = code{ j } ;
i f strcmp ( a , b ( 1 : length ( a ) ) ) == 1

ok = 0 ; % a p r e f i x o f b
break ;

end
i f strcmp ( a , . . .

b (end−length ( a )+1:end ) ) == 1

ok = 0 ; % a s u f f i x o f b
break ;

end
end
i f ok == 0

break ;
end

end

end

it is an exhaustive search in order to check if no codeword is prefix or
suffix of another codeword. The variable code is represented with a cell-
vector (matlab structure to handle multidimensional arrays each one with
different length).

Function strcmp is a built-in matlab function which checks if two strings
are equal and return constant value 1 if the condition is met. We exploit
the fact that by construction the vector code contains words which are
sorted by their length from the shortest to the longest.

The function returns 1 if the fix-free condition is met.

2.A.3 Create regular

This function creates the lists associated to left regular sets and right
regular sets, this means in the Yekhanin case to create 0−→F (C),

←−
F 0(C),

1−→F (C) and
←−
F 1(C) sets. The code also handles multiple left and right

regular sets, in the classic case we have 4 different sets because we fix the
first bit and the last bit of the codewords, but if we fix more than one
bit (F is the number of fixed bits, for simplicity we assume that F is an
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even number) the number of different left and right regular sets increase
exponentially in the fixed number of bits (2F different sets).
We split the code in order to comment each section in a complete way.

function [ l e f t , r i g h t ] =
c r e a t e r e gu l a r ( code , step , opt )

l e f t = c e l l (2^opt , 1 ) ;
r i g h t = c e l l (2^opt , 1 ) ;

In this first snippet we can see the prototype of the function createreg-
ular which has 3 parameters: the code represents with variabile code, the
induction step contains in variable step and an option parameter asso-
ciates with variable opt. The variable code represents the fix-free code at
a certain induction step which can be found in the variable step.
The output variables left and right are 2 column cell-vectors. The di-
mension of these vectors is defined by the parameter opt (default opt = 1
which means 4 different sets).

for i =0:(2^ step−1)
num = dec2bin ( i , s t ep ) ; % changing numeral system
f l a g_ l = 1 ; % pre f i x−f r e e boo lean va lue
f l ag_r = 1 ; % su f f i x−f r e e boo lean va lue
for j =1: length ( code )

i f strcmp (num( 1 : length ( code{ j } ) ) , . . .
code{ j }) == 1

f l ag_ l = 0 ; % num i s not p r e f i x−f r e e
end
i f strcmp (num(end−length ( code{ j })+1:end ) , . . .
code{ j }) == 1

f lag_r = 0 ; % num i s not s u f f i x−f r e e
end

end

Function dec2bin transform a decimal number into a binary one
specifying the number of bits for the representation. Variables flag_l and
flag_r can assume two logic states (0 and 1) where state 0 means false
and state 1 means true (classical boolean variable). The outer for loop
cycles on all the possible binary representations of length step (2t−1 is the
number different binary representations when t indicates the induction
step). The inner for loop cycles on all the current codewords inside the
code set C. If we found a codeword which is a prefix or a suffix of a
codeword inside the current code then the corresponding variable flag_r
or flag_l is set to 0.

i f f l a g_ l == 1
i f opt == 0 % only one l e f t r e gu l a r s e t
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l e f t {1} = [ l e f t {1} ; num ] ;
else

% crea t i n g d i f f e r e n t l e f t r e gu l a r s e t s
for l =0:(2^opt−1)

n = dec2bin ( l , opt ) ;
i f num( 1 : opt ) == n

l e f t { l+1} = [ l e f t { l +1}; num ] ;
end

end
end

end
i f f l ag_r == 1

i f opt == 0 % only one r i g h t r e gu l a r s e t
r i g h t {1} = [ r i g h t {1} ; num ] ;

else
% crea t i n g d i f f e r e n t r i g h t r e gu l a r s e t s
for l =0:(2^opt−1)

n = dec2bin ( l , opt ) ;
i f num(end−opt+1:end) == n

r i gh t { l+1} = [ r i g h t { l +1}; num ] ;
end

end
end

end

If the variable flag_l(flag_r) is equal to 1 means that the current
number contained in the variable num can be inserted into the left(right)
vector. If the variable opt is 0 then the left(right) cell-vector is simply a
string array containing all the prefix(suffix)-free codewords.
The for loop that cycles over the variable l is needed to match the correct
left or right set where the selected codeword will be inserted into.

2.A.4 Mregular

This function computes the operation αD
−→
F (C)⊗

←−
F βD(C), where αD and

βD are integer numbers in base D. This is useful when we increase the
number of disjoint code sets (for an easier implementation this number
is always a power of 2).

function union = mregular ( l e f t , r i ght , opt )
union = {} ; % se t o f f i x−f r e e codewords
c = 1 ; % number o f e lements
for i =1: s ize ( l e f t , 1)

l = l e f t ( i , : ) ;
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for j =1: s ize ( r i ght , 1)
r = r i gh t ( j , : ) ;
% check ing ove r l app ing codewords
i f strcmp ( l ( opt+1:end ) , r ( 1 : end−opt ) )

== 1
b = s t r c a t ( l ( 1 : opt ) , l ( opt+1:end ) , . . .
r (end−opt+1:end ) ) ;
% adding the codeword to the s e t
union{c} = b ;
c = c+1;

end
end

end
end

The parameters of this functions are left, right and opt. Variables left
and right represent a single right regular(left) set and a single left
regular(right) set. The ⊗ operation is done in order to build a set of
codewords that satisfy the fix-free property and can be added to code C
without any problems.
Let ’01011’ ∈

−→
F (C) be a codeword that is prefix-free over the code C and

let ’10110’ ∈
←−
F (C) be another codeword that is suffix-free over the code

C, the ⊗ operation can be easily represented with the following figure:

0

1

0

1

1

1

0

1

1

0

0

1

0

1

1

0

Figure 2.2: Construction of a word that satisfy fix-free property.

