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Abstract

A fundamental problem in Information Theory is studying the asymptotic growth of code
sizes. This is often related to problems in extremal combinatorics and to the zero-error
transmission capacity of a discrete memoryless noisy channel which is a concept introduced
by Shannon [107] in 1956.

In the first part of this thesis, we study the asymptotic rate of (b, k)-hash codes and
we provide new upper bounds that improve the best bounds known in the literature for
some specific values of b and k. Bounding the size of such codes is a problem of relevant
interest in information theory and in computer science since it is related to the zero-error
capacity under list decoding of the b/(k − 1) channel and with the study of (b, k)-hash
families of functions. Moreover, we study some combinatorial structures that are used
for traitor tracing in broadcast encryption and collusion resistant fingerprint for copyright
protection such as separable codes and frameproof codes. We derive a simple proof, based
on information theoretic inequalities, of an upper bound on the largest rates of q-ary 2-
separable codes and we show the existence of frameproof codes with small lengths providing
a randomized polynomial time algorithm to construct such codes. In addition, we study
bounds on the minimum length of superimposed codes introduced in [2], in the context of
Non-Adaptive Group Testing algorithms with runlength constraints. We show the existence
of superimposed codes using probabilistic methods such as the Lovász Local Lemma and
the Expurgation method. Our findings also suggest randomized Las Vegas algorithms for
the construction of such codes.

In the second part of this thesis, we focus on various problems with a combinatorial
nature. We explore two well-known sum-distinct problems in additive number theory and
combinatorial design theory. These problems were first introduced by Erdős in 1955 [101]
and Gordon in 1961 [76], and we present new variations on these two classical problems.
Additionally, we provide new instances of a conjecture by Alspach and Liversidge [10] about
the sequenceability of abelian groups. In particular we focus on cyclic groups of order
n = mt when m is prime. A key area of additive group theory and combinatorial number
theory is the zero-sum theory, which examines the sum behavior of specific sequences of
elements in a finite abelian group. Within this context, we consider a generalization of a
problem introduced by Erdős, Gizburg, and Ziv [63] that was recently proposed by Caro
and Schmitt [33]. Using both probabilistic methods and the slice rank polynomial method,
we present new findings that improve the results obtained in [33].
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CHAPTER 1

Introduction

Extremal Combinatorics deals with problems of determining or estimating the max-
imum or minimum possible cardinality of a collection of finite objects satisfying certain
requirements. Such problems are often related to other areas including Information The-
ory and Computer Science. A fundamental problem in Information Theory is studying the
asymptotic behaviour of code rates. More formally, let n and q be positive integers, a set
Cn ⊆ {0, 1, . . . , q − 1}n is called a q-ary code of length n. Each element of Cn is called a
codeword. An important parameter in coding theory is the rate of the code, which is defined
as Rn = logq |Cn|/n. The asymptotic code rate of Cn is often investigated for a certain class
of codes and it is defined as follows

R = lim sup
n→∞

Rn = lim sup
n→∞

logq |Cn|
n

.

In Chapter 2, we study (b, k)-hash codes. In particular, we provide new upper bounds
on the asymptotic rate of (b, k)-hash codes. Formally, for fixed integers n and b ≥ k, let
A(b, k, n) the largest size of a subset of {1, 2, . . . , b}n such that, for any k distinct elements
in the set, there is a coordinate where they all differ. Bounding A(b, k, n) is a problem of
relevant interest in information theory and in computer science, relating to the zero-error
capacity with list decoding and with the study of (b, k)-hash families of functions. It is known
that, for fixed b and k, A(b, k, n) grows exponentially in n. In the first part of Chapter 2,
we determine new exponential upper bounds for different values of b and k. A first bound
on A(b, k, n) for general b and k was derived by Fredman and Komlós [100] in the ’80s
and improved for certain b ̸= k by Körner and Marton and by Arikan. Only very recently
better bounds were derived for general b and k by Guruswami and Riazanov, while stronger
results for small values of b = k were obtained by Arikan [15], by Dalai, Guruswami and
Radhakrishnan [12], and by Costa and Dalai [42]. In Section 2.2, we strengthen the bounds
for some specific values of b and k. Our contribution is a new computational method for
obtaining upper bounds on the values of a quadratic form defined over discrete probability
distributions in arbitrary dimensions, which emerged as a central ingredient in recent works.
The proposed method reduces an infinite-dimensional problem to a finite one, which we
manage to further simplify by means of a series of optimality conditions. In the last part of
Chapter 2, we prove the non-existence of trifferent codes (3-hash codes) with lengths 5 and
6 and cardinalities 11 and 14 respectively by using an optimized search algorithm.

In Chapter 3, we study some combinatorial structures that are used for traitor tracing
in broadcast encryption and collusion resistant fingerprints for copyright protection such
as separable codes and frameproof codes. In the first part of Chapter 3, we derive, based
on information theoretic inequalities, a new upper bound on the largest rates of q-ary 2-
separable codes. A q-ary code with codewords of length n is a t-separable code if for any
distinct k codewords and m codewords with 1 ≤ k,m ≤ t, there exists a coordinate i,
1 ≤ i ≤ n, in which the union of the elements of the k codewords differs from the union of

1



2 1. INTRODUCTION

the elements of the m codewords. In the second part of Chapter 3, we show the existence

of q-ary (k, n)-frameproof codes of length t = O(k
2

q log n) for q ≤ k, using the Lovász Local

Lemma, and of length t = O( k
log(q/k) log(n/k)) for q > k, using the expurgation method. A

q-ary (k, n)-frameproof code of length t is a t× n matrix having entries in {0, 1, . . . , q − 1}
and with the property that for any column c and any other k columns, there exists a row
where the symbols of the k columns are all different from the corresponding symbol (in
the same row) of the column c. We will discuss how our results improve on known results
present in the literature after having proved them. Moreover, for the practically important
case of q ≤ k (as motivated in [106]) we provide a O(tn2) randomized algorithm to construct

codes of length t = O(k
2

q log n), that almost matches the lower bound Ω( k2

q log k log n) on the

length of any q-ary (k, n)-frameproof code. To the best of our knowledge, this is the first
polynomial time algorithm with such a performance.

In Chapter 4, we study bounds on the minimum length of (k, n, d)-superimposed codes
with runlength constraints introduced in [2]. A (k, n, d)-superimposed code of length t is
a t × n binary matrix such that any two 1’s in each column are separated by a run of at
least d 0’s, and such that for any column c and any other k − 1 columns, there exists a
row where c has 1 and all the remaining k − 1 columns have 0. These codes are used in
the context of Non-Adaptive Group Testing algorithms that refer to the scenario in which
one has to identify a small subset of defective items that are contained in a much larger
set. In general, the goal of Group Testing algorithms is to identify the defective set with as
few tests as possible. In the setting of Non-Adaptive Group Testing, the set of items being
tested in each test is required to be independent of the outcome of every other test. This
restriction is often useful in practice, since this enables parallelization of the testing process.
In this chapter, we show the existence of (k, n, d)-superimposed using probabilistic methods
such as the Lovász Local Lemma and the Expurgation method. Our findings also suggest
randomized Las Vegas algorithms for the construction of such codes.

In Chapters 5, 6 and 7, we consider several problems with a combinatorial flavour. In
Chapters 5 and 6 we investigate two known sum-distinct problems in additive number theory
and combinatorial design theory. One stated by Erdős [101] in 1955 and the other one by
Gordon [76] in 1961, and we propose new variations on these classical problems.

In Chapter 5, we consider the following problem. Let {a1, ..., an} be a set of positive
integers with a1 < · · · < an such that all 2n subset sums are distinct. A conjecture by Erdős
states that an > c · 2n for some constant c, while the best result known to date is of the
form an > c · 2n/

√
n. In this chapter, inspired by an information-theoretic interpretation,

we extend the study to vector-valued elements ai ∈ Zk and we weaken the condition by
requiring that only sums corresponding to subsets of size smaller than or equal to λn be
distinct. In this case, we derive lower and upper bounds on the smallest possible value of an.

In Chapter 6, we investigate the following problem. A subset of an abelian group
is sequenceable if there is an ordering (x1, . . . , xk) of its elements such that the partial

sums (y0, y1, . . . , yk), given by y0 = 0 and yi =
∑i

j=1 xi for 1 ≤ i ≤ k, are distinct, with
the possible exception that we may have yk = y0 = 0. We demonstrate the sequenceability
of subsets of size k of Zn \ {0} when n = mt in many cases, including when m is prime
for k ≤ 11 and t ≤ 5 and for k = 12 and t ≤ 4. We obtain similar, but partial, results
for 13 ≤ k ≤ 15. This represents progress on a variety of questions and conjectures in the
literature concerning the sequenceability of subsets of abelian groups, which we combine
and summarize into the conjecture that if a subset of an abelian group does not contain 0
then it is sequenceable. Then, inspired by a graph-theortical interpretation, we propose a
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weakening (variation) of this conjecture where we require that the partial sums yi and yj
are different only whenever i and j are distinct and |i − j| ≤ t. In this case, we say that
a subset A of an abelian group is t-weak sequenceable. The main results presented, in this
chapter, about t-weak sequenceability is that any subset A of Zp\{0} is t-weak sequenceable
whenever t < 7 or when A does not contain pairs of type {x,−x} and t < 8.

One significant subfield of additive group theory and combinatorial number theory is
the zero-sum theory that studies the sums behavior of suitable sequences of elements in a
finite abelian group. Within this context, in Chapter 7 we consider a generalization, recently
proposed by Caro and Schmitt [33], of a problem stated by Erdős, Gizburg and Ziv in [63].
The classical Erdős-Ginzburg-Ziv constant of a group G denotes the smallest positive integer
ℓ such that any sequence S of length at least ℓ contains a zero-sum subsequence of length
|G|. In the recent paper, [33], Caro and Schmitt generalized this concept, using the m-th
degree symmetric polynomial em(S) instead of the sum of the elements of S and considering
subsequences of a given length t. In particular, they defined the higher degree Erdős-
Ginzburg-Ziv constants EGZ(t, R,m) of a finite commutative ring R and presented several
lower and upper bounds to these constants. This chapter aims to provide lower and upper
bounds for EGZ(t, R,m) in case R = Fn

q . The lower bounds presented in this chapter have
been obtained, respectively, using the Lovász Local Lemma and the Expurgation method
and, for sufficiently large n, they beat the lower bound provided by Caro and Schmitt for
the same kind of rings. Finally, we will prove an upper bound derived from Tao’s Slice Rank
method assuming that q = 3k with k > 1, t = 3, and m = 2.





CHAPTER 2

New bounds on (b, k)-hash codes

In this chapter, all the results presented in Section 2.2 are obtained in collaboration
with Marco Dalai and Simone Costa while the results presented in Section 2.3 are obtained
in collaboration with Alessandro Gnutti and Sven Polak.

2.1. Introduction

Shannon in his seminal paper of 1956 introduced the concept of zero-error capacity
of a discrete finite memoryless noisy channel [107], that is the maximum rate at which
information can be transmitted through the channel, using block codes, such that there
is zero probability of error. In other words, it is the maximum rate at which messages
can be sent through a channel without any errors occurring. In his paper on zero-error
theory, Shannon demonstrated that the capacity for zero-error can also be defined using
graph theory. Specifically, for each noisy channel, there is a corresponding simple graph
that completely defines the channel’s zero-error characteristics. The graph-invariant that
corresponds to the zero-error capacity of the channel is known as the Shannon capacity of
a graph.

A discrete channel is typically characterized by a bipartite graph H = (X,Y,E), where
X is the set of channel inputs, Y is the set of channel outputs and E is a subset of pairs
(x, y) ∈ X × Y that represents the channel links, i.e., if (x, y) ∈ E then the output y can be
received when x has been transmitted over the channel. Starting from this representation
of a channel, one can associate to the channel H a confusability graph GH . In this graph
the vertex set is X (the channel inputs) and two vertices x′ ̸= x′′ are adjacent if there is a
common output y ∈ Y such that (x′, y), (x′′, y) ∈ E, so that x′ and x′′ can be confused with
each other. Therefore, the maximum independent set α(GH) is the maximum number of
single letter messages that can be sent without errors. In other words, the receiver knows
whether the received message is correct or not. Furthermore, the definition is extended to
words of length n by Gn

H , where Gn
H is the n-fold strong product of GH in which two n-tuples

in Xn are adjacent if and only if in every coordinate, they are either equal or adjacent in GH .
Therefore, the graph-theoretic definition of the Shannon capacity is the limit, for n → ∞,
of the ratio log2 α(G

n)/n. The Shannon capacity is in general very difficult to calculate. In
fact, the Shannon capacity of the cycle graph C5 was not determined as log2(

√
5) until 1979

by Lovász [92], and the Shannon capacity of C7 is perhaps one of the most notorious open
problems in extremal combinatorics.

In this chapter and in particular in Section 2.2, we study the zero-error capacity under
list decoding for simple channels where the classical Shannon capacity is trivially zero. The
zero-error capacity under list decoding is a concept introduced by Elias in 1988 [60]. For a
fixed integer L, the zero-error capacity with list of size L of a channel H is defined as the
largest asymptotic rate at which one can communicate over the channel with n independent

This chapter includes research results published in [67], [68], [54].
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6 2. NEW BOUNDS ON (B,K)-HASH CODES

uses of the channel for n→∞, so that the receiver can identify the correct message among
a list of at most L entries. In other words, the receiver can output L codewords which
must include the transmitted one. More formally, given a discrete channel H = (X,Y,E), a
subset (code) C ⊆ Xn is said to be a zero-error code with list of size L for channel H if for
every subset of L+ 1 codewords in C there exists a coordinate in which the L+ 1 symbols
in that coordinate are not adjacent to a common vertex in H. As done for the Shannon
capacity, we want to give a definition in graph-theoretical terms of the zero-error capacity
under list decoding. First we need to recall the definition of a hypergraph.

Definition 2.1.1. A hypergraph H is a family E of subsets of a finite set V where the
subsets in E are called hyperedges and the elements of V are called vertices. If all the edges
have size d then we say that H is a d-uniform hypergraph.

Hence, in graph-theoretical terms, the definition of a zero-error code C with list of size L
for a discrete channel H = (X,Y,E) is equivalent to say that C is an independent set in the
(L+1)-uniform hypergraph defined on the vertex set Xn where the hyperedges correspond
to tuples whose i-th symbols are adjacent to a common vertex in H for every i. This
definition collapse to the classical zero-error capacity when the list size L = 1.

Here we state the following theorem proved by Elias in [60] that provides upper and
lower bounds on the zero-error capacity with list of size L of a generic discrete channel.

Theorem 2.1.1 (Elias [60]). Let H = (X,Y,E) be a discrete memoryless channel. Let
Sy = {x ∈ X : (x, y) ∈ E}, the set of input letters which produce output y. Let ∆ be the set
of probability vectors p defined on X, and let

(1) P0 = min
p∈∆

max
y∈Y

∑
x∈Sy

p(x) .

Denote with C0(L) the zero-error capacity with list of size L for the channel H. Hence

(2) −L+ 1

L
log2(P0)−

1

L
log2 |Y | ≤ C0(L) ≤ − log2(P0) .

Proof. The upper bound in equation (2) is obtained using the fact that C0(L) ≤ C0F =
− log2(P0), where C0F is the zero-error capacity of the channel H when there is immediate
noiseless feedback of each received letter to the transmitter (see [60] for more details). The
lower bound in (2) is obtained using a random coding method known as the Expurgation
method. Let p be a probability vector which attains the minimax value in equation (1).
Now, let C be a code of length n and with cardinality M , where each symbol is picked i.i.d.
at random with distribution p. For a given subset B of distinct codewords, |B| = L+ 1, let
Ei,B be the event such that the symbols in the i-th coordinate of the L+1 codewords in B
all lie in one Sy for some y. Therefore

Pr(Ei,B) =
∑
y∈Y

∑
x∈Sy

p(x)

L+1

≤ |Y |PL+1
0 ,

since P0 is the most probable between the Sy’s. Denote with EB the event such that the
L+1 codewords in B are not distinguishable at the receiver by using a decoder with list of
size L. i.e., EB = ∩ni=1Ei,B. Since each symbol in C is picked i.i.d., the probability of each
event EB is upper bounded as follows

Pr(EB) =

n∏
i=1

Pr(Ei,B) ≤
(
|Y |PL+1

0

)n
.
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The number of such events is clearly equal to
(

M
L+1

)
. Now, let IB be the indicator random

variable of the event EB and define the random variable I =
∑

B IB that represents the
number of events EB that are satisfied. We obtain

E[I] ≤
(

M

L+ 1

)(
|Y |PL+1

0

)n
.

We note that if E[I] < M/2 then there exist at most M/2 “bad” events EB that are satisfied.
Then, for each of these events EB we remove one codeword in B. Hence, we are left with
a zero-error code C with list of size L for the channel H of cardinality at least M/2. The
theorem follows since a code of cardinality M and one of cardinality M/2 have the same
asymptotic rate. □

The lower bound given in equation (2) can alternatively be obtained using the Lovász
Local Lemma for the symmetric case. Here we state this lemma that will be used throughout
the thesis to provide existential result of certain combinatorial structures.

Lemma 2.1.1. [8] Let E1, E2, . . . , Em be events in an arbitrary probability space. Suppose
that each event Ei is mutually independent of a set of all other events Ej but at most D,
and that Pr(Ei) ≤ P for all 1 ≤ i ≤ m. If

eDP ≤ 1

then Pr(∩mi=1Ei) > 0.

Following all the procedure used in the proof of Theorem 2.1.1 and considering the
same set of events EB, we note that the variable P in Lemma 2.1.1 in our case is equal

to
(
|Y |PL+1

0

)n
. It can be easily seen that an arbitrary event EB is mutually independent

from all the events EA, where A ∩ B = ∅. Hence, the quantity D in Lemma 2.1.1 can be
upper bounded by (L+ 1)

(
M
L

)
. Therefore we have the following condition that implies the

existence of a zero-error code with list of size L, cardinality M and length n for a given
channel.

(3) eDP = e(L+ 1)

(
M

L

)(
|Y |PL+1

0

)n
≤ 1 .

Rewritten (3) in terms of asymptotic rate, we obtain the exact same lower bound on C0(L)
given in Theorem 2.1.1.

Remark 2.1.1. The Expurgation method and the Lovász Local Lemma provide the same
asymptotic result (for n → ∞), but for finite code lengths it can be seen that the bound
obtained in Theorem 2.1.1 outperforms the one that can be derived from equation (3) for all
finite n’s. We refer the reader to Chapter 7 for a more detailed comparison between these
two techniques.

The smallest non-trivial case for zero error capacity under list decoding is the 3/2 chan-
nel, where X = Y = {1, 2, 3} and (x, y) ∈ E if and only if x ̸= y. Clearly, since every pair
of channel inputs can be confused with each other, the zero-error capacity of this channel is
zero. A code that achieve zero-error with list of size 2 for this channel is known as perfect
3-hash code or trifferent code and non-trivial upper and lower bounds on the asymptotic
rate of such codes can be obtained thanks to Theorem 2.1.1. By equation (2) we have that
C0(2) for the 3/2 channel is lower bounded by log2(3)−3/2 and upper bounded by log2(3/2)
since P0, defined in equation (1), is equal to 2/3 for this channel. The upper bound log2(3/2)
is still the best known bound while the best lower bound is 1/4 log2(9/5) given in [88].
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Input

Output

Figure 1. A 4/2 channel. Edges represent positive probabilities. Here,
zero-error communication is possible when decoding with list-size equal to 2.