The bits of the two initial sequences with a red background represent
the fixed part of the final codeword, while the bits with blue background
represent the two overlapping sequence of bits; so the fixed parts plus the
overlapping part will build the final codeword that has fix-free property
over the code C. If we check the correspondance between left regular set
and right regular set we can build a new set that contains codewords
with lengths increased by the value inside the variable opt (default is 1).
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2.A.5 Fix-free construction

Now we see the control-logic unit of the current implementation for the
construction of fix-free codes. This script recounts all the steps used by
Yekhanin to proof the sufficient condition of 5/8 for the existence of a
fix-free code.
The first snippet of the matlab code is about the initialization phase:
v = [0 1 0 0 2 3 ] ; % example o f l e n g t h s v e c t o r
l en = length ( v ) ; % leng t h o f the vec t o r
summ = kraftsum (v ) ; % k r a f t sum of v
code = {} ; % i n i t i a l i z e the code to the empty s e t

vector v is the equivalent of the vector vn in Yekhanin proof; so it con-
tains ki non negative integer values where ki is the number of codewords
we need of length i. Variable len contains the number of v elements,
variable summ contains the Kraft sum calculated over the vector v and
the variable code is initialized to the empty set.
The following snippet is about the construction of the code C when the
vector v has fixed 1 in the first position (meaning that one codeword of
length one is required) and the Kraft sum is less or equal to 3/4 (which
is the upper bound conjectured by Ahlswede).
i f v (1 ) == 1 && summ <= 3/4

code = { ’ 0 ’ } ; % i n i t i a l i z e code to ’0 ’ codeword
l c = 2 ; % index o f the next codeword in code

% loop on a l l the e lements o f v
for i =2: l en

i f v ( i ) > 0
% crea t i on o f l e f t −r i g h t r e gu l a r s e t s
[ l e f t , r i g h t ] = c r e a t e r e gu l a r ( code , . . .
i −1, 0 ) ;

% new s e t o f f i x−f r e e codes
add = mregular ( l e f t {1} , r i g h t {1} , 1 ) ;
for j =1:v ( i )

% adding new codewords to the code
code{ l c } = add{ j } ;
l c = l c +1;

end
end

end

In a similar way as seen previously in the proof of Theorem 13, we set the
initial code to a single codeword (C(v1) = {0}), variable lc is the index
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for the next codeword inserted in the code. The for loop cycles on each
position of vector v and call function createregular in order to build
the left and right regular sets (containing codewords of length defined in
the loop counter i). Then function mregular is called to obtain a vector
of codewords that satisfy the fix-free property; this vector is assigned
to variable add. The last operation is to assign the correct number of
codewords needed selecting arbitrarily the codewords from the vector add
(in a sequential manner).

The next snippet follows the second procedure for building a fix-free
code when vector v has fixed 0 in the first position and 2 in the second
position (meaning that we have for granted two codewords of length 2)
and the Kraft sum upper bound is the maximum possible 3/4.

e l s e i f v (1 ) == 0 && v (2) == 2 && summ <= 3/4
% i n i t i a l i z e the code wi th two codewords
code = { ’ 00 ’ , ’ 11 ’ } ;
l c = 3 ;

for i =3: l en
i f v ( i ) > 0

[ l e f t , r i g h t ] = c r e a t e r e gu l a r ( code , . . . ,
i −1, 0 ) ;
add = mregular ( l e f t {1} , r i g h t {1} ) ;
for j =1:v ( i )

code{ l c } = add{ j } ;
l c = l c +1;

end
end

end

In this case the initial code C = {00, 11} has two “orthogonal” codewords
(the xor bit a bit between codewords is always 1). Variable lc is set ob-
viously to 3. The procedure is identical to the one described for the case
stated before.

The following code snippet is related to the last case; the vector v has
fixed 0 in the first position, and 0 or 1 in the second position. The Kraft
sum upper bound in this case is lower and it is set to 5/8.

e l s e i f v (1 ) == 0 && v (2) <= 1 && summ <= 5/8
s p l i t = [ ] ;
s p l i t (1 ) = 1/4 ; % f i r s t e lement s e t to 1/4
s p l i t ( 2 : 4 ) = ones ( 1 , 3 )∗1/8 ; % othe r s to 1/8
% number o f f i x e d b i t s
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l s p l i t = log2 ( length ( s p l i t ) ) ;
% dec l a r a t i on o f the s p l i t v e c t o r s
ks = zeros ( length ( s p l i t ) , length ( v ) ) ;
l c = 1 ;

This case is the most difficult one because we have to split the vector
v into four different vectors with particular properties. Also the Kraft
sum is split (natural consequence) for each of the new created vectors
(in order to be able to build the fix-free code, the first upper bound for
the Kraft sum is 1/4 and for the remaining three is 1/8). Vector split
contains each Kraft’s vector upper bound sum, variable lsplit represents
the number of bits needed to map all the vectors (classical case lsplit =
2). Matrix ks contains the split vectors built from the initial vector v.

The following snippet is about the construction of the split vectors (vin
in Yekhanin proof). This can be done using the Matrix ks and starting
to populate each split vector until its Kraft sum is reached.

for l =1: length ( s p l i t )
S = 0 ; % incrementa l sum i n i t i a l i z e s to 0
for i =1: length ( v )

for j = 1 : v ( i )
S = S + 2^(− i ) ;

% check the vec t o r o f Kraft sums
i f S <= s p l i t ( l )

ks ( l , i ) = ks ( l , i )+1;
end
% check i f the v ec t o r i s f u l l
i f S >= s p l i t ( l )

break ;
end

end
i f S >= s p l i t ( l )

break ;
end

end
v = v − ks ( l , : ) ; % update the v vec t o r

end

The variable S is the partial Kraft sum and for each cycle of the inner
for loop it is updated until the Kraft sum of the current split vector is
reached, if so, we terminate the two internal loops, then the partial sum
is reset and the split vector index is incremented. At the end of all the
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cycles the vector v must be equal to the zero vector meaning that all the
relative numbers of codewords have been inserted into the split vectors.
The last part of the matlab code concerns the creation of the fix-free
code computing the ⊗ operation for all the possible pairs made by one
left regular set and one right regular set. This can be described by the
following formula:

αD
−→
F (C)⊗

←−
F βD(C) for all αD, βD ∈ {0, 1, ...,D}

Here we can see the matlab snippet:

for i = 2 : length ( v )
i f sum( ks ( : , i ) ) > 0

[ l e f t , r i g h t ] = c r e a t e r e gu l a r ( code , . . . ,
i −1, log2 ( l s p l i t ) ) ;

end
for l =1: length ( s p l i t )

n = dec2base ( l −1, l s p l i t , l s p l i t ) ;
i f ks ( l , i ) > 0

add = mregular ( l e f t {str2num(n (1))+1} , . . .
r i g h t {str2num(n (2))+1} , log2 ( l s p l i t ) ) ;
for j =1: ks ( l , i )

code{ l c } = add{ j } ;
l c = l c + 1 ;

end
end

end
end

variables left and right are the returned cell-vectors by the createreg-
ular function. In this particular case the opt parameter field is set to
log2(lsplit)(which represent the number of fixed bits used for the con-
struction of different left and right regular sets).
First operation needed is checking if the sum of matrix values inside ks
that are related to i-split vector is greater than 0 (means that there are
requested codewords). Then for each of the possible pair of left regular
set and right regular set the function mregular is called in order to get
back the possible codewords that can be added to the code C without
violating the fix-free property. The opt parameter field, also here, is set
to log2(lsplit) this defines the number of prefix(suffix) bits that are fixed
so the overlap between two codewords (one in the left regular set and the
other in the right regular set) will have shorter length.



CHAPTER 2. FIX-FREE CODES 66

The last snippet is the following:

i f checkps ( code ) == 1
code #shows on sc r e en the code

else
disp ( ’ Lengths␣do␣not␣ r e sp e c t ␣ c on s t r a i n t s ! ’ ) ;

end

This is only an ultimate check of the correct construction of the fix-free
code; the function that fulfills the check is checkps.

In Figure 2.1 we have two codewords ’0111’ ∈
−→
F (C) and ’1100’ ∈

←−
F (C) which means that are prefix(suffix)-free over the code C. The red
boxes represent the fixed bits while the blue boxes represent the matching
bits (whose bits that allow the overlap between two codewords). The
codeword that is generated is ’011100’ which is for sure a codeword that
is prefix and suffix free over the code C.
So, reducing the overlap between codewords leads to a greater number of
different code sets (in the case related to Figure 2.1 leads to 16 different
sets). In Yekhanin proof we have only 4 code sets (only one fixed bit at
the beginning and one fixed bit at the ending of the code):

0C0(v1
n),

0C1(v2
n),

1C0(v3
n),

1C1(v4
n),

allowing two fixed bits at the beginning and at the end of the code the
number of code sets becomes 16:

00C00(v1
n),

00C01(v2
n),

00C10(v3
n),

00C11(v4
n),

01C00(v5
n),

01C01(v6
n),

01C10(v7
n),

01C11(v8
n),

10C00(v9
n),

10C01(v10
n ), 10C10(v11

n ), 10C11(v12
n ),

11C00(v13
n ), 11C01(v14

n ), 11C10(v15
n ), 11C11(v16

n ).

So each code set contains codewords that are prefix-free and suffix-free
over the code C. The goal here is how to define the upper bounds on each
Kraft sum related to the corresponding vector vin with i = 1, 2, .., 16. This
means finding the correct Kraft sum S(vin) for each vin where:

16∑
i=1

S(vin) =
11

16
.

This leads to an exponential increase of the possible cases in order to
prove that also with an upper bound of 11/16 can be always possible to
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produce a fix-free code over a vector vn. Proving all the cases by hand is
hard (but there can be some strategies to simplify the procedure). The
next step that can be done in this direction is to automatically check all
the inequalities with a computer program and try to guess (deduce) the
correct upper-bounds to assign at each Kraft sum related to its vector
vin.



Chapter 3

Entropy of Graphs

In this chapter we study a different concept of “constrained ” sources
which concerns the lossless coding of ambigous sources. These sources
are described by an undirected graph in which the edges distinguish the
source symbols.
We talk about graph complexity and graph entropy. In order to
better understand the importance and the limitations of the entropy ap-
proach we must first carachterize the complexity of graphs.

3.1 Taxonomy
Two different approaches to measure the complexity of graphs have been
developed (Mowshowitz [14]). The first can be said deterministic and
the second probabilistic; in this chapter we main focus on the probabilis-
tic approach.
The deterministic category is composed by encoding, substructure count
and generative approaches. Kolmogorov complexity represents the main
enconding approach, substructure count includes measures which count
the number of specified internal structures (like the number of induced
subgraphs), generative approach represents the measures which are based
on the operations needed to construct the graph. The Kolmogorov met-
rics uses as complexity measure the length of the word needed to encode
an object (i.e. the number of symbols taken from the code alphabet). A
way to describe graphs are with its adjacency matrix, so the Kolmogorov
complexity can be viewed as the length of the word representing each
cell of the adjacency matrix. An undirected graph with n vertices can be
completely described by a binary sequence of length

(
n
2

)
where each bit

in the sequence states if a particular pair of vertices is adjacent. Hence
the Kolmogorov complexity associated to an encoding scheme of the ad-

68
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jacency matrix of a graph is at most
(
n
2

)
(every addition information will

reduce the length of the adjacency list).
The probabilistic category includes entropy measures which are based on
probability distribution associated to graph elements. There are intrin-
sic and extrinsic measures. Intrinsic measures use internal features of a
graph to determine a probability distribution over its elements (not an
arbitrary distribution). Extrinsic measures use an arbitrary probability
distribution to calculate the entropy. Shannon entropy is the most used
for intrinsic measures but it is not suitable for extrinsic measures for
which we see the Korner entropy of graphs.