In Section 2.2, we study the zero-error capacity under list of size k − 1 of the b/(k − 1)
channel, meaning that any k − 1 of the b inputs share one output but no k distinct inputs
do (see Figure 1 for an example). A code C that achieve zero-error capacity under list
of size k − 1 for this channel is called (b, k)-hash code and the required property for C is
what is needed for the receiver to always be able to produce a list of k − 1 codewords of
C which must necessarily include the one that was sent; that is, zero-error communication
with (k − 1)-list decoding is possible. Indeed, the condition implies that any k codewords
use, in at least one coordinate, k different symbols, and one of them will not be compatible
with the received symbol in that coordinate. We refer the reader to [59], [100], [87], [98]
for an overview of the more general context of this problem. Some recent important results
in a different asymptotic setting can be found in [20]. The problem considered in Section
2.2 has a twofold history that connects it naturally with combinatorial aspects of computer
science and information theory. Let b, k, and n be integers and let C be a subset of
{1, 2, . . . , b}n. The zero-error property required that for any k distinct elements of C we
can find a coordinate where they all differ. Such a set can be interpreted, by looking at
it coordinate-wise, as a family of n hashing functions on some universe of size |C|. The
required property then says that the family is a perfect hash family, that is, any k elements
in the universe are k-partitioned by at least one function.

We will call any subset C of {1, 2, . . . , b}n with the described property a (b, k)-hash code,
for simplicity when b = k we refer to such codes as k-hash codes. For the reasons mentioned
above, bounding the size of (b, k)-hash codes is a combinatorial problem that has been of
interest in both computer science and information theory.

Finally, in Section 2.3, we derive new upper bounds on the cardinality of trifferent codes
(3-hash codes). Defining T (n) as the maximum cardinality of trifferent codes with length
n, then it is known that T (1) = 3, T (2) = 4, T (3) = 6 and T (4) = 9. T (n) is unknown
for n ≥ 5. In Section 2.3, we use an optimized search algorithm to show that T (5) = 10
and T (6) = 13. We prove the the non-existence of trifferent codes with lengths 5 and 6 and
cardinalities 11 and 14 respectively by computer, using an optimized search algorithm.

2.2. Improved upper bounds on (b, k)-hash codes

2.2.1. Preliminaries. Denote with A(b, k, n) the largest size of (b, k)-hash codes. It is
known that for fixed b and k, A(b, k, n) grows exponentially in n, and a challenging problem
consists in bounding the exponent. We will thus study the quantity

R(b,k) = lim sup
n→∞

1

n
logA(b, k, n) .

Note that, throughout the section, all logarithms are to base 2.
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Few lower bounds on R(b,k) are known. First results in this sense were given by [100], [59]
and a better bound was derived by [88] for b = k = 3. More recently, new lower bounds were
derived in [119] for infinitely many other values of k. The first, landmark result concerning
the upper bounds was obtained by Fredman-Komlós [100], who showed that

(4) R(b,k) ≤
bk−1

bk−1
log(b− k + 2) ,

where bk−1 = b(b− 1) · · · (b− k + 2). Progress has since been rare. A generalization of the
bound given in equation (4) was derived by Körner and Marton [88] in the form

(5) R(b,k) ≤ min
2≤j≤k−2

bj+1

bj+1
log

b− j

k − j − 1
.

Nilli [98] provided an elementary proof of (5) without considerations of graph entropy or
hypergraph entropy. This bound was further improved for different values of b and k by
Arikan [15]. In the case b = k, an improvement was first obtained for k = 4 in [16] and then
in [12], [50]. The latter only focuses on b = k = 4, but the procedure can be extended to
general b and k. As shown in the next subsections, it leads to the following bound.

Lemma 2.2.1. For general b and k, we have

(6) R(b,k) ≤

(
1

log b
+

b2

(b2 − 3b+ 2) log b−2
k−3

)−1

.

In [80], the authors prove that the Fredman-Komlós bound is not tight for any b ≥ k > 3;
explicit better values were given there for b = k = 5, 6, and for larger b = k modulo
a conjecture which is proved in [42], where further improvements are also obtained for
b = k = 5, 6. The case of b ̸= k is not described in detail in [80] but, as the authors mention,
it is straightforward. We do not write here the bound since it has a complicated expression.

In this subsection, we attack some of the cases which appear not to be optimally handled
by those methods. In particular, we build on the results obtained in [42] and add an
improvement that leads to better bounds for many pairs of (b, k) values. The results of [42]
for b = k were derived following an approach common to many recent works by introducing
a symmetrization which reduces to the problem of bounding a quadratic form on probability
distributions. We give a more general exposition for the general b, k case, anticipating here
the key lemma whose proof we give for completeness in the next subsection. Fix an integer
j in the range 2, . . . , k − 2 and define, for probability vectors p, q ∈ Rb, the function

(7) Ψj(p; q) =
1

(b− j − 1)!

∑
σ

pσ(1)pσ(2) . . . pσ(j)qσ(j+1) + qσ(1)qσ(2) . . . qσ(j)pσ(j+1),

where σ ranges over all permutations of {1, 2, . . . , b}. Define then

(8) Mj = sup
λ

∑
p,q

λpλqΨj(p; q)

where λ ranges over all probability distributions on finite sets of probability vectors in Rb,
so that λp is the probability associated to the probability vector p. Then, the following
bound holds.
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Lemma 2.2.2. For j = 2, . . . , k − 2,

(9) R(b,k) ≤

 2

Mj log
b−j

k−j−1

+
1

log
(

b
j−1

)
−1

.

The results in [42] were obtained using in (9), for b = k and j = k− 2, the upper bound

(10) Mj ≤ max
p,q

Ψj(p; q) .

A weakness in this bound comes from the fact that distributions p and q that maximize
Ψj(p; q) exhibit in many cases some opposing asymmetries, in the sense that they give
higher probabilities to different symbols. When used as a replacement for each of the pairs
of p and q in (8), we have a rather conservative bound, because pairs (p, q) which give
high values for Ψj(p; q) will give low values for Ψj(p; p) and Ψj(q; q), and equation (8)
contains a weighted contribution from all pairings of p and q. In this subsection, we present
a computational method for obtaining more refined bounds on Mj for general b, k values
which lead to improvements on the best-known bounds on R(b,k) for many b, k pairs.

Table 1. Upper bounds on R(b,k). All numbers are rounded upwards.

(b, k) Our method [15] [80] [88] (b, k) Our method [15] [80] [88]

(5, 5) 0.168941 0.23560 0.19079 0.19200 (6, 5) 0.345121 0.44149 0.43207 0.44027

(6, 6) 0.084751 0.15484 0.09228 0.09260 (7, 6) 0.198972 0.30554 0.23524 0.23765

(8, 6) 0.317992 0.44888 0.40330 0.41016 (9, 6) 0.432372 0.58303 0.58486 0.59455

(10, 6) 0.539092 0.73304 0.76977 0.78170 (11, 6) 0.637662 0.87038 0.95285 0.96640

(12, 6) 0.728482 0.99588 1.13118 1.14584 (13, 6) 0.812272 1.11084 1.30322 1.31855

(14, 6) 0.889782 1.21657 1.46822 1.48388 (7, 7) 0.040901 0.09747 0.04279 0.04284

(8, 7) 0.108652 0.20340 0.12134 0.12189 (9, 7) 0.190542 0.31204 0.22547 0.22761

(10, 7) 0.277412 0.41982 0.34615 0.35108 (11, 7) 0.364242 0.52472 0.47856 0.48538

(12, 7) 0.448502 0.65160 0.61698 0.62549 (13, 7) 0.529022 0.77148 0.75796 0.76792

(14, 7) 0.605382 0.88384 0.89915 0.91027 (8, 8) 0.018891 0.05769 0.01922 0.01923

(9, 8) 0.056161 0.12874 0.06001 0.06013 (10, 8) 0.107912 0.20754 0.12048 0.12096

(11, 8) 0.168782 0.29023 0.19680 0.19818 (12, 8) 0.234512 0.37434 0.28470 0.28797

(13, 8) 0.302142 0.45827 0.38245 0.38694 (14, 8) 0.369742 0.56612 0.48658 0.49227

(10, 9) 0.027731 0.07668 0.02874 0.02876 (11, 9) 0.057962 0.13098 0.06197 0.06208

(12, 9) 0.097302 0.19157 0.10746 0.10778 (13, 9) 0.143322 0.25611 0.16368 0.16444

(14, 9) 0.193822 0.32294 0.22865 0.23033 (11, 10) 0.013211 0.04289 0.01342 0.01343

(12, 10) 0.029781 0.07806 0.03093 0.03095 (13, 10) 0.053422 0.12009 0.05674 0.05681

(14, 10) 0.083322 0.16726 0.09071 0.09090 (13, 11) 0.014761 0.04400 0.01506 0.01506

(14, 11) 0.028152 0.07141 0.02915 0.02916 (14, 12) 0.007121 0.02361 0.00718 0.00718

(15, 13) 0.003351 0.01218 0.00336 0.00336

1Bounds obtained with the procedure of Subsection 2.2.3, improving the generalization of [42].
2Bounds where the procedure of Subsection 2.2.3 reduces to the solution obtained by generalization of [42].

In Table 1 we give a comparison between bounds (6) and (5), the bounds of [15] and [80]
and our new bounds for different values of b and k. In Table 2 we show that for some (b, k)-
cases the bound (6) is the best bound among all the current known bounds, in particular
when b is much larger than k. Finally, in Table 3 we provide some (b, k)-cases where the
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bound of [80] is the current best known bound, in particular when b and k are large and
nearly equal. Clearly, the cases reported in Tables 2 and 3 are not exhaustive, but they
have been properly selected to point out that our method does not always provide the best
bounds. The integers in the parentheses for bounds [80], [15] and [88] in Table 2 represent
the optimal value of a parameter which has the same role as j in (5). When its value is not
reported, as well as in Tables 1 and 3, it is equal to k− 2 for our bounds and for bounds of
[80], [15] and [88]. Instead, for bound (6) it is always equal to 2.

Table 2. Upper bounds on R(b,k). All numbers are rounded upwards.

(b, k) [12]* [42]* [15] [80] [88]

(5, 4) 0.57303 0.66126 0.61142 0.74834 0.73697(0)

(6, 4) 0.77709 0.87963 0.83904 1.09604 1.00000(0)

(7, 4) 0.94372 1.03711 1.02931 1.40593 1.22239(0)

(100, 6) 2.81342 — 3.61848(2) 4.87959(2) 4.32193(0)

(100, 7) 2.67473 — 3.41158(2) 4.47696(2) 4.05889(0)

Missing values indicate impossibility to compute the bound due to high computational complexity.
∗The generalized bound for the (b, k) case.

Table 3. Upper bounds on R(b,k). All numbers are rounded upwards.

(b, k) [80] [42]* [15] [88]

(9, 9) 8.4288 ·10−3 0.00946 0.03182 8.4300 · 10−3

(10, 10) 3.6287 ·10−3 0.00419 0.01642 3.6288 · 10−3

(11, 11) 1.53895 ·10−3 0.00181 0.00803 1.53897 · 10−3

(12, 11) 6.13036 ·10−3 0.00664 0.02266 6.13075 · 10−3

(12, 12) 6.44678 ·10−4 0.00077 0.00377 6.44679 · 10−4

(13, 12) 2.75350 ·10−3 0.00305 0.01143 2.75355 · 10−3

(13, 13) 2.672760 ·10−4 0.00033 0.00172 2.672761 · 10−4

(14, 13) 1.218595 ·10−3 0.00138 0.00556 1.218599 · 10−3

∗The generalized bound for the (b, k) case.

The section is structured as follows. In Subsection 2.2.2 we give some background
proving Lemmas 2.2.1 and 2.2.2. In Subsection 2.2.3 we present the first part of our compu-
tational method to bound Mj by partitioning the domain of possible p and q distributions
and then working on the subdomains. The second part is presented in Subsection 2.2.4,
where we derive optimality conditions on p and q over such subdomains, which allow us to
reduce the problem to a manageable one that can be solved exactly. Finally, in Subsection
2.2.5 we show that at least some of the bounds that we obtain are not tight, although a
quantitative improvement is not explicitly derived.

2.2.2. Background. The best upper bounds on R(b,k) available in the literature can
all be seen as different applications of a central idea, which is the study of (b, k)-hashing
by comparison with a combination of binary partitions. This mainline of approach to the
problem comes from the original work of Fredman and Komlós [100]. A clear and productive
formulation of the idea was given by Radhakrishnan in terms of Hansel’s lemma [103], which
remained the main tool used in all recent results [50], [80] and [42].
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We state the Hansel’s Lemma for Hypergraphs here for the reader’s convenience (see
Definition 2.1.1 for the hypergraph’s definition).

Lemma 2.2.3 (Hansel for Hypergraphs [82], [98]). Let Kd
r be the complete d-uniform

hypergraph on r vertices and let G1, . . . , Gm be c-partite d-uniform hypergraphs on those
vertices such that ∪iGi = Kd

r . Let τ(Gi) be the number of non-isolated vertices in Gi. Then

(11) log
c

d− 1

m∑
i=1

τ(Gi) ≥ log
r

d− 1
.

Using this main ingredient, we provide here a proof of Lemma 2.2.2, which extends the
bound used in [42] to general b and k. We refer the reader to [42] for a more detailed
discussion on connections with other previous bounds in the literature.

Proof of Lemma 2.2.2. Given a (b, k)-hash code C of rate R, fix any j elements
x1, x2, . . . , xj in C, with j in the range 2, . . . , k− 2. For any coordinate i let G

x1,...,xj

i be the
(b− j)-partite (k − j)-uniform hypergraph with vertex set C \ {x1, x2, . . . , xj} and edge set

(12) E =
{
{y1, . . . , yk−j} : x1,i, . . . , xj,i, y1,i, . . . , yk−j,i are all distinct

}
.

Since C is a (b, k)-hash code, then
⋃

iG
x1,...,xj

i is the complete (k − j)-uniform hypergraph
on C \ {x1, x2, . . . , xj} and so

(13) log
b− j

k − j − 1

n∑
i=1

τ(G
x1,...,xj

i ) ≥ log
|C| − j

k − j − 1
.

Inequality (13) holds for any choice of x1, x2, . . . , xj , so the main goal is proving that the
left hand side is not too large for all possible choices of x1, x2, . . . , xj . The choice can be
deterministic or we can take the expectation over any random selection.

First note that if the x1,i, x2,i, . . . , xj,i are not all distinct (let us say that they “collide”)
then the hypergraph defined by (12) is empty, that is the corresponding τ in the left hand
side of (13) is zero. Otherwise, τ(G

x1,...,xj

i ) depends on the frequency of different symbols in
the i-th coordinate of the code. Let fi be their distribution, meaning that fi,a is the fraction
of elements of C whose i-th coordinate is a. Then, we have

(14) τ(G
x1,...,xj

i ) =

{
0 x1, . . . , xj collide in coordinate i(

|C|
|C|−j

)(
1−

∑j
h=1 fi,xh,i

)
otherwise

.

We partition the code C into subcodes Cω, ω ∈ Ω in such a way that each subcode has
a size which grows unbounded with n and uses in any of its first ℓ coordinates only j − 1
symbols, where ℓ denotes the length of the prefix. It can be shown, by an easy extension of
the method used for the case b = k and j = k − 2 in [42], that if the original code has rate

R, then for any ϵ > 0 one can do this with a choice of ℓ = n(R − ϵ)/ log
(

b
j−1

)
for n large

enough. Given such a partition of our code, if we select codewords x1, . . . , xj within the same
subcode Cω, they will collide in the first ℓ coordinates and the corresponding contribution
to the left-hand side of (13) will be zero. The next step is to add randomization. Pick
randomly one of the subcodes Cω and randomly select the codewords x1, . . . , xj within Cω.
Then an upper bound on |C| is obtained by taking an expectation on the left-hand side of
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(13)

log
|C| − j

k − j − 1
≤ log

b− j

k − j − 1
Eω

E

 ∑
i∈[ℓ+1,n]

τ(G
x1,x2,...,xj

i )|ω


= log

b− j

k − j − 1

∑
i∈[ℓ+1,n]

Eω(E[τ(G
x1,x2,...,xj

i )|ω]).(15)

Here, each subcode Cω is taken with probability λω = |Cω|/|C|, and x1, . . . , xj are taken
uniformly at random (without repetitions) from Cω.

Let now fi|ω be the distribution of the i-th coordinate of the subcode Cω (with compo-
nents, say, fi,a|ω) . Then, for i > ℓ, we can write

E[τ(Gx1,...,xj

i )|ω] = (1 + o(1))
∑

distinct
a1,...,aj

fi,a1|ωfi,a2|ω · · · fi,aj |ω(1− fi,a1 − . . .− fi,aj )(16)

where the o(1) is meant as n → ∞ and is due, under the assumption that Cω grows
unbounded with n, to sampling without replacement within Cω. Now, since λω = |Cω|/|C|,
fi is actually the expectation of fi|ω over ω, that is, using a different dummy variable µ to
index the subcodes for convenience,

fi =
∑
µ

λµfi|µ .

Using this in (16), one notices that when taking a further expectation over ω it is possible
to operate a symmetrization in ω and µ. The expectation of (16) over ω can then be written
as

Eω[τ(G
x1,x2,...,xj

i )] = (1 + o(1))
1

2

∑
ω,µ∈Ω

λωλµΨj(fi|ω, fi|µ) ,(17)

so that

(18) Eω[τ(G
x1,x2,...,xj

i )] ≤ (1 + o(1))
1

2
Mj .

This leads to

(19) log |C| ≤ (1 + o(1))
1

2
(n− ℓ)Mj log

b− j

k − j − 1
,

from which, using the value of ℓ described above, one deduces

R ≤ (1 + o(1))
1

2

1− R

log
(

b
j−1

)
Mj log

b− j

k − j − 1
.

Explicitating in R we conclude the proof of the Lemma. □

The first part of the above derivation follows the same method used in [12]. In particular,
the proof of Lemma 2.2.1 can be obtained using j = 2 and looking at (16) as a quadratic
form in fi|ω with kernel of elements (1− fi,a1 − fi,a2). The procedure used in [12] can then
be applied also for b ≥ k with some simple variations.
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Proof of Lemma 2.2.1. Set j = 2 in (16). Proceeding as in [12], it can be shown
that the right hand side, as a quadratic form in fi|ω, is a concave function on the simplex of
probability distributions if all the values fi,a are not larger than 1/2. Assume first that this
holds for all i ∈ [ℓ + 1, n]. The expectation over ω is then bounded by the value obtained
by replacing both fi|ω and fi with a uniform distribution, which is easily evaluated to be

(b2 − 3b + 2)/b2. When used in (15) this gives the bound of Lemma 2.2.1. It remains to
show that we can assume without loss of generality that fi,a ≤ 1/2 for all i and a. Again the
procedure is a generalization of what was done in [12]. Suppose that there exists a coordinate
i ∈ {1, 2, . . . , n} for which (rename the symbols if needed) fi,1 ≥ fi,2 ≥ . . . ≥ fi,b with
fi,1 > 1/2. Note that we must then have fi,1+fi,2+. . .+fi,k−1 ≥ (b+k−3)/(2b−2). We can
build another (b, k)-hash code C ′ by removing all the codewords in C for which the symbol
in the i-th coordinate is in {k, k+1, . . . , b} and by deleting this coordinate in the remaining
codewords. Clearly C ′ has length n − 1 and cardinality |C ′| ≥ |C| · (b + k − 3)/(2b − 2).