3.2 Korner entropy
Let us introduce the concept of distinguishability of letter sequences
which can be mathematically modeled by an undirected graph (see Def-
inition 34).
We consider a discrete, memoryless and stationary information source
X = (X1, X2, ...) where Xi are random variables defined over an al-
phabet X , and we assume that the symbols emitted by X are not all
distinguishable. Two sequences of source letters (x1, x2, ..., xn) ∈ X n and
(y1, y2, ..., yn) ∈ X n are distinguishable if and only if ∃i : xi 6= yi. The
main goal is to assign different codewords to groups of sequences which
are not distinguishable with each other apart from a set of sequences with
probability less than a coefficient ε (0 < ε < 1). We call this number of
different codewords needed N(n, ε). Korner [11] proved that:

N(n, ε) = 2nH(X)+o(n), (3.1)

where H(X) is a quantity independent of ε that depends only on the in-
formation source X. This quantity is called the (Korner) entropy of the
graph because we can immediately see the correlation with the Shannon
entropy used in the Asymptotic equipartition property (AEP) where the
number of elements in the typical set is 2nH (in case of i.i.d. random
variables).
The proof given by Korner [11] is done considering memoryless and sta-
tionary information sources of i.i.d. random variables over a finite set of
symbols.

Definition 34. An undirected graph G is defined by its vertices (symbols
of alphabet X ) and its edges:

G = (X , E(X )), E(X ) ⊆
(
X
2

)
where E(X ) is the set of edges of the graph G.
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In our context edges represent distinguishability, that is, two symbols
a, b ∈ X are connected in G if they are distinguishable.

Definition 35. A probabilistic graphs G is defined by a graph G with a
probability distribution P (X = x) that associates a probability to each
symbol x ∈ X :

G = (G,P ) = (X , E(X ), P (X = x)).

We can extend these definitions for sequences of symbols x = (x1, x2, ...,
xn) ∈ X n as follows.

Definition 36. The n-th power of a probabilistic graph is defined as:

Gn = (Gn, P n) = (X n, E(X n), P n(Xn
1 )),

where E(X n) is the set of edges of the power graph for which sequence
x ∈ X n and sequence y ∈ X n are connected if and only if ∃k, j ∈
{1, 2, ..., n} : (xk, yj) ∈ E(X ).

Due to the source properties, the decoder, in order to obtain the ini-
tial sequence of symbols, must assign to sequences of symbols that are
connected in graph Gn different codewords (without significant errors).
Small probabilities of error are taken into account with variable ε impos-
ing that sequences, with probability less than ε, are mapped into a single
codeword. This structure leads to a known problem in graph theory that
is the Graph coloring.

Definition 37. Graph coloring or vertex coloring means that given a
graph G, two connected vertices in G are assigned different colors. Graph
coloring can be seen also as the partition of the set of vertices into edge-
independent sets which means that elements in an edge-independent set
are not connected.

Definition 38. The chromatic number of a graph G is the smallest
number of colors needed to assign to vertices of G such that no adjacent
vertices share the same color (the colors can be seen as the codewords
needed); χ(G) is the notation for the chromatic number.

The minimum number of codewords required to represent sequences
of length n with probability greater or equal than 1− ε is defined as

χ(n, ε) = N(n, ε)− 1 = min
S⊂Gn,Pn(S)≥1−ε

χ(S),

where N(n, ε) is the minimum number of codewords required (one less
than the chromatic number in order to map all the sequences with prob-
ability less than ε to only one codeword), S is a subset of the n-th carte-
sian product of the probabilistic graph G. The probability P n(S) =∑

x∈S P
n(Xn

1 = x).
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Definition 39. Korner [11] defines the entropy of a probabilistic graph
G as:

H(G) = lim
n→∞

1

n
log2 χ(n, ε) (3.2)

where he proves that the limit is independent of the parameter ε.

The chromatic number χ(G) of a probabilistic graph G can be ex-
pressed in terms of minimum number of kernels needed to cover the
entire graph, whose definition follows.

Definition 40. A subset K ⊆ X where X is the alphabet of source sym-
bols of a probabilistic graph G = (X , E(X ), P (X = x)) is called kernel
(maximal independent set) if:

∀x, y ∈ K with x 6= y : (x, y) 6∈ E(X );

∀x ∈ (X \K),∃y ∈ K : (x, y) ∈ E(X ).

It can be easily proved that the minimum number of covering kernels
is equivalent to the chromatic number. It is assumed that the probabilis-
tic graphs under consideration have no loops (means that each vertex is
not connected to itself) but we have to consider also the case when we
have two sequences of symbols x and y ∈ X n which have xk = yk for
some k < n. In order to consider this situation Korner has defined a new
graph operation.

Definition 41. Given a probabilistic graph G = (X , E(X ), P ) we can de-
fine a new probabilistic graph Gnπ = (X n, Eπ(X n), P n(Xn

1 )) over the set of
vertices X n (sequences of length n). The sequences x = (x1, x2, ..., xn) ∈
X n and (y1, y2, ..., yn) ∈ X n are connected in the new graph (meaning
(x, y) ∈ Eπ) if and only if:

∀k = 1, ..., n, (xk, yk) ∈ E(X ) ∨ xk = yk. (3.3)

So the number of codewords needed to color the graph can be expressed as

χπ(n, ε) = min
S⊂Gnπ ,Pn(S)≥1−ε

χ(S), (3.4)

where P n(S) =
∑

x∈S P
n(Xn

1 = x).

If x ≡ y, where (x, y) ∈ E(X ) or x = y, is an equivalent1 relation
on the vertex set X then the graph is the union of pairwise disjoints
complete subgraphs.