This process can be iterated, say t times, in order to get a code C̃ of length n− t in which
fi,a ≤ 1/2 for all i ∈ {1, 2, . . . , n− t} and for all a ∈ {1, 2, . . . , b} and such that

(20) |C̃| ≥ |C|
(
b+ k − 3

2b− 2

)t

.

Let B(b, k) be the right hand side of (6). We can apply the previous part of the proof to C̃
and bound the rate R of C as

1

n
log |C| ≤ 1

n
log |C̃|+ t

n
log

(
2b− 2

b+ k − 3

)
≤ n− t

n
B(b, k) +

t

n
log

(
2b− 2

b+ k − 3

)
+ o(1)

≤ B(b, k)− t

n

[
B(b, k)− log

(
2b− 2

b+ k − 3

)]
+ o(1) .

The proof of the Lemma is concluded if we prove that B(b, k) > log 2b−2
b+k−3 for b ≥ k ≥ 4.

We verify this inequality considering the following three different ranges of b and k:

(1) Suppose that 12 ≤ k ≤ b ≤ (k − 3)2. Then

B(b, k)
(i)
>

2

3
·
(b2 − 3b+ 2) log b log

(
b−2
k−3

)
b2 log(b)

>
2

3
(1− 3/b) log

(
b− 2

k − 3

)
(ii)

≥ 1

2
log

(
b− 2

k − 3

)
,

where (i) is true since log
(

b−2
k−3

)
≤ 1/2 log b for b ≤ (k−3)2, while (ii) since b ≥ 12.

Then, it can be verified that for b ≥ k ≥ 12 we have that

1

2
log

(
b− 2

k − 3

)
> log

(
2b− 2

b+ k − 3

)
.

(2) Suppose that b ≥ 8k − 22 and k ≥ 4. Then
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B(b, k) >
(b2 − 3b+ 2) log b log

(
b−2
k−3

)
2b2 log(b)

>
1

2
(1− 3/b) log

(
b− 2

k − 3

)
(i)
>

1

3
log

(
b− 2

k − 3

)
,

where (i) is true since b > 9. Then, it can be easily verified that for b ≥ 8k − 22
we have that

1

3
log

(
b− 2

k − 3

)
≥ 1 > log

(
2b− 2

b+ k − 3

)
.

(3) All the cases b ≥ k = 4, 5, . . . , 11 can be verified manually or by using a symbolic
computation software.

Finally, we see that the ranges of b, as functions of k, in the first two cases intersect because

(k − 3)2 ≥ 8k − 22

is verified for every k ≥ 12. Therefore the thesis of the lemma follows. □

2.2.3. Bounding the quadratic form. We now enter the problem of determining
better upper bounds on the value of Mj defined in (8). We consider partitions of Pb, the
set of probability distributions on b elements, into disjoint subsets to find upper bounds on
the quadratic form (8) in terms of simpler ones. If we have a partition {P0

b ,P1
b , . . . ,Pr

b } of
Pb and we define

mi,h = sup
p∈Pi

b,q∈P
h
b

Ψj(p, q) , ηi =
∑
p∈Pi

b

λp ,

then clearly ∑
p,q

λpλqΨj(p, q) ≤
∑
i,h

∑
p∈Pi

b

∑
q∈Ph

b

λpλqmi,h ≤
∑
i,h

ηiηhmi,h .(21)

This is a convenient simplification since we have now an r-dimensional problem which we
might be able to deal with in some computationally feasible way. We will use this procedure
with two different partitions in terms of how balanced or unbalanced the distributions are.
We take b+1 subsets with some symmetry which allows us to further reduce the complexity.

Partition based on maximum value. We first consider a partition of Pb in terms
of the largest probability value which appears in a distribution. We use a parameter ϵ ≤
1/(j + 1); all quantities will depend on ϵ but we do not write this to avoid cluttering the
notation. We define b sets of unbalanced distributions

qP i
b = {p ∈ Pb : pi > 1− ϵ}

for every 1 ≤ i ≤ b, and correspondingly a set of balanced distributions

qP0
b = {p ∈ Pb : pi ≤ 1− ϵ ∀i} .

Note that these are all disjoint sets since ϵ < 1/2 when j ≥ 2. Following the scheme
mentioned above, we can consider the values mi,h and ηi for this specific partition. However,
due to symmetry, the values mi,h can be reduced to only four cases, depending on whether
p and q are both balanced, one balanced and one unbalanced, or both unbalanced, either
on the same coordinate or on different coordinates.
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Assuming 1 ≤ i, h ≤ b with i ̸= h, the following quantities are then well defined and
independent of the specific values chosen for i and h

(22)

|M1 = sup
p,q∈ qP0

b

Ψj(p; q) |M2 = sup
p∈ qP0

b ,q∈ qPi
b

Ψj(p; q)

|M3 = sup
p,q∈ qPi

b

Ψj(p; q) |M4 = sup
p∈ qPi

b,q∈ qPh
b

Ψj(p; q)

These values can then be used in (21) in place of the values mi,h.
Partition based on the minimum value. We also consider a partition of Pb using

constraints from below. Again we use a parameter ϵ which will be then tuned. We assume
here ϵ < 1/b. Consider now the following disjoint sets of unbalanced distributions

P̂ i
b = {p ∈ Pb : pi < ϵ , ph ≥ pi ∀h , ph > pi ∀h < i}

for 1 ≤ i ≤ b, that is, distributions in P̂ i
b have a minimum component in the i-th coordinate,

which is smaller than ϵ, and strictly smaller than any of the preceding components (unless
of course i = 1). Correspondingly, define a set of balanced distributions as

P̂0
b = {p ∈ Pb : pi ≥ ϵ ∀i} .

The symmetry argument mentioned before also applies in this case and we can continue in
analogy replacing the mi,h of (21) with the following quantities

(23)

M̂1 = sup
p,q∈P̂0

b

Ψj(p; q) M̂2 = sup
p∈P̂0

b ,q∈P̂
i
b

Ψj(p; q)

M̂3 = sup
p,q∈P̂i

b

Ψj(p; q) M̂4 = sup
p∈P̂i

b,q∈P̂
h
b

Ψj(p; q)

where again 1 ≤ i, h ≤ b with i ̸= h.
Quadratic form. Applying the above scheme with the symmetric partitions we just

defined, we can now rewrite the upper bound of equation (21) in the form

∑
p,q

λpλqΨj(p; q) ≤ η20M1 + 2η0

b∑
i=1

ηiM2 +
b∑

i=1

η2iM3 + 2
∑
i<h

ηiηhM4 ,(24)

where either the M̂i’s or the |Mi’s can be used in place of the Mi’s.
Call M the maximum value achieved by the right hand side of (24) over all possible

probability distributions η = (η0, η1, . . . , ηb). We show that under assumptions that are
verified in our setting, the value of M can be determined explicitly.

Lemma 2.2.4. Let M1,M2,M3 and M4 be positive numbers such that M4 > M3 and, for
a probability distribution η = (η0, η1, . . . , ηb), define the function

f(η) = η20M1 + 2η0

b∑
i=1

ηiM2 +

b∑
i=1

η2iM3 + 2
∑
i<h

ηiηhM4 .

Then

(25) M = max
η

f(η)
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is attained at η1 = η2 = . . . = ηb and

η0 =


M2− 1

b
M3− b−1

b
M4

2M2−M1− 1
b
M3− b−1

b
M4

, if M2 > M1,M3,M4

0 or 1, otherwise
.

Proof. Since
∑b

i=1 ηi = (1− η0), f can be written as

η20M1 + 2(1− η0)η0M2 +
b∑

i=1

η2iM3 + 2
∑
i<h

ηiηhM4.

Note that

b∑
i=1

η2iM3 + 2
∑
i<h

ηiηhM4 =

b∑
i=1

η2i (M3 −M4) + (1− η0)
2M4.

Since M3 < M4 and
∑b

i=1 ηi = 1 − η0, this sum is maximized when η1 = η2 = . . . = ηb =
(1− η0)/b. Therefore we have to maximize the quantity

η20M1 + 2(1− η0)η0M2 +
1

b
(1− η0)

2(M3 −M4) + (1− η0)
2M4 ,

which is just a quadratic in η0 that achieves its maximum in [0, 1] at the point described in
the statement of the Lemma. □

We will describe in the next Subsection our procedure to determine, or upper bound the

values M̂i, |Mi. Using these bounds in equation (24) we thus obtain an upper bound on Mj

defined in (8). Applying Lemma 2.2.2 we obtain our main result.

Theorem 2.2.1. The bounds of Table 1 hold.

Remark 2.2.1. The bounds on R(7,7), R(8,8), R(9,8), R(10,9), R(11,10), R(12,10), R(13,11),

R(14,12) and R(15,13) are obtained using the partition based on { qP i
b}i=0,...,b. The bounds

on R(5,5), R(6,5) and R(6,6) are obtained using the partition based on the minimum value

{P̂ i
b}i=0,...,b.
All other cases, those underlined in Table 1, are obtained computing, as done in [42],

the global maximum of Ψk−2, which is attained for uniform distributions. Therefore, the
partitioning process in these particular cases cannot make any improvements.

Based on the result in [50], or its generalization given in equation (6) and on Theorem
2.2.1 for (b, k) = (6, 6), we are led to formulate the following conjecture.

Conjecture 2.2.1. For b ≥ k > 3,

R(b,k) ≤ min
2≤j≤k−2

(
1

log b
j−1

+
bj+1

bj+1 log b−j
k−j−1

)−1

.

Note that the conjectured expression can be seen as a modification of the Körner-Marton
bound in (5) which takes into account the effects of prefix-based partitions.
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2.2.4. Computation of the maximum of the quadratic form. In light of Lemma

2.2.4, the main problem for the computation of M is determining the |Mi’s and M̂i’s defined
in equations (22) and (23). This requires determining the maximum values taken by Ψj(p; q)

for p and q constrained to specific subsets qP i
b or P̂ i

b. Following a procedure similar to that of
[42], here we prove that, under certain conditions, the distributions p and q achieving those
maxima have many equal components. This, together with other simplifications that will
be presented later, allows us to greatly reduce the complexity in the search for the maxima
(see Remarks 2.2.2 and 2.2.3 below). For this purpose we first present three Lemmas, which
generalize Lemmas 3, 4 and 5 of [42].

Lemma 2.2.5 (Extension of Lemma 3 in [42]). Let ℓ be an integer in [2, b] and, for
i ∈ [1, ℓ], consider the nonempty intervals Ii = [ai, bi] and Ji = [ci, di]. Set Dp = I1 × I2 ×
· · · × Iℓ × pℓ+1 × · · · × pb and Dq = J1 × J2 × · · · × Jℓ × qℓ+1 × · · · × qb. Consider the set D
of pairs of probability vectors (p, q) such that p belongs to Dp and q belongs to Dq. Then if
(p; q) is a maximum point for Ψj in D then either pi = ph and qi = qh for any i, h ∈ [1, ℓ] or
there is a maximum for Ψj on the boundary of D (as projected on the first ℓ coordinates).

Note that, in particular, in the latter case, we have a maximum point (p; q) for Ψj with
at least one index i ∈ [1, ℓ] such that either pi ∈ {ai, bi} or qi ∈ {ci, di}.

Proof. Let us assume that P = (p; q) is a maximum point for Ψj in D and p1, p2,
. . . , pℓ or q1, q2, . . . , qℓ are not all equal. By symmetry, assume without loss of generality
that p1 ̸= p2. Now, if P is a maximum for Ψj not on the boundary D, then it is a maximum
also under the stronger constraints p1+p2 = c1, q1+q2 = c2 where c1 = p1+p1, c2 = q1+q2,
and pi = pi, qi = qi for i ∈ {3, 4, . . . , ℓ}. Then, let us consider the line L of points P (t) such
that

P (t) = P (0) + t

(
p1 − p2

2
,
−p1 + p2

2
, 0, . . . , 0;

q1 − q2
2

,
−q1 + q2

2
, 0, . . . , 0

)
,

where P (0) = (p1+p2
2 , p1+p2

2 , p3, . . . , pb;
q1+q2

2 , q1+q2
2 , q3, . . . , qb), so that P (1) = P̄ .

It is easy to see that Ψj(P (t)) is of degree 2 and, if P is not on the boundary of D,
then, t = 1 must be a stationary point for Ψj(P (t)). Moreover Ψj(P (t)) is an even function
because:

Ψj(P (−t)) = P (0)− t

(
p1 − p2

2
,
−p1 + p2

2
, 0, . . . , 0;

q1 − q2
2

,
−q1 + q2

2
, 0, . . . , 0

)
= P (0) + t

(
p2 − p1

2
,
−p2 + p1

2
, 0, . . . , 0;

q2 − q1
2

,
−q2 + q1

2
, 0, . . . , 0

)
= Ψj(P (t)).

This means that Ψj(P (t)) = αt2 + β for some α and β in R. Therefore t = 0 would be
another stationary point for Ψj(P (t)) but this is possible only if α = 0 that is Ψj(P (t)) is
a constant.

The thesis follows because, in this case, the maximum is also attained on the boundary
of D. □

With essentially the same proof we obtain

Lemma 2.2.6 (Extension of Lemma 4 in [42]). Let ℓ be an integer in [2, b] and, for i ∈
[1, ℓ], consider the nonempty intervals Ii = [ai, bi]. Set Dp = I1×I2×· · ·×Iℓ×pℓ+1×· · ·×pb
and Dq = q1 × q2 × · · · × qℓ × qℓ+1 × · · · × qb where qi = qh for any i, h ∈ [1, ℓ]. Consider
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the set D of pairs of probability vectors (p, q) such that p belongs to Dp and q belongs to Dq.
Then if (p; q) is a maximum point for Ψj in D then either pi = ph for any i ∈ [1, ℓ] or there
is a maximum for Ψj on the boundary of D.

Note that, in particular, in the latter case, we have a maximum point (p; q) for Ψj with
at least one index i ∈ [1, ℓ] such that pi ∈ {ai, bi}.

Now we present a Lemma that allows us to assume that the coordinates of p and q are
properly rearranged depending on their values.

Lemma 2.2.7 (Extension of Lemma 5 in [42]). If p1 ≤ p2, and q1 ≤ q2, then

(26) Ψj(p1, p2, p3, . . . , pb; q1, q2, q3, . . . , qb) ≤ Ψj(p1, p2, p3, . . . , pb; q2, q1, q3, . . . , qb).

Proof. Using the definition of Ψj in eq. (7), inequality (26) can be restated by only con-
sidering the terms in the summation which differ in the two sides, that is, those corresponding
to permutations σ such that 1 ∈ {σ(1), . . . , σ(j)}, σ(j + 1) = 2 and 2 ∈ {σ(1), . . . , σ(j)},
σ(j + 1) = 1. Hence inequality (26) becomes

(p1q2 + p2q1)
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + qσ(3) · · · qσ(j+1)

≤ (p1q1 + p2q2)
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + qσ(3) · · · qσ(j+1)

which can be restated as

(p2 − p1)(q2 − q1)
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + qσ(3) · · · qσ(j+1) ≥ 0

This is always true since p1 ≤ p2 and q1 ≤ q2. □

Using the above lemmas, we are able to isolate a relatively small set of possible config-

urations for the p and q which give the value |M1.

Proposition 2.2.1. |M1 is attained in one of the following points:

1) for (p; q) of the form

(

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2−2︷ ︸︸ ︷
β, . . . , β , γ, 1− ϵ;

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−2︷ ︸︸ ︷
η, . . . , η , 1− ϵ, ζ)

where α, δ > 0, β, η, γ, ζ ≥ 0 and

l2α+ (b− l1 − l2 − 2)β + γ + (1− ϵ) = 1 = l1δ + (b− l1 − l2 − 2)η + (1− ϵ) + ζ;

2) for (p; q) of the form

(

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
β, . . . , β , γ;

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
η, . . . , η , 1− ϵ)

where α, δ > 0, β, η, γ ≥ 0 and

l2α+ (b− l1 − l2 − 1)β + γ = 1 = l1δ + (b− l1 − l2 − 1)η + (1− ϵ);
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3) for (p; q) of the form

(

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
β, . . . , β;

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
η, . . . , η)

where α, δ > 0, β, η ≥ 0 and

l2α+ (b− l1 − l2)β = 1 = l1δ + (b− l1 − l2)η.

Proof. Remember that the value |M1 is the maximum of Ψj over pairs (p, q) with p

and q in qP0
b . Moreover, due to Lemma 2.2.7, we have that p and q do not have a value 1− ϵ

in the same coordinate. Similarly, again because of Lemma 2.2.7, either the zeros of p and
q are in different positions (i.e. if pi = 0 then qi ̸= 0) or for any i at least one between pi
and qi is zero.

According to the positions where values 1 − ϵ and zero can appear as coordinates of p

and q, we have that |M1 is attained in one of the following points:

1A) p and q have respectively l1 and l2 zeros in different positions, both have a coordi-
nate with value 1− ϵ and those are in different positions:

(

l1︷ ︸︸ ︷
0, . . . , 0, α1, . . . , αl2︸ ︷︷ ︸

l2

,

b−l1−l2−2︷ ︸︸ ︷
β1, . . . , βb−l1−l2−2, γ, 1−ϵ;

l1︷ ︸︸ ︷
δ1, . . . , δl1 , 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−2︷ ︸︸ ︷
η1, . . . , ηb−l1−l2−2, 1−ϵ, ζ);

1B) p and q have respectively l1 and l2 zeros in different positions, additional b−l1−l2−2
zeros in the same positions, both have a coordinate with value 1− ϵ and those are
in different positions:

(

l1︷ ︸︸ ︷
0, . . . , 0, α1, . . . , αl2︸ ︷︷ ︸

l2

,

b−l1−l2−2︷ ︸︸ ︷
0, . . . , 0 , 0, 1− ϵ;

l1︷ ︸︸ ︷
δ1, . . . , δl1 , 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−2︷ ︸︸ ︷
0, . . . , 0 , 1− ϵ, 0);

2A) p and q have respectively l1 and l2 zeros in different positions, p has no coordinate
of value 1− ϵ but q has:

(

l1︷ ︸︸ ︷
0, . . . , 0, α1, . . . , αl2︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
β1, . . . , βb−l1−l2−1, γ;

l1︷ ︸︸ ︷
δ1, . . . , δl1 , 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
η1, . . . , ηb−l1−l2−1, 1− ϵ);

2B) p and q have respectively l1 and l2 zeros in different positions, additional b−l1−l2−1
zeros in the same positions, p has no coordinate of value 1− ϵ but q has:

(

l1︷ ︸︸ ︷
0, . . . , 0, α1, . . . , αl2︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
0, . . . , 0 , 0;

l1︷ ︸︸ ︷
δ1, . . . , δl1 , 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
0, . . . , 0 , 1− ϵ);

3A) p and q have respectively l1 and l2 zeros in different positions and both have no
coordinates with value 1− ϵ:

(

l1︷ ︸︸ ︷
0, . . . , 0, α1, . . . , αl2︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
β1, . . . , βb−l1−l2 ;

l1︷ ︸︸ ︷
δ1, . . . , δl1 , 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
η1, . . . , ηb−l1−l2);
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3B) p and q have respectively l1 and l2 zeros in different positions, additional b− l1− l2
zeros in the same positions and neither has a coordiante of value 1− ϵ:

(

l1︷ ︸︸ ︷
0, . . . , 0, α1, . . . , αl2︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
0, . . . , 0;

l1︷ ︸︸ ︷
δ1, . . . , δl1 , 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
0, . . . , 0).