1Binary relation that is reflexive, symmetric and transitive
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The main result proved by Korner [11] is that:

1. χπ(n, ε) ≥ 2nH(X|e(X))−K
√
n;

2. χπ(n, ε) ≤ 2nH(X|e(X))+K
√
n;

where X is a random variable over the alphabet X with discrete prob-
ability distribution p(x) and e(x) is the set which contains the union of
all the elements that are equivalent (≡) to a particular symbol x ∈ X .
K ∈ R is a constant and it is independent of n and p(x) but depends on
the cardinality of the alphabet |X | and on the error coefficient ε. We can
observe that e : x→ e(x) is a surjective function, so:

p(x, e(x)) = p(x) = P (e(x)) · p(x|e(x)),

knowing this, the formula for the conditional entropy H(X|e(X)) can be
derived:

H(X|e(X)) =
∑
x∈X

p(x) · log2
P (e(x))

p(x)
.

Korner proved that the two inequalities seen before hold, and then asymp-
totically as n→∞:

H(G) = lim
n→∞

1

n
log2 χ(n, ε)

= lim
n→∞

1

n
log2 χπ(n, ε)

= H(X|e(X)).

We can easily see the similarity with the Entropy rate that is defined
for stationary/ergodic sources (how many bits on average do we need to
encode each symbol of the alphabet).
The concept of typical sequence can be carried out from the work of
Korner (based on Wolfowitz’s method).

Definition 42. A sequence x ∈ X n of length n is called typical, over
a probability distribution P(X) where X is a random variable that takes
values from the alphabet X , if and only if for all y ∈ X :

|N(y|x)− nP (X = y)| ≤ K
√
nP (X = y),

where N(y|x) is the number of times symbol y appears in the sequence x.
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The principal theorem that Korner [11] has stated follows.

Theorem 15. Given the set of typical sequences of length n called T n =
{x ∈ X n} over a probability distribution P (Xn

1 = xn1 ) = p(x)n then
∀ε : 0 < ε < 1 there exists a constant K for which P (T n) ≥ 1 − ε. If x
is a typical sequence then:

2−nH(X)−C
√
n ≤ P (Xn

1 = x) ≤ 2−nH(X)+C
√
n,

where H(X) is the entropy of the random variable X defined over an
alphabet X and over the probability mass function P (X = x). The con-
stant C is independent of n and P (X = x), and only depends on the
cardinality of the alphabet |X | and on the error coefficient ε.

3.3 Simonyi’s proof of Korner Theorem
Korner [11] proved the direct part and the strong converse part of Theo-
rem 15. It is interesting to see the proof of this theorem given by Simonyi
using rate distortion theory obtaining a weak converse proof. Simonyi in
his survey of graph entropy [12] gives different equivalent definitions of
graph entropy.
The first definition that Simonyi gives is about the vertex packing poly-
tope of a (probabilistic) graph G known as VP(G) which is the convex
hull2 of the indicator vectors related to the independent sets of G. Let
us clarify giving the definition of indicator vector:

Definition 43. Let A be a subset of B where B = {b1, b2, ..., bn}. The
indicator vector of A is called xA = (x1, x2, ..., xn) where xi = 1 if bi ∈ A
and xi = 0 if bi 6∈ A.

The vertices of the vertex packing polytope are the indicator vectors
of the independent sets of the graph G. All the convex combinations of
the polytope vertices generate the smallest convex set that contains all
the indicator vectors.
After some notions we can see the first definition of graph entropy given
by Simonyi [12]:

Theorem 16. Given a probabilistic graph G = {X , E(X ), P}, the en-
tropy of G can be equivalently defined as:

H(G) = min
c∈VP(G),c>0

n∑
i=1

pi · log2(
1

ci
). (3.5)

2The convex hull of a set of points P in n dimensions is the intersection of all
convex sets ∩∞i=1Hi with P ⊆ Hi.
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The equation 3.5 is a minimization over a function that is convex
which implies that the minimum is finite and reachable ([12]).
Now after seeing the new definition about graph entropy, we want to
see a new formulation of the theorem proved by Korner in terms of rate
distortion theory. We consider a probabilistic graph G with edges that
define distinguishability of symbols. As we have seen before the graph can
be extended in order to considering sequences of length n by computing
the n-th cartesian product of the graph: Gn. We can assign the same
codeword to sequences that are not connected in G. An error probability
coefficient ε is used to map all the sequences that have an associated
probability which is less than ε to a single codeword. We always consider
memoryless and stationary information sources.
The performance of the encoding is measured in terms of rate, so if we
have sequences of length n the rate is log2 |C|

n
where |C| is the cardinality

of the set of codewords (smaller the rate better the performance). We
want to find the minimum rate R(Gn, ε) when ε→ 0 and n→∞ between
all the possible rates of encoding scheme that respect the constraint of
distinguishability.
Let us see another definition of graph entropy that was derived by Korner
[11] for which he proved that the Definition 3.2 is equivalent.

Theorem 17. Given a probabilistic graph G = {X , E(X ), P}:

H(G) = min
(X,Y ):X∈Y,Y ∈S(G)

I(X;Y ), (3.6)

where I(X;Y ) is the mutual information of the two discrete random vari-
ables X, Y (I(X;Y ) = H(X) −H(X|Y ) = H(Y ) −H(Y |X)). Random
variable X takes values from the alphabet X (vertices of G), random vari-
able Y takes values from the maximal independent sets of G called S(G).
The minimization is over the pairs of random variables (X, Y ) such that
Pr{X ∈ Y } = 1.

From Theorem 17 some considerations can be carried out:

1. If our probabilistic graph G has no edges, remembering the for-
mula given in 3.6, I(X;Y ) = H(X) +H(Y )−H(X, Y ) = H(Y )−
H(Y |X), there is one possible configuration for Y which is the one
that contains all the vertices of G implying that I(X;Y ) = 0 and
consequently H(G) = 0.