Moreover, in all those cases, the allowed domains for p and q satisfy either the hypothesis
of Lemma 2.2.5 or those of Lemma 2.2.6. This means that we can average the α’s (i.e.
we can assume that all the α’s are equal), the β’s, the δ’s, and the η’s. The thesis follows
allowing β and η to possibly be zero and noting that the case 1B becomes a subcase of 1A,
2B becomes a subcase of 2A and 3B becomes a subcase of 3A. □

Remark 2.2.2. As seen in Proposition 2.2.1, Lemmas 2.2.5, 2.2.6 and 2.2.7 reduce
the maxima candidates to a finite set of possible configurations. Still, the number of such
configurations increases with b, and the ensuing optimization problems depend on 4 free
variables in the case 1. The direct evaluation of the maxima of Ψj on those configurations
can in principle be performed by symbolic computation software, but the resources needed
are excessive. In the following lemmas, we provide additional simplifications to obtain the
exact evaluations of the maxima.

Due to the following lemma, we can assume that the number of zeros that appear in p
(resp. in q) is either b− 2 or at most b− j. Note that this simplification does not decrease
the number of free variables but it reduces the total number of cases.

Lemma 2.2.8 (Extension of Lemma 6 in [42]). Suppose that q1 ≤ q2 ≤ . . . ≤ qj−1. If all
the pi are less than or equal to 1− α where 0 ≤ α < 1, then

Ψj(p1, p2, . . . , pj−1, 0, . . . , 0; q1, q2, . . . , qb)

≤ Ψj(1− α, α, 0, . . . , 0; q1, q2, . . . , qb).(27)

Proof. Let 0 ≤ δ ≤ p2. We first prove that

(28) Ψj(p1, p2, . . . , pj−1, 0, . . . , 0; q1, q2, . . . , qb)

≤ Ψj(p1 + δ, p2 − δ, . . . , pj−1, 0, . . . , 0; q1, q2, . . . , qb).

Using the definition of Ψj in eq. (7), inequality (28) can be restated by only considering
the terms in the summation which differ in the two sides, that is, those corresponding to
permutations σ such that 1 ∈ {σ(1), . . . , σ(j)}, σ(j + 1) = 2 and 2 ∈ {σ(1), . . . , σ(j)},
σ(j + 1) = 1. This gives

(p1q2 + p2q1)
∑

σ∈Sym(3,...,b)

qσ(3) · · · qσ(j+1)

≤ ((p1 + δ)q2 + (p2 − δ)q1)
∑

σ∈Sym(3,...,b)

qσ(3) · · · qσ(j+1) .

Rearranging the terms we have

δ(q2 − q1)
∑

σ∈Sym(3,...,b)

qσ(3) · · · qσ(j+1) ≥ 0 .
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Therefore, inequality (28) is thus satisfied since q1 ≤ q2 and δ ≥ 0. Moreover, given h > i
and δ such that 0 ≤ δ ≤ ph, with the same argument we have

(29) Ψj(p1, . . . , pi, . . . , ph, . . . , pj−1, 0, . . . , 0; q1, q2, . . . , qb)

≤ Ψj(p1, . . . , pi + δ, . . . , ph − δ, . . . , pj−1, 0, . . . , 0; q1, q2, . . . , qb).

Using multiple times inequality (29) we get the following chain of inequalities

Ψj(p1, p2, . . . , pj−1, 0, . . . , 0; q1, q2, . . . , qb)

≤ Ψj(p1, α, p
′
3, . . . , p

′
j−1, 0, . . . , 0; q1, q2, . . . , qb)

≤ Ψj(1− α, α, 0, . . . , 0; q1, q2, . . . , qb) ,

where p′3 + . . .+ p′j−1 = 1− p1 − α and p′i ∈ [0, 1− α] for i = 3, . . . , j − 1. □

The following lemma takes care of the cases when there is at least one element greater
or equal to 1 − ϵ in p or q vector. If this element is p1, because of Lemma 2.2.7 we can
assume q1 is the minimum among the q-values if we are maximizing Ψj . For the evaluation

of |M1, this implies that q1 = 0 whenever p1 = 1− ϵ and vice-versa.

Lemma 2.2.9. Assume that ϵ ≤ 1
j+1 , p1 ≥ 1− ϵ and q1 ≤ q2 ≤ . . . ≤ qb. Then

(30) Ψj(p1, p2, . . . , pb; q1, q2, . . . , qb) ≤ Ψj(p1, p2, . . . , pb; 0, q1 + q2, q3, . . . , qb).

Proof. Using the definition of Ψj in eq. (7), inequality (30) can be restated by only con-
sidering the terms in the summation which differ in the two sides, that is, those corresponding
to permutations σ such that 1 ∈ {σ(1), . . . , σ(j)}, σ(j + 1) = 2 and 2 ∈ {σ(1), . . . , σ(j)},
σ(j + 1) = 1 and {1, 2} ⊆ {σ(1), . . . , σ(j)}. Hence inequality (30) becomes:

(p1q2 + p2q1)
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + qσ(3) · · · qσ(j+1)+

(j − 1)q2q1
∑

σ∈Sym(3,...,b)

qσ(3) · · · qσ(j)pσ(j+1)

≤ p1(q1 + q2)
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + qσ(3) · · · qσ(j+1).

That is

p2q1
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + qσ(3) · · · qσ(j+1)+

(j − 1)q2q1
∑

σ∈Sym(3,...,b)

qσ(3) · · · qσ(j)pσ(j+1)

≤ p1q1
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + qσ(3) · · · qσ(j+1).
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We have

p2q1
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + qσ(3) · · · qσ(j+1)+

(j − 1)q2q1
∑

σ∈Sym(3,...,b)

qσ(3) · · · qσ(j)pσ(j+1)

(i)

≤ q1ϵ
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + qσ(3) · · · qσ(j+1)+

(j − 1)q1ϵ
∑

σ∈Sym(3,...,b)

q2qσ(3) · · · qσ(j)

(ii)

≤ q1ϵ
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + jq1ϵ
∑

σ∈Sym(3,...,b)

qσ(3) · · · qσ(j+1)

(iii)

≤ (1− ϵ)q1
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + qσ(3) · · · qσ(j+1)

(iiii)

≤ p1q1
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + qσ(3) · · · qσ(j+1)

Inequality (i) holds because p2, p3, . . . , pb ≤ ϵ, inequality (ii) because q2 ≤ q3 ≤ . . . ≤ qb,
inequality (iii) due to the assumption ϵ ≤ 1

j+1 and inequality (iiii) since p1 ≥ 1− ϵ. □

Thanks to Lemmas 2.2.8 and 2.2.9, we obtain the following proposition.

Proposition 2.2.2. |M1 is attained in one of the following points:

1) for (p; q) of the form

(

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2−2︷ ︸︸ ︷
β, . . . , β , 0, 1− ϵ;

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−2︷ ︸︸ ︷
η, . . . , η , 1− ϵ, 0)

where α, β, δ, η ≥ 0 and

l2α+ (b− l1 − l2 − 2)β + (1− ϵ) = 1 = l1δ + (b− l1 − l2 − 2)η + (1− ϵ);

2) for (p; q) of the form

(

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
β, . . . , β , 0;

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
η, . . . , η , 1− ϵ)

where α, β, δ, η ≥ 0 and

l2α+ (b− l1 − l2 − 1)β = 1 = l1δ + (b− l1 − l2 − 1)η + (1− ϵ);

3) for (p; q) of the form

(

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
β, . . . , β;

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
η, . . . , η)

where α, β, δ, η ≥ 0 and

l2α+ (b− l1 − l2)β = 1 = l1δ + (b− l1 − l2)η.
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Moreover, we can assume that the number of zeros that appear in p and in q is either b− 2
or at most b− j.

Proof. We consider the finite list of cases provided by Proposition 2.2.1 and we relax
the domains of p and q allowing α and δ to be 0. Here, due to Lemma 2.2.9, a maximum
with exactly one element equal to 1−ϵ in p (resp. q) implies a zero in the same coordinate of
q (resp. p). Finally, because of Lemma 2.2.8, a maximum with b− j+1 or more coordinates
in p (resp. q) equal to zero is also attained in a point of the form p = (1 − ϵ, ϵ, 0, . . . , 0)
(q = (1− ϵ, ϵ, 0, . . . , 0)). □

Proposition 2.2.3. |M2 is upper bounded by the global maximum of Ψj which is attained
in a point (p; q) of the following form:

(

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
β, . . . , β;

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
η, . . . , η)

where α, β, δ, η ≥ 0 and

l2α+ (b− l1 − l2)β = 1 = l1δ + (b− l1 − l2)η.

Moreover, we can assume that the number of zeros that appear in p and in q is either b− 1
or at most b− j.

Proof. In order to find the global maximum of Ψj we need no restriction on the pairs

(p, q), i.e., p ∈ [0, 1]b and q ∈ [0, 1]b. Using Lemmas 2.2.5, 2.2.6, 2.2.7 and 2.2.8, we can
easily derived the desired points. □

Now, to provide a list of possible maxima also for the other |Mi and M̂i, we need also
the following additional lemma.

Lemma 2.2.10. Assume that ϵ < 1
2 , q1 ≥ 1− ϵ and 0 < δ ≤ ϵ, then

(31) Ψj(1− ϵ+ δ, p2, p3, . . . , pb; q1, q2, . . . , qb) < Ψj(1− ϵ, p2 + δ, p3, . . . , pb; q1, q2, . . . , qb).

Proof. Using the definition of Ψj in eq. (7), inequality (31) can be restated by only con-
sidering the terms in the summation which differ in the two sides, that is, those corresponding
to permutations σ such that 1 ∈ {σ(1), . . . , σ(j)}, σ(j + 1) = 2 and 2 ∈ {σ(1), . . . , σ(j)},
σ(j + 1) = 1 and {1, 2} ⊆ {σ(1), . . . , σ(j)}. Therefore we have that

((1− ϵ+ δ)q2 + q1p2)
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + qσ(3) · · · qσ(j+1)+

(j − 1)(1− ϵ+ δ)p2
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j)qσ(j+1)

< ((1− ϵ)q2 + q1(p2 + δ))
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + qσ(3) · · · qσ(j+1)+

(j − 1)(1− ϵ)(p2 + δ)
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j)qσ(j+1).
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That is

δ(q1 − q2)
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j+1) + qσ(3) · · · qσ(j+1)+

(j − 1)δ(1− ϵ− p2)
∑

σ∈Sym(3,...,b)

pσ(3) · · · pσ(j)qσ(j+1) > 0.

Which is satisfied because q2 < q1, p2 < 1− ϵ and δ > 0. □

Thanks to Lemma 2.2.10, we obtain the following proposition.

Proposition 2.2.4. |M3 is attained in a point (p; q) of the following form:

(1− ϵ,

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
β, . . . , β ; 1− ϵ,

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
η, . . . , η )

where α, β, δ, η ≥ 0 and

l2α+ (b− l1 − l2 − 1)β = ϵ = l1δ + (b− l1 − l2 − 1)η.

Moreover, we can assume that the number of zeros that appear in p and in q is either b− 2
or at most b− j.

Proof. In order to find the values |M3 we need to restrict the function Ψj to the pairs

(p, q) such that p and q belong to qP1
b (by symmetry we can fix an arbitrary coordinate).

Using Lemmas 2.2.5, 2.2.6, 2.2.7 and 2.2.8, we see that |M3 is attained in a point of the
following form:

(γ,

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
β, . . . , β ; ζ,

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
η, . . . , η )

where α, β, δ, η ≥ 0, γ, ζ ≥ 1− ϵ and

γ + l2α+ (b− l1 − l2 − 1)β = 1 = ζ + l1δ + (b− l1 − l2 − 1)η.

Finally, because of Lemma 2.2.10 a maximum with γ, ζ ≥ 1 − ϵ is also attained in a point
with γ = ζ = 1− ϵ. □

Proposition 2.2.5. |M4 is attained in one of the following points:

1) for (p; q) of the form

(γ, α, . . . , α, 0; 0, δ, . . . , δ, ζ)

where α, δ ≥ 0, γ, ζ ≥ 1− ϵ, and

γ + (b− 2)α = 1 = (b− 2)δ + ζ.

2) for (p; q) of the form

(γ,

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

b−l1−2

, 0; 0,

l1︷ ︸︸ ︷
δ, . . . , δ, η, . . . , η︸ ︷︷ ︸

b−l1−2

, ζ)

where α, δ, η ≥ 0, γ ≥ 1− ϵ, ζ ∈ {1− ϵ, 1}, and
(b− l1 − 2)α+ γ = 1 = l1δ + (b− l1 − 2)η + ζ.
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3) for (p; q) of the form

(γ,

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2−2︷ ︸︸ ︷
β, . . . , β , 0; 0,

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−2︷ ︸︸ ︷
η, . . . , η , ζ)

where α, β, δ, η ≥ 0, γ, ζ ∈ {1− ϵ, 1}, and
l2α+ (b− l1 − l2 − 2)β + γ = 1 = l1δ + (b− l1 − l2 − 2)η + ζ.

Moreover, we can assume that the number of zeros that appear in p and in q is either b− 1
or at most b− j.

Proof. In order to find the values |M4 we need to restrict the function Ψj to the pairs

(p; q) such that p belongs to qP1
b and q belongs to qPb

b (by symmetry we can choose, arbitrarily,
two different coordinates).

Using Lemmas 2.2.5, 2.2.6, 2.2.7, 2.2.8 and 2.2.9 we see that |M4 is attained in a point
of the following form:

(γ,

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2−2︷ ︸︸ ︷
β, . . . , β , 0; 0,

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−2︷ ︸︸ ︷
η, . . . , η , ζ)

where α, β, δ, η ≥ 0, γ, ζ ≥ 1− ϵ, and

l2α+ (b− l1 − l2 − 2)β + γ = 1 = l1δ + (b− l1 − l2 − 2)η + ζ.

Finally, we can split this case into three cases. The first one is for l1 = l2 = 0, the second
one for l1 > 0, l2 = 0 and the third one for l1, l2 > 0. By symmetry the case l1 = 0, l2 > 0 is
included in the second case. For the second case, by Lemma 2.2.6 it is easy to see that δ or

ζ must be on the boundary in order to be a valid point for |M4. The same argument can be
carried out for the third case which implies that γ, ζ ∈ {1− ϵ, 1}. □

Proposition 2.2.6. M̂1 is attained in a point (p; q) of the following form:

(

l1︷ ︸︸ ︷
ϵ, . . . , ϵ, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
β, . . . , β;

l1︷ ︸︸ ︷
δ, . . . , δ, ϵ, . . . , ϵ︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
η, . . . , η)

where α, β, δ, η ≥ ϵ and

l1ϵ+ α+ (b− l1 − l2)β = 1 = l2ϵ+ l1δ + (b− l1 − l2)η.

Proof. In order to find the values M̂1 we need to restrict the function Ψj to the pairs

(p, q) such that p and q belong to P̂0
b . Using Lemmas 2.2.5, 2.2.6 and 2.2.7 we obtain the

thesis. □

Proposition 2.2.7. M̂2 is attained in one of the following points:

1) for (p; q) of the form

(

l1︷ ︸︸ ︷
α, . . . , α, β, . . . , β︸ ︷︷ ︸

b−l1

;

l1︷ ︸︸ ︷
η, . . . , η, ϵ, . . . , ϵ︸ ︷︷ ︸

b−l1

)

where 0 ≤ α ≤ ϵ, β ≥ 0, η ≥ ϵ, and

l1α+ (b− l1)β = 1 = l1η + (b− l1)ϵ.
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2) for (p; q) of the form

(ϵ,

l1︷ ︸︸ ︷
α, . . . , α, β, . . . , β︸ ︷︷ ︸

b−l1−1

; ζ,

l1︷ ︸︸ ︷
η, . . . , η, ϵ, . . . , ϵ︸ ︷︷ ︸

b−l1−1

)

where α, β ≥ 0, ζ, η ≥ ϵ, and

ϵ+ l1α+ (b− l1 − 1)β = 1 = ζ + l1η + (b− l1 − 1)ϵ.

3) for (p; q) of the form

(

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
β, . . . , β;

l1︷ ︸︸ ︷
δ, . . . , δ, η, . . . , η︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
ϵ, . . . , ϵ)

where α, β ≥ 0, δ, η ≥ ϵ and

l2α+ (b− l1 − l2)β = 1 = l1δ + (b− l1 − l2)η.

Moreover, we can assume that the number of zeros that appear in p is either b− 1
or at most b− j.

Proof. In order to find the values M̂2 we need to restrict the function Ψj to the pairs

(p, q) such that p belongs to P̂1
b and q belongs to P̂0

b . In addition, we relax the domain of

p by removing the constraint on p1 to be a minimum coordinate., i.e., p ∈ [0, ϵ] × [0, 1]b−1.

However, this implies that p belongs to P̂ i
b for some i ∈ [1, b]. Therefore, by symmetry, we

are still considering valid candidates for M̂2 under this domain.

Using Lemmas 2.2.5, 2.2.6, 2.2.7 and 2.2.8, we see that M̂2 is attained in a point of the
following form:

(γ,

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

b−l1−l2−1

,

l2︷ ︸︸ ︷
β, . . . , β; ζ,

l1︷ ︸︸ ︷
δ, . . . , δ, η, . . . , η︸ ︷︷ ︸

b−l1−l2−1

,

l2︷ ︸︸ ︷
ϵ, . . . , ϵ)

where α, β ≥ 0, 0 ≤ γ ≤ ϵ, ζ, δ, η ≥ ϵ, and

γ + (b− l1 − l2 − 1)α+ l2β = 1 = ζ + l1δ + (b− l1 − l2 − 1)η + l2ϵ.

Finally, we can split this case into three cases. The first one is when l1 = 0 and the average
between γ and the α-components is less than or equal to ϵ, the second one for γ = ϵ and
l1 = 0 while the third one for γ = 0 and l1 ≥ 0. We have not considered the case γ = ϵ and
l1 > 0 since it is a subcase of the third one. □

Proposition 2.2.8. An upper bound on M̂3 is obtained by computing the maximum of
Ψj over points of the following form:

1) for (p; q) of the form

(β,

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
β, . . . , β ; η,

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
η, . . . , η )

where α, δ ≥ 0, 0 ≤ β, η ≤ ϵ and

l2α+ (b− l1 − l2)β = 1 = l1δ + (b− l1 − l2)η.
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2) for (p; q) of the form

(γ,

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
β, . . . , β ; 0,

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
η, . . . , η )

where α, β, δ, η ≥ 0, 0 ≤ γ ≤ ϵ and

γ + l2α+ (b− l1 − l2 − 1)β = 1 = l1δ + (b− l1 − l2 − 1)η.

3) for (p; q) of the form

(γ,

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
β, . . . , β ; ϵ,

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
η, . . . , η )

where α, β, δ, η ≥ 0, 0 ≤ γ ≤ ϵ and

γ + l2α+ (b− l1 − l2 − 1)β = 1 = ϵ+ l1δ + (b− l1 − l2 − 1)η.

Moreover, we can assume that the number of zeros that appear in p and in q is either b− 1
or at most b− j.

Proof. In order to find and upper on the values M̂3 we need to restrict the function

Ψj to the pairs (p, q) such that p and q belong to P̂1
b (by symmetry we can fix an arbitrary

coordinate). In addition, we relax the domains of p and q by removing the constraints on
p1 and q1 to be minimum components, i.e., p, q ∈ [0, ϵ]× [0, 1]b−1.

Using Lemmas 2.2.5, 2.2.6, 2.2.7 and 2.2.8, we see that under this extended domain an

upper bound on M̂3 is attained in a point of the following form:

(γ,

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
β, . . . , β ; ζ,

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2−1︷ ︸︸ ︷
η, . . . , η )

where α, β, δ, η ≥ 0, 0 ≤ γ, ζ ≤ ϵ and

γ + l2α+ (b− l1 − l2 − 1)β = 1 = ζ + l1δ + (b− l1 − l2 − 1)η.

Finally, we can split this case into three cases. The first one is when the averages between
γ and the β-components and between ζ and the η-components are less than or equal to ϵ,
the second one for 0 ≤ γ ≤ ϵ and ζ = 0, and the third one for 0 ≤ γ ≤ ϵ and ζ = ϵ. By
symmetry, the cases in which γ = 0 and 0 ≤ ζ ≤ ϵ or γ = ϵ and 0 ≤ ζ ≤ ϵ are included in
the second and third cases. □

Proposition 2.2.9. M̂4 is upper bounded by the global maximum of Ψj which is attained
in a point (p; q) of the following form:

(

l1︷ ︸︸ ︷
0, . . . , 0, α, . . . , α︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
β, . . . , β;

l1︷ ︸︸ ︷
δ, . . . , δ, 0, . . . , 0︸ ︷︷ ︸

l2

,

b−l1−l2︷ ︸︸ ︷
η, . . . , η)

where α, β, δ, η ≥ 0 and

l2α+ (b− l1 − l2)β = 1 = l1δ + (b− l1 − l2)η.

Moreover, we can assume that the number of zeros that appear in p and in q is either b− 1
or at most b− j.

Proof. Analogous to the proof of Proposition 2.2.3. □
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Remark 2.2.3. Each configuration that appears in the list of possible maxima in the
previous propositions leads to an optimization problem that depends on at most 3 free vari-
ables. Therefore, for given b and k, we can analytically determine, using Mathematica (see
[66] for the code used to derive the results in this section), those maxima.

The previous propositions allow us to determine a finite list of maxima candidates for

each |Mi and M̂i. We have analytically determined and inspected using Mathematica all
the possible maximum points. We have restricted our attention to (b, k)-cases for small b
and k in order to avoid excessive computational complexity. It is important to note that
for the (b, k)-cases that we have considered (see Propositions 2.2.10 and 2.2.11) the global

maximum of Ψj , for j = k − 2, satisfy the domains of |M2 and M̂4. Therefore for these

particular cases, we are not upper bounding the values of |M2 and M̂4 but, instead, we are
computing the exact values. Based on the results of computations, we choose the values of
j and ϵ for each (b, k)-case to improve the current best-known bounds on R(b,k). A more
careful choice of these parameters could lead to better bounds except for the case b = k = 6
(see Remark 2.2.5).

Proposition 2.2.10. For j = k − 2, for the values of ϵ shown, the |Mi’s are as shown
in the following table

(b, k) ϵ |M1
|M2

|M3
|M4

(7, 7) 9/100 0.085679 0.092593 0.000006 0.000107
(8, 8) 3/25 0.038453 0.042840 0.000002 0.000022
(9, 8) 1/10 0.075870 0.076905 0.000001 0.000015
(10, 9) 1/15 0.036289 0.037935 3.4 · 10−9 8.5 · 10−8

(11, 10) 1/11 0.016928 0.018144 1.4 · 10−9 2.7 · 10−8

(12, 10) 1/20 0.030945 0.031036 2.1 · 10−11 7.0 · 10−9

(13, 11) 1/25 0.015057 0.015473 7.8 · 10−14 3.5 · 10−12

(14, 12) 1/13 0.007176 0.007529 1.2 · 10−12 2.6 · 10−11

(15, 13) 1/12 0.003360 0.003588 1.1 · 10−13 2.3 · 10−12

|M1 is attained at (1b , . . . ,
1
b ;

1
b , . . . ,

1
b )

|M2 is attained at (1, 0, . . . , 0; 0, 1
b−1 , . . . ,

1
b−1)

|M3 is attained at (1− ϵ, ϵ
b−1 , . . . ,

ϵ
b−1 ; 1− ϵ, ϵ

b−1 , . . . ,
ϵ

b−1)

|M4 is attained at (1− ϵ, ϵ
b−2 , . . . ,

ϵ
b−2 , 0; 0,

ϵ
b−2 , . . . ,

ϵ
b−2 , 1− ϵ)

Proposition 2.2.11. For j = 3, (b, k) = (5, 5) and ϵ = 1
44(4 +

√
5), the M̂i’s are as

shown in the following table

M̂i Attained at point (p; q) Value ≈

M̂1 (ϵ, 1−ϵ
b−1 , . . . ,

1−ϵ
b−1 ; γ, δ, . . . , δ), δ ≈ 0.185275 0.384033

M̂2 (0, 1
b−1 , . . . ,

1
b−1 ; γ, δ, . . . , δ), δ = ϵ 0.389226

M̂3 (ϵ, 1−ϵ
b−2 , . . . ,

1−ϵ
b−2 , 0; ϵ, α, . . . , α, β), β ≈ 0.454183 0.374759

M̂4 (0, 1
b−1 , . . . ,

1
b−1 ; γ, δ, . . . , δ), δ = ϵ 0.389226

For j = 3, (b, k) = (6, 5) and ϵ = 1
10 , the M̂i’s are as shown in the following table
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M̂i Attained at point (p; q) Value ≈

M̂1 (ϵ, 1−ϵ
b−1 , . . . ,

1−ϵ
b−1 ; γ, δ, . . . , δ), δ ≈ 0.153159 0.555625

M̂2 (0, 1
b−1 , . . . ,

1
b−1 ; γ, δ, . . . , δ), δ ≈ 0.130217 0.558467

M̂3 (ϵ, 1−ϵ
b−2 , . . . ,

1−ϵ
b−2 , 0; ϵ, α, . . . , α, β), β ≈ 0.376930 0.535106

M̂4 (0, 1
b−1 , . . . ,

1
b−1 ; γ, δ, . . . , δ), δ ≈ 0.130217 0.558467

For j = 4, (b, k) = (6, 6) and ϵ = 1
20 , the M̂i’s are as shown in the following table

M̂i Attained at point (p; q) Value ≈

M̂1 (1b , . . . ,
1
b ;

1
b , . . . ,

1
b ) 0.185185

M̂2 (ϵ, 1−ϵ
b−1 , . . . ,

1−ϵ
b−1 ; γ, δ, . . . , δ), δ ≈ 0.147757 0.178857

M̂3 (ϵ, 0, 1−ϵ
b−2 , . . . ,

1−ϵ
b−2 ; 0, 1, 0, . . . , 0) 0.140664

M̂4 (1, 0, . . . , 0; 0, 1
b−1 , . . . ,

1
b−1) 0.192000

Remark 2.2.4. The values reported for M̂3 are not approximate values of the exact

values of M̂3 but upper bounds. We point out that the value M̂1 for b = k = 6 is only
attained for uniform distributions. This will be important for a qualitative analysis of our
bound on R(b,k) for different values of b and k, see Subsection 2.2.5.

As a consequence of Propositions 2.2.10, 2.2.11 and equation (24) we are able to evaluate

the values of M for both the partitions { qP i
b}i=0,...,b and {P̂ i

b}i=0,...,b. Then we state the
following theorem

Theorem 2.2.2. Using the partition { qP i
b}i=0,...,b we have

• for (b, k) = (7, 7) we have that M ≈ 0.0861594;
• for (b, k) = (8, 8) we have that M ≈ 0.0388599;
• for (b, k) = (9, 8) we have that M ≈ 0.0758830.
• for (b, k) = (10, 9) we have that M ≈ 0.0363565.
• for (b, k) = (11, 10) we have that M ≈ 0.0170049.
• for (b, k) = (12, 10) we have that M ≈ 0.0309448.
• for (b, k) = (13, 11) we have that M ≈ 0.0150674.
• for (b, k) = (14, 12) we have that M ≈ 0.0071917.
• for (b, k) = (15, 13) we have that M ≈ 0.0033733.

Using the partition {P̂ i
b}i=0,...,b we have

• for (b, k) = (5, 5) we have that M ≈ 0.3873676;
• for (b, k) = (6, 5) we have that M ≈ 0.5567010;
• for (b, k) = (6, 6) we have that M = 5

27 ≈ 0.185185.

Remark 2.2.5. For the underlined (b, k)-cases reported in Table 1, it is interesting to
note that the maximum in (10) is only achieved for uniform distributions. This means that,
for these particular cases, any new upper bounds that can be found on the quadratic form in
equation (17) cannot further improve those bounds. Note that, for (b, 4)-cases when b ≥ 4,
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the maximum of the quadratic form in (17) is only achieved for uniform distributions if we
suppose that the frequency of each symbol in all the coordinates of the code is less than or
equal to 1/2. For the special case b = k = 6, the values we obtained for the Mi constants
are such that the resulting η0 in the statement of Lemma 2.2.4 is equal to 1. That is, the
constant M is actually M1, which means that in our bound the worst-case scenario is given
by the balanced subcodes. The resulting value M1 = 5/27 is actually the value attained
by Ψj(p, q) for uniform p and q. Roughly speaking, this should be interpreted as saying
that our procedure is unable to give for R(6,6) a bound smaller than 5/59 because such a rate
might in principle be achieved if all subcodes have a uniform distribution on each coordinate.
However, for such globally balanced codes, one can use a different argument based on the
minimum distance of the code to get even stronger upper bounds on R(b,k). In the next
subsection, we combine the two procedures to deduce a rigorous proof that indeed the bounds
shown in Table 1 are not sharp for different values of b and k.

2.2.5. A qualitative analysis on R(b,k). In this subsection we show that, at least for
the underlined (b, k)-cases in Table 1 and for case (b, k) = (6, 6), the bound in equation (9),
for j = k − 2 with Mk−2 = Ψk−2(1/b, . . . , 1/b; 1/b, . . . , 1/b), is not sharp. We also show
that, the bound given in equation (6) is not sharp for every (b, 4)-cases with b ≥ 5 and j = 2.
In this discussion, we use continuity arguments whose quantitative analysis would require
long and complicated computations. For this reason, we do not provide explicit numerical
improvements on R(b,k) and only show that the bounds on R(b,k) can be improved.

To prove our statement, we invoke an upper bound from [1] on the minimum hamming
distance dH(C) of a b-ary code C with a given rate R. It suffices here to mention that,
set δ := dH(C)/n, this bound is of the form δ ≤ F (R) for a suitable decreasing continuous
function F . Due to the monotonicity of F there exists a maximum value of R for which the

inequality R ≤ (b−2)!
(b−k+1)!bk−3F (R) is satisfied.

Using Mathematica on the specific bound in [1], one finds that

R ≤ (b− 2)k−3

bk−3
F (R) =⇒ R < U(b,k)

where (b − 2)k−3 = (b − 2) · · · (b − k + 2) and U(b,k) takes the values shown in Table 4 for
some (b, k) pairs. Note that most of these pairs are actually those underlined in Table 1.

Table 4. U(b,k) values

U(6,6) = 0.08469 U(7,6) = 0.13440 U(8,6) = 0.18125 U(9,6) = 0.22405

U(10,6) = 0.26268 U(11,6) = 0.29744 U(12,6) = 0.32874 U(13,6) = 0.35699

U(14,6) = 0.38258 U(8,7) = 0.07200 U(9,7) = 0.10510 U(10,7) = 0.13822

U(11,7) = 0.17025 U(12,7) = 0.20068 U(13,7) = 0.22930 U(14,7) = 0.25609

U(10,8) = 0.05749 U(11,8) = 0.08043 U(12,8) = 0.10419 U(13,8) = 0.12808

U(14,8) = 0.15163 U(11,9) = 0.03006 U(12,9) = 0.04465 U(13,9) = 0.06081

U(14,9) = 0.07799 U(13,10) = 0.02386 U(14,10) = 0.03412 U(14,11) = 0.01236
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Because of the continuity of F , this implies that there exist ϵ1 > 0 and ϵ2 > 0 such that

R ≤
(
(b− 2)k−3

bk−3
+ ϵ1

)
F (R) + ϵ2 =⇒ R < U(b,k) + 10−5

We note that, if p1 = p2 = · · · = pb = 1/b, given i ̸= h ∈ [1, b] and chosen at random
x1, . . . , xk−4, z ∈ [1, b] according to the distribution p, the probability that i, h, x1, . . . , xk−4,
z are all different is (b− 2)k−3/bk−3. Therefore, by continuity, there exists ϵ3 > 0 such that
given i ̸= h ∈ [1, b] and chosen at random x1, . . . , xk−4, z ∈ [1, b] according to the distribution
p′ where p′1, p

′
2, . . . , p

′
b ∈ [1/b − ϵ3, 1/b + ϵ3], the probability that i, h, x1, . . . , xk−4, z are all

different is less than (b− 2)k−3/bk−3 + ϵ1. Now we divide the coordinates i ∈ [1, n] into two
sets according to whether the distribution fi has all its values in [1/b− ϵ3, 1/b+ ϵ3] or not.
More precisely, we define:

Uϵ3 := {i ∈ [1, n] : fi,h ∈ [1/b− ϵ3, 1/b+ ϵ3], ∀h ∈ [1, b]}.
We can assume, up to reordering the coordinates, that Uϵ3 = [1, t] for some value t. Here
we divide the discussion into two cases, according to the size of t, and we show that in both
cases a better bound on R(b,k) can be obtained.

A) Let us assume that t < n(1− ϵ2). As a consequence of Hansel’s Lemma, we have the
following

log(|C|) ≤ (1 + o(1))
1

2

∑
i∈[ℓ+1,n]

∑
ω,µ∈Ω

λωλµΨk−2(fi|ω, fi|µ)

≤ (1 + o(1))
1

2

 ∑
i∈[ℓ+1,t]

M +
∑

i∈[t+1,n]

∑
ω,µ∈Ω

λωλµΨk−2(fi|ω, fi|µ)


where M is the upperbound of equation (24) given in Theorem 2.2.2. Due to the following
lemma, we are able to provide a better upper bound to the second term of the sum.

Lemma 2.2.11. Assume that fi,h ̸∈ [1/b − ϵ3, 1/b + ϵ3] for some h ∈ [1, b]. Then there
exists M ′ < M such that: ∑

ω,µ∈Ω
λωλµΨk−2(fi|ω, fi|µ) ≤M ′.

Proof. Consider first for simplicity the case when fi,h < 1/b − ϵ3. Let Ω′ ⊆ Ω be the
subset of the ω for which fi,h|ω ≥ 1/b− ϵ3/2. Then, since

fi,h =
∑
ω∈Ω

λωfi,h|ω ≥
∑
ω∈Ω′

λωfi,h|ω ≥ (1/b− ϵ3/2)
∑
ω∈Ω′

λω ,

we deduce that ∑
ω∈Ω′

λω ≤
1/b− ϵ3

1/b− ϵ3/2
.

From Remarks 2.2.1, 2.2.4 and 2.2.5, we know that the maximum of the quadratic form in
(17) is only achieved for uniform distributions. This means that M = Ψk−2(1/b, . . . , 1/b;
1/b, . . . , 1/b) for the (b, k)-cases under consideration. Therefore there is some constant
Mϵ3 < M such that if either fi,h|ω or fi,h|µ are not Ω′, then Ψk−2(fi|ω, fi|µ) ≤ Mϵ3 . This
implies ∑

ω,µ∈Ω
λωλµΨk−2(fi|ω, fi|µ) ≤

(
1/b− ϵ3

1/b− ϵ3/2

)2

M +

(
1−

(
1/b− ϵ3

1/b− ϵ3/2

)2
)
Mϵ3
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and hence the statement of the lemma for the case fi,h < 1/b− ϵ3. A similar proof holds for
fi,h > 1/b+ ϵ3. □

In the case ℓ ≥ t, we immediately obtain that log(|C|) ≤ (n − ℓ)M
′

2 which leads to the

upperbound R < M ′

2+M ′ that is better than the one shown in Table 1. So we can assume
ℓ < t and therefore:

log(|C|) ≤ (t− ℓ)
M

2
+ (n− t)

M ′

2
≤ (n− nϵ2 − ℓ)

M

2
+ nϵ2

M ′

2
.

Since ℓ =
⌊
nR−2 logn
log(2+ϵ̄)

⌋
= ⌊nR− 2 log n⌋ (1 + o(1)), dividing by n we get:

R ≤ 1

2

[
M(1− ϵ2 −R+ 2 logn

n )

1−R+ 2 logn
n

+
M ′ϵ2

1−R+ 2 logn
n

]
(1−R+ 2

log n

n
)(1 + o(1)).

Set M ′′ = M(1−ϵ2−R)
1−R + M ′ϵ2

1−R we have that M ′′ < M and, taking n→∞, we obtain:

R ≤ M ′′

2
(1−R)(1 + o(1)).

It means that R < M ′′

2+M ′′ and since M ′′ < M , it follows that the bound is not sharp under
the assumption of the case A.

B) Let us assume that t ≥ n(1−ϵ2). Let us fix two words u, u′ ∈ C at minimum hamming
distance and let us choose at random x, y. Because of Hansel Lemma we have that:

log(|C|) ≤
n∑

i=1

E[τ(Gu,u′,x1,...,xk−4

i )].

We recall that 0 ≤ τ(G
u,u′,x1,...,xk−4

i ) ≤ 1 and, if ui ̸= u′i, τ(G
u,u′,x1,...,xk−4

i ) is the proba-
bility that given z ̸∈ {u, u′, x1, . . . , xk−4} we have that ui, u

′
i, x1i, x(k−4)i, zi are all different.

Since we have chosen at random also x1, . . . , xk−4, E[τ(G
u,u′,x1,...,xk−4

i )] coincides with the
probability that given x1, . . . , xk−4, z ̸∈ {u, u′} we have that ui, u

′
i, x1i, x(k−4)i, zi are all dif-

ferent. Therefore E[τ(Gu,u′,x1,...,xk−4

i )] ≤ (b− 2)k−3/bk−3 + ϵ1 for any i ∈ [1, t] when ui ̸= u′i,
otherwise if ui = u′i then the expected value is 0. This means that

log(|C|) ≤
(
(b− 2)k−3

bk−3
+ ϵ1

) t∑
i=1

1ui ̸=u′
i
+

n∑
i=t+1

1

≤
(
(b− 2)k−3

bk−3
+ ϵ1

) n∑
i=1

1ui ̸=u′
i
+

n∑
i=n(1−ϵ2)

1

and hence

log(|C|) ≤
(
(b− 2)k−3

bk−3
+ ϵ1

)
dH(u, u′) + nϵ2.

Dividing by n and remembering that u, u′ are at minimal hamming distance, we obtain that:

R ≤
(
(b− 2)k−3

bk−3
+ ϵ1

)
δ + ϵ2 ≤

(
(b− 2)k−3

bk−3
+ ϵ1

)
F (R) + ϵ2.

But, because of the definition of ϵ1 and ϵ2, this implies that R < U(b,k) + 10−5. It can be

easily checked that the bound in Theorem 2.2.3 is strictly greater than U(b,k) + 10−5 for
every (b, k)-cases under consideration and therefore:
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Theorem 2.2.3.

R(b,k) <

(
1

log b
k−3

+
bk−1

bk−1 log(b− k + 2)

)−1

for the (b, k)-cases shown in Table 4.

For cases (b, 4) when b ≥ 4 we know thanks to [12] that the maximum of (16), under
the constraint that fi,a ≤ 1

2 for every i = 1, . . . , n and every a = 1, . . . , b, is only achieved
for uniform distributions. Therefore we can use the Plotkin bound instead of the Aaltonen
bound in order to prove that bound (6) is not sharp when k = 4 and b ≥ 5.