2. If graph G is a complete graph (all the vertices are connected to
each other) with n vertices, the possible configurations for Y are
the sets containing only one symbol x ∈ X , so the minimum mutual
information becomes I(X;Y ) = H(X) − H(X|Y ) = H(X) − 0 =
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H(X). It emerges that with complete graphs the Korner entropy
converges to Shannon entropy.

The proof reported in [12] brings out the equivalence between formu-
lation 3.5 and formulation 3.6.

Proof. First of all it must be proved that:

min
(X,Y ):X∈Y,Y ∈S(G)

I(X;Y ) ≥ min
c∈VP(G),c>0

n∑
i=1

pi · log2(
1

ci
). (3.7)

If the minimum for the formulation with the mutual information (eq.
3.6) is achieved by a pair (Xm, Ym), then we can rewrite the mutual
information as:

I(Xm;Ym) =
n∑
i=1

∑
i∈J,J∈S(G)

P (Xm = i, Ym = J) log2
P (Xm = i, Ym = J)

P (Xm = i) · P (Ym = J)

= −
n∑
i=1

pi
∑

i∈J,J∈S(G)

P (Ym = J |Xm = i) log2
P (Ym = J)

P (Ym = J |Xm = i)
.

From the concavity of the log function we have

−
n∑
i=1

pi
∑

i∈J,J∈S(G)

P (Ym = J |Xm = i) log2
P (Ym = J)

P (Ym = J |Xm = i)

≥

−
n∑
i=1

pi log2
∑

i∈J,J∈S(G)

P (Ym = J).

Since the vector c ∈ VP(G) with components ci =
∑

i∈J,J∈S(G) P (Ym = J)
is in VP(G), inequality 3.7 is proved.

Now we have to prove the reverse inequality ([12]):

min
(X,Y ):X∈Y,Y ∈S(G)

I(X;Y ) ≤ min
c∈VP(G),c>0

n∑
i=1

pi · log2(
1

ci
). (3.8)

If vector c ∈ V P (G) minimizes the formulation on the right hand-side of
the inequality, each ci =

∑
i∈J,J∈S(G) P (Y

′
s = J) where c can be seen as

a probability distribution on S(G). The conditional probability can be

defined as P (Ys = J |Xs = i) =

{
P (Y ′s = J)/ci i ∈ J

0 otherwise
.
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The probability distribution of Ys can be derived:

P (Ys = J) =
n∑
i=1

P (Xs = i) · P (Ys = J |Xs = i).

So, by definition
min

(X,Y ):X∈Y,Y ∈S(G)
I(X;Y )

≤

−
n∑
i=1

pi
∑

i∈J,J∈S(G)

P (Ys = J |Xs = i) log2
P (Ys = J)

P (Ys = J |Xs = i)

thanks to the concavity of the log function∑
J∈S(G)

P (Ys = J) log2
P (Y ′s = J)

P (Ys = J)
≤ 0,

thus we can derive the following inequality
n∑
i=1

pi
∑

i∈J,J∈S(G)

P (Ys = J |Xs = i) log2
P (Ys = J)

P (Ys = J |Xs = i)

≤

−
n∑
i=1

pi
∑

i∈J,J∈S(G)

P (Ys = J |Xs = i) log2
P (Y ′s = J)

P (Ys = J |Xs = i)
.

Hence the final inequality can be stated

min
(X,Y ):X∈Y,Y ∈S(G)

I(X;Y ) ≤
n∑
i=1

pi · log2(
1

ci
).

3.4 Graph entropy properties
In this section we see some properties of graph entropy such as: mono-
tonicity, sub-additivity, additivity by substitution and disjoint union.

Theorem 18 (Sub-additivity). Let G1 = (X , E1(X ), P ) and G2 = (X ,
E2(X ), P ) be two probabilistic graphs defined on the same vertex set X
and with a fixed probability mass function P , then the union of the two
graphs G = G1 ∪ G2 = (X , E1(X ) ∪ E2(X ), P ) implies:

H(G) ≤ H(G1) +H(G2).
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Proof. Let P (X, Y1) and P (X, Y2) be two joint distributions that mini-
mize the mutual information for G1 and G2, variables Y1, Y2 are indepen-
dent conditioning on the fact that they have to contain X:

H(G) ≤a I(X; (Y1 ∩ Y2))
≤b I(X;Y1, Y2)

=c H(Y1, Y2)−H(Y1, Y2|X)

=d H(Y1, Y2)−H(Y1|X)−H(Y2|X)

≤ H(G1) +H(G2).

Inequality (a) holds because Y1 ∩ Y2 contains X and it is an indepen-
dent set in G, inequality (b) holds because I(X; f(Y1, Y2)) ≤ I(X;Y1, Y2)
where f is an arbitrary function and the last two inequalities (c) and (d)
are carried out using the chain rule of the entropy and knowing that Y1,
Y2 are independent conditioned on X.

Theorem 19 (Monotonicity). Given two probabilistic graphs G1 = (X ,
E1(X ), P ) and G2 = (X , E2(X ), P ) defined on the same vertex set X and
with the same probability mass function P , under the condition E1(X ) ⊂
E2(X ) can be stated:

H(G1) ≤ H(G2)

Proof. Let (X, Y ) be the pair that minimize the mutual information for
graph G2, then Y is for sure an independent set also for G1, so H(G1) ≤
H(G2).

Definition 44 (Substitution of a vertex [12]). Let F = (Y , E1(Y), Q)
and G = (X , E2(X ), P ) be two probabilistic graphs where X ∩ Y = ∅.
If v ∈ Y we can define a new operation which produces a new graph
Gv←F = (N = (X \ {v}) ∪ Y , E(N ), Pv←Q); this operation substitutes
vertex v with the entire graph F connecting each vertex of F to adjacent
vertices of v in G. The probability Pv←Q is defined as:

Pv←Q(X = x) =

{
P (X = x) x ∈ X \ {v}

P (X = v) ·Q(X = x) x ∈ Y .

Knowing the previous definition, the theorem on additivity by sub-
stitution can be stated.

Theorem 20 (Additivity by substitution [12]). Given two probabilistic
graphs F = (Y , E1(Y), Q) and G = (X , E2(X ), P ) where X ∩ Y = ∅ and
let v be a vertex of X then:

H(Gv←F) = H(G) + P (X = v) ·H(F).
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Corollary 20.1 (K-partite graph). Given a probabilistic graph G =
(X , E(X ), P ) which is a complete K-partite graph with m1,m2, ...,mk

the size of the maximal independent sets of G. Given Q the probabil-
ity distribution over S(G) (set of the maximal independent sets) and let
Q(Y = J) =

∑
v∈J P (X = v) for all J ∈ S(G) (Y is a random variable

taking values over S(G)). The entropy of G follows:

H(G) = H(F),

where F is a complete graph over k-symbols and over the probability
distribution Q.

Corollary 20.2 (Disjoint union). Given a probabilistic graph G = (X ,
E(X ), P ) which is composed by n disjoint graphs Gi = (Xi, E(Xi), Pi)
(disjoint vertex sets), then the entropy of the graph is defined as:

H(G) =
n∑
i=1

P (V (Gi)) ·H(Gi),

where X = ∪ni=1Xi, |X | =
∑n

i=1 |Xi|, P (V (Gi)) =
∑

x∈Xi P (X = x) and
Pi(X = x) = P (X=x)

P (V (Gi)) with x ∈ Xi.

Theorems 18 and 19 can be also proved using the definition of graph
entropy in terms of vertex packing polytope (Simonyi [12]).

Theorem 21 (Monotonicity, Simonyi [12]). Given the statement of The-
orem 19, it follows that

H(G1) ≤ H(G2).

Proof. If we have the relation defined above then working on vertex pack-
ing polytopes we have VP(G2) ⊆ VP(G1). This means that if we have a
vector a which minimizes the function given in eq. 3.5 for graph G1 this
vector is also contained in VP(G2).

Theorem 22 (Sub-additivity, Simonyi [12]). Given the statement of
Theorem 18, it follows that

H(G) ≤ H(G1) +H(G2).

Proof. Let call a ∈ VP(G1) and b ∈ VP(G2) the two vectors that define
the entropies, knowing that the intersection of an independent set of G1
and an independent set of G2 is always an independent set of G meaning
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that the vector (a1b1, a2b2, ..., anbn) ∈ V P (G), then we can state:

H(G1) +H(G2) =
n∑
i=1

pi log2(
1

ai
) +

n∑
i=1

pi log2(
1

bi
)

=
n∑
i=1

pi log2(
1

ai · bi
)

≥ H(G).

The graph entropy is said to be additive in the weak sense if there exists
a probability distribution P (where pi > 0 for all i) that implies:

H(G) = H(G1) +H(G2).

Instead, if the graph satisfies the equality for all probability distributions
on the vertex set: the graph is said to be additive in a strong sense.

3.5 Some examples of graph entropy
We give some examples of graphs where the entropy is easily computable.

Example 1. In the first example we consider a complete graph in which
every pair of distinct vertices is connected. The usual notation to iden-
tify complete graph is Kn where n defines the number of vertices. A
probability distribution p(x) = (1/4, 1/4, 1/8, 3/8) is given, assigning a
probability to each symbol that lies on the graph. We call the follow-
ing probabilistic graph G = (X , E(X ), P ) where X = {A,B,C,D} and
E(X ) = {(xi, xj) ∈ X 2 : i 6= j}.

Figure 3.1: K4 complete graph with 4 vertices.

In this case as we said before each symbol (A,B,C,D) has to be rep-
resented with different codewords cause there is an edge between every
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pair of symbols. This means for this particular case that the minimum
number of codewords needed to represent this graph is 4. The graph en-
tropy defined by Korner becomes the Shannon entropy, so, it can be easily
computed as:

H(G) = H(P ) =
1

2
log2 4 +

1

8
log2 8 +

3

8
log2

8

3
≈ 1.906.

Example 2. A trivial example is when the graph has no edges. Let
G = (X , E(X ), P ) be the probabilistic graph associated to the one in
Figure 3.2 with X = {A,B,C,D}, E(X ) = ∅ and p(x) is an arbitrary
distribution function.

Figure 3.2: Disconnected graph.

The entropy of this graph can be easily calculated with the Defini-
tion 3.5 because the vector a which minimizes that function is equal to
(1, 1, 1, 1) where all the vertices constitute an independent set. The en-
tropy of the graph follows:

H(G) =
4∑
i=1

P (X = i) · log2 1 = 0.

Example 3. Let us consider an example of a graph constructed by sub-
stitution.

Figure 3.3: F graph (left one) and G graph (right one).



CHAPTER 3. ENTROPY OF GRAPHS 81

So, F is a probabilistic graph over the vertex set Y = {F,G,H} and
over a probability distribution Q = (1/6, 1/6, 2/3) while G is a probabilis-
tic graph over X = {A,B,C,D,E} and over a probability distribution
P = (1/5, 1/5, 1/5, 1/5, 1/5). We can substitute the vertex (symbol) A of
G with the graph F in the following way:

Figure 3.4: Graph GA←F = (Y ∪ X \ {A}, E(·), PA←Q).

Figure 3.4 represents the graph constructed by substitution of vertex A
with the graph F by connecting all the vertices of F to adjacent vertices
of symbol A in G.
We know from the previous section that the entropy of the new graph can
be derived from the entropies of the two building graphs F and G.

H(GA←F) = H(G) + P (X = A) ·H(F).

Graph G is a 5-cycle graph and from [18] we know that H(G) = log2
5
2

when the probability mass function related to source symbols is uniform.
Graph F is a 3-complete graph and its entropy is

H(F) = H(Q) ≈ 1.26.