Let C be a (b, 4)-hash code with rate R and suppose that the frequency of the symbols
in all the coordinates of C is uniform. Then by Hansel we get

(32) R ≤ b− 2

b
· δ,

where δ = dH(C)/n. The Plotkin bound for q-ary codes with δ ≤ (b− 1)/b is the following

(33) R ≤ log b

(
1− δ · b

b− 1

)
.

Since equation (32) is increasing in δ while (33) is decreasing then we can combine the two
bounds to get

(34) R ≤ b(b− 1) log b

(b− 1)(b− 2) + b2 log(b)
.

It is easy to see that the bound given in (6) for k = 4 is always strictly greater than (34) for
every b > 4. Then, by a continuity argument (as done previously) one can show that bound
(6) for k = 4 is not sharp for every b ≥ 5. Therefore we have the following theorem.

Theorem 2.2.4. For every integer b > 4

R(b,4) <

(
1

log b
+

b2

(b2 − 3b+ 2) log(b− 2)

)−1

.

2.3. A new upper bound on trifferent codes

2.3.1. Preliminaries. Let us recall the definition of k-hash codes from Section 2.1.
Let k ≥ 3 and n ≥ 1 be integers, and let C be a subset of {0, 1, . . . , k − 1}n with the
property that for any k distinct elements there exists a coordinate in which they all differ.
A subset C with this property is called perfect k-hash code with length n (perfect 3-hash
codes are called trifferent codes). The problem of finding upper bounds for the maximum
size of perfect k-hash codes is a fundamental problem in theoretical computer science. An
elementary double counting argument, as shown in [88], gives the following bound on the
cardinality of k-hash codes:

(35) |C| ≤ (k − 1) ·
(

k

k − 1

)n

for every k ≥ 3 .

In 1984 Fredman and Komlós [100] improved the bound in (35) for every k ≥ 4 and
sufficiently large n, obtaining the following result:

(36) |C| ≤
(
2k!/k

k−1
)n

.
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Additional refinements of this bound have been progressively achieved over the years.
See for example [16, 15, 50] for the case k = 4, [42] for the cases k = 5, 6, and [88, 80, 67,
68] for k ≥ 5. For the sake of completeness, we mention that some improvements on the
asymptotic probabilistic lower bounds on the maximum size of perfect k-hash codes have
been recently obtained in [119] for both small values of k and k sufficiently large.

In contrast, no recent progress has been made to improve the simple bound given in (35)
for k = 3. This bound has not been outperformed by any algebraic technique, including
the recent slice-rank method by Tao [115]. Indeed, Costa and Dalai showed in [41] that the
slice-rank method cannot be applied in a simple way in order to improve the bound in (35).
It is worth to mention that an improvement has been recently obtained in [102], however
the authors restrict the codes to be linear, i.e., C ⊂ Fn

3 and C is a subspace of Fn
3 .

As a consequence, particular attention is given to the case k = 3. Defining T (n) as the
maximum cardinality of trifferent codes with length n, it is easy to verify that T (1) = 3,
T (2) = 4 and T (3) = 6. In addition, the authors in [88] showed that the so called tetra-code
is a trifferent code with length 4 and cardinality 9: this result leads to T (4) = 9. To the
best of our knowledge, T (n) is currently unknown for n ≥ 5. In this section, we show that
T (5) = 10 and T (6) = 13 and we use these results to refine the current best known upper
bound on the cardinality of trifferent codes with length n ≥ 5 (Subsection 2.3.2). The exact
value is achieved by implementing an optimized algorithm in GAP which exhibits the non-
existence of trifferent codes with lengths 5 and 6 and cardinalities 11 and 14, respectively
(the algorithm description is given in Subsection 2.3.3). This section is structured as follows.
In Subsection 2.3.2, we provide an improved upper bound on the cardinality of trifferent
codes, achieved thanks to a computer testing that shows non-existence of trifferent codes
with lengths 5, 6 and cardinalities 11, 13, respectively. In Subsection 2.3.3, the description
of the algorithm used to prove the non-existence is reported.

2.3.2. Improved upper bound. The simple recursion used to obtain the bound in
(35) for k = 3 is:

(37) T (n) ≤
⌊
3

2
· T (n− 1)

⌋
,

for every n ≥ 2, with T (1) = 3. Since T (4) = 9, then 10 ≤ T (5) ≤
⌊
3
2 · 9

⌋
= 13. The

upper bound is obtained using (37), while the lower bound comes easily from the fact that
T (n) ≥ T (n− 1)+ 1, for every n ≥ 2. Indeed, when a construction of a trifferent code with
length n − 1 is known, then it is always possible to trivially add an element of {0, 1, 2}n
preserving the trifference property. In Example 2.3.1 we give a construction of a trifferent
code with length 5 and cardinality 10 that is built using the tetra-code, see [88] for the
definition. The 10 elements of {0, 1, 2}5 are represented in columns. For n = 6, we have
that 13 ≤ T (6) ≤ 19. A trifferent code with length 6 and cardinality 13 is given in Example
2.3.2.

Example 2.3.1 (T (5) ≥ 10).

0 0 0 0 1 1 1 2 2 2
0 0 1 2 0 1 2 0 1 2
0 0 1 2 2 0 1 1 2 0
0 0 1 2 1 2 0 2 0 1
0 1 2 2 2 2 2 2 2 2
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Example 2.3.2 (T (6) ≥ 13).

0 0 2 2 2 2 2 0 1 1 1 1 1
0 1 0 2 2 1 2 2 0 1 1 2 1
0 1 1 0 2 2 1 2 2 0 1 1 2
0 1 1 1 0 2 2 2 2 2 0 1 1
0 1 2 1 1 0 2 2 1 2 2 0 1
0 1 1 2 1 1 0 2 2 1 2 2 0

We have designed an algorithm for searching trifferent codes with lengths 5 and 6 and
cardinalities 11 and 14, respectively (see Section 2.3.3 for the description of the algorithm).
The search ended without returning any trifferent codes, thus proving that T (5) ≤ 10 and
T (6) ≤ 13. Hence, the following theorem holds:

Theorem 2.3.1. T (5) = 10 and T (6) = 13.

This result allows us to focus on the current best known bounds on the maximum cardi-
nality of trifferent codes, which can be expressed as T (n) ≤ c · (3/2)n, where c is a constant

and n is sufficiently large. Since finding a better upper bound on the lim supn→∞
n
√
T (n)

is a very hard task, it becomes interesting to improve the constant c. The bound shown
in (35) gives us c = 2, but a better constant can be obtained using (37) and the fact that
T (4) = 9, that is c = 9/(3/2)4 ≈ 1.78. We are able to improve this constant using Theorem
2.3.1 and (37). These statements directly imply:

Corollary 2.3.1.

T (n) ≤ 10

(3/2)5
·
(
3

2

)n

≈ 1.32 ·
(
3

2

)n

for every n ≥ 5,

T (n) ≤ 13

(3/2)6
·
(
3

2

)n

≈ 1.15 ·
(
3

2

)n

for every n ≥ 6.

Since the floor function is involved in the recursive formula (37), we can improve the
constant c by iterating (37) m times starting from a fixed n0 and a known upper bound on
T (n0). This results in the following theorem.

Theorem 2.3.2. T (n) ≤ 1.09 ·
(
3
2

)n
for every n ≥ 12.

Proof. Fix an integer n0 ≥ 1 and consider the following recursive formula that describes
a sequence of achievable constants for T (n) ≤ l(m) · (3/2)n when n ≥ n0 +m:

(38) l(m) =

⌊
l(m− 1) ·

(
3

2

)n0+m
⌋
·
(
3

2

)−n0−m

for m ≥ 1,

where l(0) = T (n0) · (3/2)−n0 . Taking n0 = 6 and m = 6, we obtain the thesis. □

Since the sequence l(m) is non-increasing, we are interested in the limm→∞ l(m). Com-
puting that limit is not trivial, so we use the following recursive relation to obtain a lower
bound:

d(m) = d(m− 1)− 1

2
·
(
3

2

)−n0−m

for m ≥ 1,
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where d(0) = T (n0) · (3/2)−n0 . It is easy to see that l(m) ≥ d(m) for every m ≥ 0. Then
we have:

lim
m→∞

d(m) = lim
m→∞

(
T (n0)−

1

2
·

m∑
i=1

(
2

3

)i
)
·
(
3

2

)−n0

= (T (n0)− 1) ·
(
3

2

)−n0

.(39)

Remark 2.3.1. Since T (4) = 9, if we fix n0 = 4 then we can substitute them into (39)
to get that limm→∞ l(m) ≥ limm→∞ d(m) = 8 · (3/2)−4 ≈ 1.59. This lower bound is, in any
case, greater than the constant that we have found in Corollary 2.3.1.

2.3.3. An optimized search algorithm. Computing a brute-force search for finding
a trifferent code with length n and cardinality M would require to test

(
3n

M

)
subsets, and

for each of them compare
(
M
3

)
triplets: overall, for (n,M) = (5, 11) one would test ≈ 1020

triplets while for (n,M) = (6, 14) one would test approximately 1030 triplets. These numbers
are prohibitively large.

Our algorithm dramatically reduces the number of operations, without missing any
potential trifferent code. First, we list the elements of Cn = {0, 1, 2}n in lexicographic
order and fix (i1, i2, . . . , iM ) as the indices representing the M elements to test, requiring
that i1 < i2 < . . . < iM . Then, let Cmn be the code containing the elements associated
to the first m indices. Starting from m = 3, we check if Cmn is trifferent: based on the
output, the variable m and the indices are updated accordingly to the pseudocode reported
in Algorithm 1.

Algorithm 1 Check if T (n) ≥M .

Require: (c(1), . . . , c(3n)) = {0, 1, 2}n ordered lexicographically,
(i1, . . . , iM )← (1, . . . ,M), m← 3
repeat

if {c(i1), . . . , c(im)} is trifferent or m < 3 then
if m = M then return True end if
m← m+ 1

else
m′ ← min{m′′ : im′′ ≥ 3n −M +m′′}
if m′ exists then

m← m′ − 1, im ← im + 1
it+1 ← it + 1, for every m ≤ t ≤M − 1

else
it ← it + 1, for every m ≤ t ≤M

end if
end if

until i1 ≥ 2
return False

At each update, Cmn is tested: however, only the triplets containing the im-th element
have to be examined, since all the other triplets have been already verified by construction.
This is the first key point of our algorithm.

In addition, we are able to force some restrictions on the set of the indices. Let us first
give the following definition.
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Definition 2.3.1. Two codes C,D ⊆ Fn
3 are called equivalent if D can be obtained

from C by subsequently applying permutations to the coordinate positions and to the symbols
{0, 1, 2} in each coordinate.

Given a trifferent code, by symmetry we can find an equivalent code containing the
zero vector and a vector of the form (0, . . . , 0, 1, . . . , 1), and not containing nonzero words
lexicographically smaller than this vector. To see this, take a nonzero vector in the code
that consists of the maximum number of zeros. Now take any column where this vector has
a 2, and permute the ones and twos in these columns. Clearly, this new vector is of the
form (0, . . . , 0, 1, . . . , 1) and the new equivalent code does not contain any nonzero vector
that is lexicographically smaller than this new one. As a consequence, our algorithm stops
the search of trifferent codes immediately when i1 = 2, and limits the set of values that the

second index can assume, namely, i2 ∈ {3
i+1
2 : i = 1, . . . , n}. Furthermore, suppose there

exists a trifferent code C with length n and cardinality M . Let s0, s1, s2 be the number of
elements in C with symbols 0, 1 and 2, respectively, at the first coordinate. It is easy to see
that si + sj ≤ T (n − 1) for i ̸= j, so s0, s1, s2 ≥ M − T (n − 1). It means that we should
have for each symbol 0, 1 and 2 at least M −T (n−1) elements in C with that symbol in the
first coordinate. As a consequence, recalling that we list the elements of Cn in lexicographic
order, we can force iM−T (n−1) ≤ 3n−1 (first coordinate equal to 0), i2(M−T (n−1)) ≤ 2 · 3n−1

(first coordinate equal to 1), i2T (n−1)−M+1 > 3n−1 (first coordinate equal to 1) and finally

iT (n−1)+1 > 2 ·3n−1 (first coordinate equal to 2). For the sake of readability, the pseudocode
reported in Algorithm 1 does not include the restrictions on the set of the indices. However,
the code associated to the final version of the algorithm can be found in the Appendix of
this section.

We have executed our program for (n,M) = (5, 11) and (n,M) = (6, 14), and no triffer-
ent code has been found. The total number of tested triplets is ≈ 107 for (n,M) = (5, 11)
and ≈ 1011 for (n,M) = (6, 14), thus saving a factor of ≈ 1013 and ≈ 1019, respectively,
compared to the full brute-force strategy.

As a side note: inspired by a semidefinite programming upper bound for cap sets [75],
we could alternatively obtain the upper bound T (5) ≤ 10 using the method from [91], in
which all extra constraints from Eq. (3) of [91] were included to obtain the bound.

Remark 2.3.2. For (n,M) = (6, 13), the search returned a set S of 1046 trifferent codes
up to symmetry choices explained above. For any code in S, we generated all equivalent codes
and deleted the ones contained in S from S. We had to repeat this 3 times until the set was
empty. So there are 3 distinct trifferent (n,M)=(6,13)-codes up to equivalence. These are:

0 0 2 2 2 2 2 0 1 1 1 1 1
0 1 0 2 2 2 1 2 0 1 1 1 2
0 1 1 0 2 1 2 2 2 0 1 2 1
0 1 1 1 0 2 2 2 2 2 0 1 1
0 1 1 2 1 0 2 2 2 1 2 0 1
0 1 2 1 1 1 0 2 1 2 2 2 0

,

0 0 2 2 2 2 2 0 1 1 1 1 1
0 1 0 2 2 1 2 2 0 1 1 2 1
0 1 1 0 2 2 1 2 2 0 1 1 2
0 1 1 1 0 2 2 2 2 2 0 1 1
0 1 2 1 1 0 2 2 1 2 2 0 1
0 1 1 2 1 1 0 2 2 1 2 2 0

,

0 0 2 2 2 2 2 0 1 1 1 1 1
0 1 0 2 2 1 2 2 0 1 1 2 1
0 1 1 0 2 2 2 2 2 0 1 1 1
0 1 1 1 0 2 1 2 2 2 0 1 2
0 1 2 1 1 0 2 2 1 2 2 0 1
0 1 1 1 2 1 0 2 2 2 1 2 0

.

For each of these codes, in each coordinate position two symbols occur 5 times and one
symbol occurs 3 times.

Appendix

We report here the full GAP code used to provide the results shown in the previous
section.



APPENDIX 39

n := 6; k := 3; M := 14;

possibleDensities := [];

if n = 6 then

if M = 14 then

possibleDensities := [[6,4,4], [5,5,4]];

elif M = 13 then

possibleDensities := [[7,3,3], [6,4,3], [5,5,3], [5,4,4]];

fi;

elif n = 5 then

if M = 10 then

possibleDensities := [[8,1,1], [7,2,1], [6,3,1], [6,2,2],

[5,4,1], [5,3,2], [4,4,2], [4,3,3]];

elif M = 11 then

possibleDensities := [[7,2,2], [6,3,2], [5,4,2], [5,3,3], [4,4,3]];

fi;

elif n = 4 then

if M = 9 then

possibleDensities := [[3,3,3]];

fi;

fi;

symbols := [0..(k-1)];

C:= Tuples(symbols, n);

size := Size(C);

for density in possibleDensities do

init := [1..density[1]];

Append(init, [(3^(n-1)+1)..(3^(n-1)+density[2])]);

Append(init, [(2*3^(n-1)+1)..(2*3^(n-1)+density[3])]);

finish := [];

Append(finish, [(3^(n-1)-density[1]+2)..(3^(n-1)+1)]);

Append(finish, [(2*3^(n-1)-density[2]+2)..(2*3^(n-1)+1)]);

Append(finish, [(size-density[3]+1)..size]);

consi2 := 1; m := k;

repeat

trifferentSubCode := true;

for comb in Combinations(init{[1..(m-1)]}, k-1) do

trifferent := false;

Append(comb, [init[m]]);

for j in [1..n] do

findSymbs := [];

for i in [1..k] do

Append(findSymbs, [Int(C[comb[i]][j])]);

od;

if IsEqualSet(findSymbs, symbols) = true then

trifferent := true;

break;

fi;

od;

trifferentSubCode := trifferentSubCode and trifferent;

if trifferentSubCode = false then

break;
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fi;

od;

if trifferentSubCode = true and m >= M then

break;

elif trifferentSubCode = true then

m := m + 1;

else

exceed := false;

for i in [1..M] do

if init[i] >= finish[i] then

if i-1 = 2 then

consi2 := consi2 * 3;

init[2] := init[2] + consi2;

else

init[i-1] := init[i-1] + 1;

fi;

# Here we reset the indexes

m := i-1;

for j in [i..M] do

init[j] := init[j-1] + 1;

for l in [1..density[2]] do

if init[density[1]+l] < 3^(n-1)+l then

init[density[1]+l] := 3^(n-1)+l;

fi;

od;

for l in [1..density[3]] do

if init[M-density[3]+l] < 2*3^(n-1)+l then

init[M-density[3]+l] := 2*3^(n-1)+l;

fi;

od;

od;

exceed := true;

break;

fi;

od;

if exceed = false then

init[m] := init[m] + 1;

for i in [(m+1)..M] do

if init[i] = init[i-1] then

init[i] := init[i] + 1;

fi;

od;

fi;

fi;

until init[1] >= 2;

od;



CHAPTER 3

Codes for multimedia fingerprinting

In this chapter, the results presented in Section 3.2 are obtained in collaboration with
Marco Dalai while the results presented in Section 3.3 originate from a work developed at
the University of Salerno and are obtained in collaboration with Marco Dalai, Adele A.
Rescigno and Ugo Vaccaro.

3.1. Introduction

Separable codes and B2 codes are combinatorial structures which are used for traitor
tracing in broadcast encryption and collusion resistant fingerprints for copyright protection.
Separable codes were proposed and applied to identify traitors in an averaging collusion
attack in multimedia fingerprint, see [35], [36] and [72]. B2 codes and 2-separable codes
are uniquely decodable in the multiple access communication under the assumption that
two accesses use the same codebook, see [49] for new results on separable codes using this
general approach.

Separable codes are close related to Frameproof codes that were introduced by Boneh
and Shaw [28] in the ’90s to protect copyright materials. When a distributor wants to sell
copies of a digital product, he chooses t fixed locations in the digital data. For each copy,
he associates to each location a q-ary symbol. Such a collection of symbols and locations
in each copy is known as a fingerprint, which can be seen as a codeword of length t over an
alphabet of size q. The clients do not know the locations and symbols stored in the data,
this means they can not remove them. But, instead, some clients can share and compare
their copies. In this setting they can recover the locations and the symbols in order to create
illegal copies. A set of fingerprints is called to be frameproof if any coalition of at most k
clients can not create an illegal copy of the digital data.

One of the main problems in the area of multimedia fingerprinting consist of both pro-
viding bounds on the lengths of frameproof codes (this is motivated by the practical consid-
eration that the length of the fingerprint to insert in the digital data represents an obvious
overhead that needs to be minimized) and computationally efficient procedures to construct
frameproof codes of length close to the theoretical optimum. The seminal paper [28] spurred
an interesting line of research to investigate the two problems mentioned above. It is im-
possible here to summarize the many results in the area, and we refer the reader to the
papers [19, 24, 34, 37, 79, 106, 110, 111, 112, 113, 117] and references therein quoted for the
relevant literature in the area.