Hence the entropy of GA←F follows

H(GA←F) ≈ 1.32 +
1

5
1.26 ≈ 1.57.
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Example 4. Given a probabilistic graph G = (X , E(X ), P ) with X =
{A,B,C,D,E, F,G,H, I} and P = (1/9, 1/9, ..., 1/9) = u equals the
uniform distribution. The edge-set E(X ) can be seen in the next figure:

Figure 3.5: Graph G with disjoint vertex sets.

The graph G is composed by three connected-components (subgraphs),
we call these subgraphs G1, G2 and G3. As stated in Theorem 20.2 the
entropy of the graph showed in Figure 3.5 can be computed:

H(X ) = 1

3
H(G1) +

1

3
H(G2) +

1

3
H(G3)

= 3 · 1
3
·H(1/3, 1/3, 1/3)

= log2 3.

Example 5. Given a graph G = (X , E(X ), P ) that is a complete 3-
partite graph over an alphabet X = {A,B,C,D,E, F}. Let P be the
uniform distribution over the symbols, from previous theorems we can
easily compute its entropy.

Figure 3.6: complete 3-partite graph G.

In the graph in Figure 3.6 we can identify three maximal independent
sets, so, S(G) = {{A,D}, {B,E}, {C,F}}. The probability distribution
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Q is the uniform distribution over S(G) (due to the uniformity of P ).
The entropy of G follows:

H(G) = H(Q) = H(1/3, 1/3, 1/3) = log2 3.

Example 6. In the last example we compute the entropy of the Turán
graph T (5, 4)3. Consider a probabilistic graph G = (T (5, 4), P ) con-
structed by the Turán graph in Figure 3.7 and defined over a probability
distribution P = (1/2, 1/4, 1/8, 1/16, 1/16).

Figure 3.7: Turán graph: complete 4-partite graph.

The set of maximal independent sets is S(G) = {{A,C}, {B}, {D}, {E}}.
The probability distribution Q can be derived: Q(Y = y) = (5/8, 1/4, 1/16,
1/16), where Y is a random variable that takes values over S(G). Know-
ing that the Turán graph is a complete 4-partite graph then the entropy
of these types of graphs is known and can be computed as:

H(G) = H(F),

where F is a probabilistic complete graph defined over a 4-symbols alpha-
bet and over the probability distribution Q. This leads to:

H(G) = H(Q) =
5

8
log2

8

5
+

1

2
+

1

2
=

5

8
log2

8

5
+ 1 ≈ 1.42.

3Complete 4-partite graph in which the maximal independent sets size are 2, 1, 1, 1.



CHAPTER 3. ENTROPY OF GRAPHS 84

3.6 Future work
Korner [11] proved that Definition 3.2 is equivalent to Definition 3.6 with
the assumption that the sequences of symbols are produced by memo-
ryless sources. It can be useful to study possible extensions of Korner’s
theorem when the sources are Markovian, stationary and also ergodic.
This means that the sequences which lie on the vertices of the probabilis-
tic graph under consideration are described by a transition probability
matrix that defines the change of state in terms of probabilities. The AEP
(Asymptotic equipartition property) for ergodic sources can be used for
the definition of typical sequences (procedure defined by Wolfowitz [15]).

Graph coloring and the enumeration of all maximal independent sets
of a graph are NP-hard problems so polynomial time algorithms that
solve this kind of problems are not known (P vs NP). The implemen-
tation of an algorithm that computes the entropy of a given graph can
be written using exponential time algorithms that list all the maximal
independent sets and doing an exhaustive search on all the pairs of al-
phabet symbols and maximal independent sets. During this coupling we
can compute the mutual information for each pair in order to find the
minimum one. For each alphabet symbol we have to select only the max-
imal independent sets that contain the symbol.
Bron–Kerbosch (BK) algorithm can be used to list all the maximal in-
dependent sets in an undirected graph, it is based on a recursive back-
tracking algorithm. Knowing that given a graph with n-vertex there are
at most 3n/3 maximal independent sets [17], the worst case of the BK
algorithm has computational complexity O(3n/3). An implementation
of graph entropy can be useful to bring out some peculiarities between
different graphs.

Definitly a future work is to continue the study of graph entropy
extending it to hypergraphs and convex corners (Simonyi [12]). The
sub-additivity property of graph entropy is a fundamental property for
perfect hashing problem which could be interesting to study.



Conclusions

We have dealt with different topics in this thesis trying to give a general
overview on unique decodability of constrained sequences, fix-free codes
and graph entropy.

Dalai [3] shows that it is necessary to consider a modified Kraft in-
equality when we are dealing with constrained sources (with memory) in
order to give a general definition of unique decodability. This leads to a
new necessary condition for the code to be uniquely decodable but unfor-
tunately it is not a sufficient condition. A modified Sardinas-Patterson
test [3] has been used to check if a code is uniquely decodable in general
sense. This test was implemented in Matlab to carry out some results and
to make clear the whole process. We gave a proof of equivalence between
the Moore and Mealy representation of the same Markovian source. The
implementation of this equivalence has been proposed in Matlab code,
trying to clarify all the procedure steps. The Sardinas-Patterson might
be useful to get some feedback information about a non-uniquely de-
codable code in order to find an optimal code for a given constrained
source.

The work of Ahlswede [7] and Yekhanin [8] allowed us to produce
a Matlab implementation of the construction process of a fix-free code
given a set of integer codeword lengths when the Kraft sum is upper
bounded. Some useful tests have been carried out to better understand
the procedure defined by Yekhanin and in order to construct codes which
do not respect the 5/8-constraint of the Kraft sum but they respect the
11/16-constraint. This can be useful to outline an automatized proof for
the construction of fix-free codes under the 11/16-constraint.

Korner [11] provides a definition of graph entropy in terms of distin-
guishability of source symbols, this led to a formulation of the problem
in terms of mutual information between source symbols and maximal
independent sets. Korner proved the equivalence between the chromatic
number formulation with the one about the mutual information. This al-
lowed us to calculate by hand the entropy of simple graphs like complete-
graphs and k-partite graphs. The main properties of graph entropy have
been treated [12] in order to see the graph entropy behaviour.
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