In Section 3.2, we derive a simple proof, based on information theoretic inequalities, of
an upper bound on the largest rates of q-ary 2-separable codes that improves recent results
of Wang [118] for any q ≥ 13. A q-ary code with codewords of length t is a k-separable code
if for any distinct k codewords and m codewords with 1 ≤ k,m ≤ k, there exists a coordinate
i, 1 ≤ i ≤ t, in which the union of the elements of the k codewords differs from the union

This chapter includes research results published in [69].
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of the elements of the m codewords. For the case q = 2, we recover a result of Lindström
[90], but with a much simpler derivation. The method easily extends to give bounds on B2

codes which, although not improving on Wang’s [118] results, use much simpler tools and
might be useful for future applications.

In Section 3.3, we study upper bounds on the minimum length of frameproof codes
introduced by Boneh and Shaw [28] to protect copyrighted materials. A q-ary (k, n)-
frameproof code of length t is a t × n matrix having entries in {0, 1, . . . , q − 1} and with
the property that for any column c and any other k columns, there exists a row where
the symbols of the k columns are all different from the corresponding symbol (in the same
row) of the column c. In Section 3.3, we show the existence of q-ary (k, n)-frameproof

codes of length t = O(k
2

q log n) for q ≤ k, using the Lovász Local Lemma, and of length

t = O( k
log(q/k) log(n/k)) for q > k using the expurgation method. Remarkably, for the prac-

tical case of q ≤ k our findings give codes whose length almost matches the lower bound

Ω( k2

q log k log n) on the length of any q-ary (k, n)-frameproof code and, more importantly,

allow us to derive an efficient algorithm of complexity O(tn2) for the construction of such
codes. To the best of our knowledge, this is the first polynomial time, in the code size n,
algorithm with such a performance.

3.2. New upper bounds on 2-separable codes and B2 codes

3.2.1. Preliminaries. Let for notational convenience set [0, q − 1] = {0, 1, . . . q − 1}.
We call a q-ary code of length t any subset of Ct ⊆ [0, q − 1]t. Let M = |Ct| and write
Ct = {c1, c2, . . . , cM}. Each ci is called a codeword and we use the notation ci(j), for
j = 1, 2, . . . , t for its components. The base-q rate of such a code is defined as logq M/t.
Note that, throughout the section, all logarithms without subscript are to base 2.

We need two definitions.

Definition 3.2.1. A q-ary code Ct with codewords of length t is a k-frameproof code if
for any k codewords and every other codeword, there exists a coordinate i with 1 ≤ i ≤ t, in
which the symbols of the k codewords do not contain the symbol of the other codeword.

Definition 3.2.2. A q-ary code Ct with codewords of length t is a k-separable code if
for any distinct l codewords and m codewords with 1 ≤ l,m ≤ k, there exists a coordinate
i, 1 ≤ i ≤ t, in which the union of the elements of the l codewords differs from the union of
the elements of the m codewords.

Blackburn [24], [25] showed that the rate of k-frameproof codes is upper bounded by
1/k. Cheng and Miao [36] observed that any k-frameproof code is a k-separable code and
also that any k-separable code is a (k − 1)-frameproof code for every k ≥ 2. This implies
that the rate of k-separable codes is upper bounded by 1/(k − 1). Interesting results on
k-separable code, with the slightly weaker constraint that only l = m = k is considered in
the definition, were recently derived in [49] using an information theoretic approach. With
this slightly different definition, an upper bound on the rate of the form 2/k was obtained.
Since both bounds give the trivial 1/(k − 1) = 2/k = 1 for k = 2, other approaches must
be adopted for bounding the rate of k-separable codes, which leads to a rather interesting
problem.

A non-trivial bound for q-ary 2-separable codes was derived by Gu, Fan and Miao in [78]
and an improvement was recently obtained by Wang [118] for every 3 ≤ q ≤ 17 extending a
procedure introduced for the binary case by Cohen et al. [38] based on linear programming
bounds on codes.
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3.2.2. New upper bounds for 2̄-separable codes. We have the following new
bound on the rate of 2-separable codes.

Theorem 3.2.1. For integer q ≥ 2, let Ct be a family of q-ary 2-separable codes. Then

Rs := lim sup
t→∞

1

t
logq |Ct| ≤

2q − 1

3q − 1
.

This bound improves the one given by Wang [118] when q ≥ 13. It also improves the
bound of Gu et al. [78] for every q ≥ 2. When q = 2, instead, the bound coincides with that
of Lindström [90], but with a rather simpler proof.

Proof of Theorem 3.2.1. Let D = {(x, y) ∈ [0, q − 1]2 : x ̸= y} ∪ {0}, which implies
|D| = q(q − 1) + 1. Define the function ϕ : [0, q − 1]2 → D as

ϕ(x, y) =

{
0, if x = y

(x, y), if x ̸= y
.

For an integer f , we define Φ, the natural extension of ϕ when applied to vectors, that is
the function that maps any two vectors w1, w2 ∈ [0, q − 1]f to a vector in Df according to
the rule

Φ(w1,w2) = (ϕ(w1(1), w2(1)), . . . , ϕ(w1(f), w2(f))) ∈ Df .

Let Ct = {c1, c2, . . . , cM} be a q-ary 2-separable code with codewords of length t. We
divide each codeword ci into two sub-blocks, a prefix pi of length e and a suffix wi of length
f where t = e+ f . We use here the notation ci = (pi, wi).

Enumerate all the vectors in [0, q − 1]e as l1, l2, . . . , lr, where r = qe, and denote with
Pi the set of codewords of Ct which have li as the first e components, that is of the form
(li, wj). An easy upper bound on M then follows by the Cauchy-Schwarz inequality, namely

(40)
M2

r
≤

r∑
i=1

|Pi|2.

We want a good upper bound on the sum of the ordered pairs in each Pi to get a good
upper bound on M . From [78, Theorem 2], we know that the function Φ is injective when
we restrict its domain to pairs of suffixes of different vectors taken from the same Pi for
all i = 1, . . . , r. Here we provide a short proof. Assume, for the sake of contradiction,
there exists four different codewords (lh, w1), (lh, w2) ∈ Ph, (lm, w3), (lm, w4) ∈ Pm such
that Φ(w1, w2) = Φ(w3, w4) either when h = m and (w1, w2) ̸= (w3, w4) or when h ̸=
m. For case h = m, if {w1, w2} ∩ {w3, w4} ̸= ∅ then Φ(w1, w2) = Φ(w3, w4) implies a
contradiction on the assumption (w1, w2) ̸= (w3, w4). Otherwise, when {w1, w2}∩{w3, w4} =
∅, the subcodes C1 = {(lh, w1), (lh, w4)} and C2 = {(lh, w2), (lh, w3)} do not satisfy the 2-
separability property, a contradiction. Instead for case h ̸= m, Φ(w1, w2) = Φ(w3, w4)
implies that the subcodes C1 = {(lh, w1), (lm, w4)} and C2 = {(lh, w2), (lm, w3)} do not
satisfy the 2-separability property, again a contradiction.

We generalize a smart observation given in [90, eq. (2.9)]. Fix a coordinate ℓ and a
subcode Pi in our code Ct, and let f0, f1, . . . , fq−1 to be the fractions of symbols that occur
in the ℓ-th cooordinate of Pi. Then, when we take all vectors Φ(wj , wk), where wj and
wk are the suffixes of codewords (not necessarily distinct) that belong to Pi, the frequency
of the 0 symbol in the ℓ-th coordinate of these vectors is equal to f2

0 + . . . + f2
q−1. This

summation is always greater than or equal to 1/q under the constraint that
∑q−1

i=0 fi = 1.
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Figure 1. Upper bounds on Rs.

So, the fraction of 0′ in the ℓ-th coordinate of the vectors Φ(wj , wk), where wj and wk are
suffixes in Pi for each i = 1, . . . , r, is not smaller than 1/q.

Let X = (X1, . . . , Xf ) and Y = (Y1, . . . , Yf ) be two random variables with joint uniform
distributions over the set of ordered pairs of suffixes of vectors taken from the same Pi for
each i = 1, . . . , r. Then we have that

(41) H(X,Y ) = log

(
r∑

i=1

|Pi|2
)
,

where H is the Shannon entropy.
We define, for every i = 1, . . . , f , the random variable Zi by setting Zi = ϕ(Xi, Yi).

Since the function Φ(w1, w2) is injective when w1 ̸= w2 and knowing that Z = (Z1, . . . , Zf )
= Φ(X,Y ), then

(42) H(X,Y ) = H(Z) + Pr(Z = 0) ·H(X,Y |Z = 0),

where 0 denotes the zero vector.
By the well-known subadditivity property of the entropy function we have

H(Z) ≤
f∑

i=1

H(Zi) ≤ f

 max
α0,...,αq2−q

α0+...+αq2−q=1

α0≥1/q

H(α0, . . . , αq2−q)

(43)

where we abuse the notation using H also for the entropy of a distribution and αi represents
the frequency of the i-th symbol. By the concavity and symmetry of the entropy on its
arguments, or using Lagrange multipliers, we find that since 1/q > 1/q2 the maximum in
(43) is achieved for α0 = 1/q and α1 = . . . = αq2−q = 1/q2 and takes the following value

H(1/q, 1/q2, . . . , 1/q2) = log q · 2q − 1

q
.

By (40) we get

(44) Pr(Z = 0) =
M∑r

i=1 |Pi|2
≤ r

M
.
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The conditional distribution P (X = w1, Y = w2|Z = 0) is uniform over its support which
has size equal to M . Then

(45) H(X,Y |Z = 0) = logM.

Setting e = ⌊logq(2M)− logq logM⌋ we have by (44) and (45) that

(46) Pr(Z = 0) ·H(X,Y |Z = 0) ≤ r

M
logM ≤ 2.

Then by (41), (42), (43) and (46) we have

(47)

r∑
i=1

|Pi|2 ≤ qf(2q−1)/q+o(t)

where o(t) is meant as t→∞.
Finally we are now ready to prove Theorem 3.2.1. By (40) and (47) we have that

(48) M2 ≤ qf(2q−1)/q+e+o(t).

Since e is fixed and we know that t = e+ f , from (48) we get

M ≤ q
t 2q−1
3q−1

+o(t)

and Theorem 3.2.1 follows. □

In Figure 1 we give a comparison between the bounds on the rate of 2-separable codes
given in [78], [118] and the one given in Theorem 3.2.1.
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Figure 2. Upper bounds on Rb.

3.2.3. Bounds for B2 codes. The related notion of B2 codes can be introduced as
follows.

Definition 3.2.3. We say that Ct = {c1, c2, . . . , cM} is a q-ary B2 code with M code-
words of length t and with symbols in the alphabet [0, q − 1] if all sums (over the real field)
ci + cj for 1 ≤ i ≤ j ≤M are different.

Note that for q = 2 this definition is equivalent to the definition of a 2̄-separable code.
Gu et al. in [78] provided non trivial bounds on the rate of q-ary B2 codes and they also
observed that an implicit upper bound can be found in Lindtröm [90, Theorem 1]. These
bounds were improved by Wang [118] for every 2 ≤ q ≤ 12.
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An immediate extension of the method presented in the previous subsection leads to the
following.

Theorem 3.2.2. For integer q ≥ 2, let Ct be a family of q-ary B2 codes. Then

Rb := lim sup
t→∞

1

t
logq |Ct| ≤

q + (q − 1) logq 2

2q + (q − 1) logq 2
.

For every 3 ≤ q ≤ 12 it improves the one given in [78] but not the bound given in [118].
Of course, when q = 2, Theorems 3.2.1 and 3.2.2 give the same bound consistently with the
fact that any binary 2-separable code is also a B2 code and vice versa.

Proof of Theorem 3.2.2. In this case, we consider the set D = {−q + 1, . . . ,−1,
0, 1, . . . , q − 1}, so that now |D| = 2q − 1. For an integer f , we define the function Φ as
Φ(w1, w2) = w1 − w2 ∈ Df where w1, w2 ∈ [0, q − 1]f and the difference is computed in Z.

Let Ct be a q-ary B2 code and suppose we have constructed the r = qe subcodes Pi (as
done in Theorem 3.2.1). It can be proved, in a similar manner as Theorem 3.2.1, that Φ is
injective when we restrict its domain to pairs of suffixes of different vectors taken from the
same Pi for all i = 1, . . . , r. Then, the procedure used in Theorem 3.2.1 can be applied to
prove Theorem 3.2.2. All the equations from (40) to (48) are verified, also in this case, with
the only difference that the cardinality of the set D is 2q − 1 and not q2 − q + 1. □

In Figure 2 we give a comparison between the bounds on the rate of B2 codes given in
[78], [90, Theorem 1], [118] and the one given in Theorem 3.2.2.

3.3. Bounds and algorithms for frameproof codes

3.3.1. Preliminaries. Throughout the section, the logarithms without subscripts are
in base two, and we denote with ln(·) the natural logarithm. Given integers a < b, we denote
with [a, b] the set {a, a+ 1, . . . , b}. We start by introducing the combinatorial objects we
study in this section.

Definition 3.3.1. Let k, n, q ≥ 2 be positive integers, n > k. A q-ary (k, n)-frameproof
code is a t×n matrix M with entries in [0, q− 1] such that for any column c and any other
k columns of M we have that, there exists a row i ∈ [1, t] where the symbols of the k columns
are all different from the symbol in the i-th row of the column c. The number of rows t of
M is called the length of the q-ary (k, n)-frameproof code.

In order to provide upper bounds on the minimum length of q-ary (k, n)-frameproof
codes we need to recall a strictly related class of codes, named q-ary (k, n)-strongly selective
codes, studied in [52] by De Bonis and Vaccaro.

Definition 3.3.2. Let k, n, and q ≥ 2 be positive integers, n ≥ k. A q-ary (k, n)-
strongly selective code is a t×n matrix M with entries in [0, q−1] such that for any k-tuple
of the columns of M and for any column c of the given k-tuple, there exists a row i ∈ [1, t]
such that c has an entry s ∈ [1, q − 1] in row i whereas the entries in row i of all the
remaining k − 1 columns of the k-tuple belong to [0, q − 1] \ {s}. The number of rows t of
M is called the length of the q-ary (k, n)-strongly selective code.

Given an integer q ≥ 2 and a q-ary vector c ∈ [0, q−1]t, we denote with w(c) the number
of nonzero components of c.

Definition 3.3.3. A q-ary (k,w, n)-strongly selective code is a q-ary (k, n)-strongly
selective code with the additional constraint that each column c has w(c) = w.
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There is a strong relation between q-ary (k, n)-frameproof codes and q-ary (k + 1, n)-
strongly selective codes. In fact, if we denote the minimum length of q-ary (k, n)-frameproof
codes by tFP(q, k, n) and that of q-ary (k, n)-strongly selective codes by tSS(q, k, n), then the
following lemma holds.

Lemma 3.3.1.

tSS(q, k + 1, n) ≥ tFP(q, k, n) ≥
1

2
tSS(q, k + 1, n) .

Proof. The upper bound on tFP(q, k, n) easily follows by noticing that a q-ary (k+1, n)-
strongly selective code of length t is a q-ary (k, n)-frameproof code of length t by definition of
such codes. Conversely, a q-ary (k, n)-frameproof code C is not necessarily a q-ary (k+1, n)-
strongly selective code since we can have a column c and other k columns in C where the
only rows there exists are those in which the symbols of the k columns do not contain the
symbol of the column c and where this symbol is equal to 0. Therefore, we are satisfying
the property for frameproof codes but not the one for strongly selective codes. However, the
minimum length tSS(q, k + 1, n) of q-ary (k + 1, n)-strongly selective codes is at most twice
the minimum length tFP(q, k, n) of q-ary (k, n)-frameproof codes. Indeed, if one is given a
q-ary (k, n)-frameproof code C then one can build a (k + 1, n)-strongly selective code twice
as long as C by taking the union of the rows of C and those of the complementary code C
obtained by replacing each entry s in C by q − 1− s. Hence we obtain the lower bound on
tFP(q, k, n) shown in the statement of the lemma. □

Thanks to Lemma 3.3.1 we can concentrate on finding bounds on the minimum length
tSS(q, k, n) and then obtain, indirectly, bounds on tFP(q, k, n).

3.3.2. A new randomized algorithm via Lovász Local Lemma. In this section,
we provide new upper bounds on the minimum length tSS(q, k, n) of q-ary (k, n)-strongly
selective codes. We will provide two different bounds, one that is derived using the Lovász
Local Lemma while the other one using the expurgation method.

In [52], it has been proved the existence of q-ary (k, n)-strongly selective of length

(49) t = O

(
k2

v
log(n/k)

)
,

where v = q − 1 for q ≤ k and v = k for q > k. Their procedure produces a randomized
algorithm of complexity Θ(nk) to generate q-ary (k, n)-strongly selective codes of length
of the same order as the one shown in equation (49). The algorithm is clearly impractical
already for small values of k. Here we provide new bounds on tSS(q, k, n) that are of the same
order as the ones provided by [52] but, crucially, this is accompanied with a randomized
construction algorithm of complexity O(tn2). This means that we can construct a q-ary
(k, n)-strongly selective codes of length as in (49) in time polynomial in n and k.

The key idea is to use the following matrices (introduced in [85]) where the constraints
involve only pairs of columns.

Definition 3.3.4. Let n,w, λ be positive integers. A q-ary t×n matrix M , with entries
in [0, q − 1], is a (λ,w, n)-matrix if the following properties hold true:
1) each column c of M has w(c) = w,
2) any pair of columns c,d of M have at most λ nonzero symbols in common, that is, there
are at most λ rows where columns c and d have both the same entry s ∈ [1, q − 1].

These matrices are related to q-ary (k,w, n)-strongly selective codes by the following
result.



48 3. CODES FOR MULTIMEDIA FINGERPRINTING

Lemma 3.3.2. If M is a q-ary t × n (λ,w, n)-matrix with λ = ⌊(w − 1)/(k − 1)⌋ then
M is a q-ary (k,w, n)-strongly selective code of length t.

Proof. Let c be an arbitrary column of M and let A be the set of row indices in which
column c has nonzero elements. Therefore |A| = w. LetK be a set of arbitrary k−1 columns
of M where c ̸∈ K. Let us denote by M(A,K) the w× (k− 1) submatrix of M constructed
by first selecting the k−1 columns in K and then selecting the w rows whose indices belong
to A. Since M is a (λ,w, n)-matrix we have that the number of nonzero elements that

column c share (in the same rows) with any column in K is at most λ =
⌊
w−1
k−1

⌋
. Hence, the

total number of nonzero elements in M(A,K) is at most

(k − 1)λ ≤ (k − 1)

⌊
w − 1

k − 1

⌋
≤ w − 1 .

Considering that M(A,K) has |A| = w we have that at least one row in M(A,K) contains
only zero elements. Then the lemma follows. □

Now, we want to give a good upper bound on the minimum length of q-ary (λ,w, n)-
matrices that will provide us an upper bound on the minimum length of q-ary (k,w, n)-
strongly selective codes. We first need to recall the following well-known facts on binomial
coefficients:

(50)
(a
b

)b
≤
(
a

b

)
≤ ab

b!
≤
(ea
b

)b
,

(51)

(
a

b

)(
b

c

)
=

(
a

c

)(
a− c

b− c

)
,

and the following useful inequality, proved in [74], for positive integers c ≤ a ≤ b

(52)

(
a

c

)/(b
c

)
≤

(
a− c−1

2

b− c−1
2

)c

.

Our main tool is the celebrated algorithmic version of the Lovász Local Lemma for the
symmetric case as given in [95], see Lemma 2.1.1 for the statement.

We are now ready to state our main lemma.

Lemma 3.3.3. There exists a q-ary t× n (λ,w, n)-matrix with

t = max

{
⌈2w − (λ+ 1)⌉ ,

⌈
λ

2
+

1

q − 1

(
ew

λ+ 1

(
w − λ

2

)
(e(2n− 4))

1
λ+1

)⌉}
.(53)

Proof. Let M be a random t× n q-ary matrix, t ≥ 2w− (λ+1), where each column c
is picked uniformly at random among the set of all distinct q-ary vectors c of length t such
that w(c) = w. It is easy to see that the number of such vectors is equal to

(
t
w

)
(q − 1)w,

and therefore

Pr(c) =

((
t

w

)
(q − 1)w

)−1

.

Let i, j ∈ [1, n], i ̸= j and let us consider the event Ei,j that there exists at most λ rows such
that both the i-th column and the j-th column of M have the same nonzero symbol in each
of these rows. We evaluate the probability of the complementary “bad” event Ei,j . Hence
Ei,j is the event that the i-th and j-th columns ci and cj have identical non-zero elements
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in at least λ + 1 coordinates. We bound Pr(Ei,j) by conditioning on the event that ci is
equal to c.

For a subset S ⊂ [1, t] of coordinates, let ES
i,j be the event that in each coordinate of

S the i-th and j-th column have identical non-zero elements. Finally, let A be the set of
coordinates where ci is non-zero. Note that for S ∈

(
A

λ+1

)
, i.e. S is a subset of A of size

λ+ 1, we have

Pr(ES
i,j |ci = c) =

( t−(λ+1)
w−(λ+1)

)
(q − 1)w−(λ+1)(

t
w

)
(q − 1)w

.

Then

(54) Pr(Ei,j |ci = c) ≤
∑

S∈( A
λ+1)

Pr(ES
i,j |ci = c) =

(
w

λ+ 1

)( t−(λ+1)
w−(λ+1)

)
(q − 1)w−(λ+1)(

t
w

)
(q − 1)w

.

Since the right-hand side of (54) does not depend on the fixed column c, it also holds
unconditionally. Hence

(55) Pr(Ei,j) ≤
(

w

λ+ 1

)( t−(λ+1)
w−(λ+1)

)
(q − 1)w−(λ+1)(

t
w

)
(q − 1)w

.

Therefore, by (55) we have

Pr(Ei,j) ≤
(

w

λ+ 1

)(
t− (λ+ 1)

w − (λ+ 1)

)/( t

w

)
(q − 1)λ+1

(i)
=

(
w

λ+ 1

)(
w

λ+ 1

)/( t

λ+ 1

)
(q − 1)λ+1

(ii)

≤ 1

(q − 1)λ+1

(
w

λ+ 1

)(
w − λ

2

t− λ
2

)λ+1

(iii)

≤ 1

(q − 1)λ+1

(
ew

λ+ 1

)λ+1
(
w − λ

2

t− λ
2

)λ+1

= P ,(56)

where (i) holds due to equality (51), (ii) is true due to inequality (52), and finally (iii) holds
thanks to inequalities (50).

The number of events Ei,j is equal to n(n− 1)/2. Let us fix an event Ei,j , the number
of events from which Ei,j can be dependent is equal to D = 2n − 4. Hence, according to
Lemma 2.1.1, if P (as defined in (56)) and D = 2n−4 satisfy ePD ≤ 1, then the probability
that none of the “bad” events Ei,j occurs is strictly positive. One can see that by setting t
as in the second term of the maximum in (53) one indeed obtains

ePD =
e(2n− 4)

(q − 1)λ+1

(
ew

λ+ 1

)λ+1
(
w − λ

2

t− λ
2

)λ+1

≤ 1.

Hence, from Lemma 2.1.1 one can construct a q-ary (λ,w, n)-matrix M whose number
of rows t satisfies equality (53) since we also need to consider the initial assumption t ≥
2w − (λ+ 1) so that all the computation carried out in this lemma are meaningful. □

Now, thanks to Lemmas 3.3.2 and 3.3.3, we can prove the following result.
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Theorem 3.3.1. There exists a randomized algorithm to construct a q-ary (k,w, n)-
strongly selective code with length

t ≤ 1 + max

{
2w − w − 1

k − 1
,

w − 1

2(k − 1)
+

ew(k − 1)

(q − 1)(w − 1)

(
w − w − 1

2(k − 1)
+

1

2

)
(e(2n− 4))

k−1
w−1

}
.

(57)

The algorithm requires, on average, time O(tn2) to construct the code.

Proof. The upper bound on t shown in the statement of the lemma is derived by
substituting the value of λ = ⌊(w−1)/(k−1)⌋ of Lemma 3.3.2 into equation (53) of Lemma

3.3.3, and by using the inequalities w−1
k−1 − 1 ≤

⌊
w−1
k−1

⌋
≤ w−1

k−1 . The time complexity O(tn2)

comes from Lemma 2.1.1 by noticing that m/D = n(n− 1)/(4n− 8) ≤ n/3. Moreover, the
algorithm that one obtains from [95] requires to randomly generate a matrix, checking if
the Θ(n2) events Ei,j are satisfied, and resample only on non-satisfied events. This means
that we need to check if the i-th column and the j-th column of the matrix have at most⌊
w−1
k−1

⌋
nonzero elements in common, that can be done with at most O(t) operations, and

resample only over non-satisfied events. Then we need to check only the events that involve
columns that have been resampled. Altogether, by Lemma 2.1.1 this procedure requires
O(tn2 + n ·m/D · t) = O(tn2) elementary operations. □

Remark 3.3.1. Before optimizing (57) over the parameter w, we would like to stress that
Theorem 3.3.1 is not a mere technical intermediate result, but might be important in several
practical scenarios. For instance, it has been shown in [52] that q-ary (k, n)-strongly selective
codes can be used to solve important communication problems arising in multiple-channel
wireless networks. In the scenario considered in [52], one has a set of n uncoordinated
stations, attempting transmission over a set of q − 1 independent channels. Transmission
is successful if and only if no two stations attempt to transmit over the same channel at
the same time instant. The idea in [52] is the following: Each station is assigned a distinct
codeword of a q-ary (k, n)-strongly selective code, and such a codeword corresponds to the
transmission schedule of the associated station. The presence of a symbol s ∈ [0, q − 1]
in the i-th coordinate of a given codeword c naturally translates as the ”instruction”, to
the station possessing codeword c, to stay ”silent” in the i-th step of the communication
protocol if s = 0, and to transmit over the j-th channel in the i-th step if s = j ̸= 0. Under
the hypothesis that at any given time at most k stations are ”active”, the authors of [52]
proved that q-ary (k, n)-strongly selective codes naturally correspond to conflict resolution
protocols in multiple-channel wireless networks. Now, in many situations, it is important
not only to minimize the length of the protocol (i.e., the number of time instants before all
stations transmit successfully) but it is important also to restrict the number of attempted
transmissions by each station (to save energy, for example, see [74] for more). Therefore
q-ary (k,w, n)-strongly selective codes, where each codeword has w non-zero components,
could be useful in these instances. We remark that the techniques of [52] are not able to
deal with this hard constraint on the number of attempted transmissions by each station, nor
suggest efficient algorithms for the construction of q-ary (k, n)-strongly selective codes, as
our technique does.

We optimize w in equation (57) to get a randomized algorithm for (unconstrained) q-ary
(k, n)-strongly selective codes.
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Corollary 3.3.1. Let w = ⌈1+ (k− 1) ln(2en)⌉, then the algorithm described in Theo-
rem 3.3.1 constructs a q-ary (k,w, n)-strongly selective code that is, clearly, a q-ary (k, n)-
strongly selective code of length t upper bounded as

t ≤ max

{
2(k − 1) ln(2en)− ln(n),

ln(n)

2
+

e2(k − 1)2

q − 1
ln(2en) +

7e2(k − 1)

2(q − 1)

}
+O(1).

Proof. Fixing w as in the statement of the corollary and using the following inequalities

1 + (k − 1) ln(2en) ≤ ⌈1 + (k − 1) ln(2en)⌉ ≤ 2 + (k − 1) ln(2en)

by Theorem 3.3.1, considering only the second term of the maximum, we have that

t ≤ 1 +
1 + (k − 1) ln(2en)

2(k − 1)
+

e

(q − 1) ln(2en)

(2 + (k − 1) ln(2en))

(
3

2
+ (k − 1) ln(2en)

)
(2en)

1
ln(2en)

≤ ln(n)

2
+

e2(k − 1)2

q − 1
ln(2en) +

7e2(k − 1)

2(q − 1)
+O(1) ,

since k ≥ 2, ln(2en) ≥ 2 and (2en)
1

ln(2en) = e. Then, the corollary follows since we also need
to consider the first term of the maximum of Theorem 3.3.1. □

Therefore due to Lemma 3.3.1 and Corollary 3.3.1 we obtain the main result of this
section.

Theorem 3.3.2. There exists a randomized algorithm to construct a q-ary (k, n)-frame
proof code with length

t ≤ max

{
2k ln(2en)− ln(n),

ln(n)

2
+

e2k2

q − 1
ln(2en) +

7e2k

2(q − 1)

}
+O(1).

The algorithm requires, on average, time O(tn2) to construct the code.

To properly judge the value of Theorem 3.3.2, we recall the following result that provides
a lower bound on the length of any q-ary (k, n)-frameproof code.

Theorem 3.3.3. [51, 52, 106] Given positive integers q, k, and n, with q ≥ 2 and
2 ≤ k ≤

√
n, the minimum length of any q-ary (k, n)-frameproof code satisfies

(58) tFP(q, k, n) = Ω

(
k2

q log k
log

n

k

)
.

Therefore, one can see that the construction method provided by Theorem 3.3.2, besides
being quite efficient, produces codes of almost optimal length.

We can also prove the following result.

Theorem 3.3.4. Let M be a q-ary (k, n)-frameproof code of minimum length t. Then

(59)

⌈
n

q − 1

⌉
≥ t ≥

⌈
1

q
min

{
n,

15 +
√
33

24
k2

}⌉
.

Proof. We can define a map from M to a binary (k, n)-strongly selective code of length
t′ by mapping each symbol i ∈ [0, q − 1] into ei+1, where ei is the binary column vector
that has 1 in the i-th component and 0 elsewhere. Therefore t′ = qt. Now, the right-hand
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side inequality of (59) follows since t′ ≥ min
{
n, 15+

√
33

24 k2
}

by [105, Theorem 2]. To prove

the left-hand side inequality of (59), simply observe that by taking any n columns from the
side-by-side concatenation of (q−1) many ⌈n/(q−1)⌉×⌈n/(q−1)⌉ diagonal matrices, where
the i-th matrix has symbol i ∈ [1, q − 1] on its diagonal, and 0 elsewhere, one gets a q-ary
(k, n)-frameproof code of length ⌈n/(q − 1)⌉. □

3.3.3. New improved upper bounds on tFP(q, k, n) via Expurgation Method.
In this Section, we will provide an existential upper bound on the minimum length of q-ary
(k, n)-frameproof codes that improves the best results known in the literature. We first
recall such known results.

Theorem 3.3.5. [113] There exists a q-ary (k, n)-frameproof code of length

t ≤ −k ln
(
n

k!

k!− 1

)/
ln

(
1−

(
1− 1

q

)k
)

.

We note that in the original paper [113], this bound is stated in terms of bounds on the
length of separating hash families. However, it is well known that a separating hash family
of type (t, n, q, {1, k}) is equivalent to a q-ary (k, n)-frameproof code of length t.

Theorem 3.3.6. For k sufficiently large and q ≤ 0.3118 ·k(1+o(1)), where o(1) is meant
for k →∞, the bound given in Theorem 3.3.2 is better than the one of Theorem 3.3.5.

Proof. The bound given in Theorem 3.3.5 can be lower bounded as follows

− (1 + o(1))k lnn
/
ln

(
1−

(
1− 1

q

)k
)
≥

− (1 + o(1))k lnn
/
ln
(
1−

(
1− e−k/q

))
≥

(1 + o(1))
(
ek/q − 1

)
k lnn ,

since (1 + x) ≤ ex and ln(1 + x) ≥ x
1+x for all x > −1. Then, for q ≤ k, the bound given in

Theorem 3.3.2 can be stated as follows

(1 + o(1))
e2k2

q − 1
ln(n) .

Let us take q = αk(1+ o(1)), where α is a real in (0, 1], then we need to study the following
inequality to compare the two bounds

e2 ≤ α
(
e

1
α − 1

)
.

Since the right-hand side of this inequality is a strictly decreasing function in α for α > 0,
we can compute numerically the range of α for which the inequality is satisfied, that is,
(0, 0.3118]. □

In [106], the authors provide the following bound that improves the one of Theorem
3.3.5 whenever q ≤ k and k is sufficiently large.

Theorem 3.3.7. [106] If q ≤ k, then there exists a q-ary (k, n)-frameproof code of length

t ≤ −k lnn− (k + 1) ln 2

ln

[
1−

(
1− q−1

k+1

)(
q−1
k+1

)k
− q−1

k+1

(
1− 1

k+1

)k] .
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Our result employs the so-called expurgation method or deletion method, the same
technique of [113], but with a more careful optimization of the parameters. Therefore, we
are able to improve the bound of Theorem 3.3.5 for every value of the parameters k, q, and
n. Here we state the following theorem.

Theorem 3.3.8. There exists a (k, n)-frameproof code of length t, where t is the mini-
mum integer such that the following inequality holds

(k + 1)

(
n
(
1 + 1

k

)
k

)
(1− pq,k)

t ≤ 1 ,

where

pq,k :=


(
1− 1

q

)k
for q > k,(

1− q−1
k+1

)(
q−1
k+1

)k
+ q−1

k+1

(
1− 1

k+1

)k
otherwise.

Proof. Let M be a q-ary t × (n + ℓ) matrix, where each element is picked i.i.d. at
random in the set [0, q − 1] with distribution µ = (µ0, µ1, . . . , µq−1) that will be fixed later.
For a given index i ∈ [1, n] and a set of column-indices B, |B| = k−1, i ̸∈ B, let Ei,B be the
event such that for every row in which ci (the i-th column) has a symbol s, there exists an
index j ∈ B such that cj has symbol s in that same row. Therefore the probability of each

event Ei,B can be upper bounded as Pr(Ei,B) ≤
(
1−

∑q−1
i=0 µi (1− µi)

k
)t
. The number of

such events is equal to (n + ℓ)
(
n+ℓ−1

k

)
. Now, let Xi,B be the indicator random variable of

the event Ei,B and define the random variable X =
∑

i,B Xi,B that represents the number

of events Ei,B that are satisfied. Hence, taking µi = 1/q for every i ∈ [0, q − 1] (uniform
distribution) when q > k and µi = 1/(k+1) for every i ∈ [1, q− 1], µ0 = 1− (q− 1)/(k+1)
when q ≤ k, we obtain

E[X] ≤ (n+ ℓ)

(
n+ ℓ− 1

k

)
(1− pq,k)

t .

We note that if E[X] < ℓ+1 then there exists at most ℓ “bad” events Ei,B that are satisfied.
Then, for each of these events Ei,B we remove one column with index in {i} ∪B. Hence we
are left with a q-ary matrix with t rows and at least n columns that satisfy the frameproof
property. Therefore we obtain a (k, n)-frameproof code with length t. Thus the theorem
follows taking ℓ = ⌊n/k⌋. □

Corollary 3.3.2. Using the inequalities in equation (50), we have that, from Theorem
3.3.8, the length of (k, n)-frameproof codes is upper bounded as follows

t ≤
−k ln

(
nk+1

k

)
− ln

(
k+1
k!

)
ln (1− pq,k)

,

where pq,k is the same quantity defined in Theorem 3.3.8.

Theorem 3.3.9. The bound of Corollary 3.3.2 improves the one of Theorem 3.3.5 for
every n ≥ k ≥ 2 and q > k.

Proof. We need to prove the following inequality

(60)
−k ln

(
nk+1

k

)
− ln

(
k+1
k!

)
ln (1− pq,k)

<
−k ln

(
n k!
k!−1

)
ln

(
1−

(
1− 1

q

)k) .
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Since for q > k, pq,k = (1− 1/q)k, we can rearrange and simplify the terms in (60) to obtain
the following equivalent inequality.

(61)

(
k + 1

k

)k k + 1

k!
<

(
k!

k!− 1

)k

.

Now, since
(
1 + 1

k

)k ≤ e and k! ≥ e
(
k
e

)k
, we get(

k + 1

k

)k k + 1

k!
≤
( e
k

)k
(k + 1) .

To prove inequality (61), it suffices to show that

(62)
( e
k

)k
(k + 1) < 1 ,

since the right-hand side of (61) is greater than 1 for every k.
It can be seen that the left-hand side of (62) is a decreasing function in k for k ≥ 2.

The first integer k for which inequality (62) holds is k = 5. Then, the theorem follows since
inequality (61) also holds for k = 2, 3, 4 by direct computation. □

Theorem 3.3.10. The bound of Corollary 3.3.2 improves the one of Theorem 3.3.7 for
every n ≥ k ≥ 2 and q ≤ k.

Proof. Clearly, we need to prove the following inequality

(63)
−k ln

(
nk+1

k

)
− ln

(
k+1
k!

)
ln (1− pq,k)

<
−k lnn− (k + 1) ln 2

ln

[
1−

(
1− q−1

k+1

)(
q−1
k+1

)k
− q−1

k+1

(
1− 1

k+1

)k] .
For q ≤ k, the denominators in (63) are equal by definition of pq,k. Therefore, we can
rearrange and simplify the terms to obtain the following inequality.

(64)

(
k + 1

k

)k k + 1

k!
< 2k+1 .

Proceeding as in the proof of Theorem 3.3.9, the left-hand side of (64) is a decreasing
function in k for k ≥ 2 while the right-hand side of (64) is increasing in k. By inspection,
it is easy to see that inequality (64) holds even for k = 2. □



CHAPTER 4

Group Testing with runlength constraints

In this chapter, all the results are obtained in collaboration with Marco Dalai and Ugo
Vaccaro.

4.1. Introduction

Group Testing refers to the scenario in which one has a population I of individuals, and
an unknown subset P of I, commonly referred to as “positives”. The goal is to determine
the unknown elements of P by performing tests on arbitrary subsets A of I (called pools),
and the outcome of the test is assumed to return the value 1 (positive) if A contains at least
one element of the unknown set P , the value 0 (negative), otherwise. The problem was first
introduced by Dorfman [56] during WWII, in the context of mass blood testing. Since then,
Group Testing techniques have found applications in a large variety of areas, ranging from
DNA sequencing to quality control, data security to network analysis, and much more. We
refer the reader to the excellent monographs [57, 5] for an account of the vast literature on
the subject.

Group Testing procedures can be adaptive or non-adaptive. In adaptive Group Testing,
the tests are performed sequentially, and the content of the pool tested at the generic step
i might depend on the previous i − 1 test outcomes. Conversely, in non-adaptive Group
Testing all pools are a-priori set, and tests are carried out in parallel. Non-adaptive Group
Testing (NAGT) schemes typically require more tests to discover the positives, but they
are faster since tests can be performed in parallel. To combine the advantages of both
techniques, while mitigating their limitations, it is sometimes preferable to implement a
hybrid approach, where a first screening is performed via a NAGT algorithm, followed by a
simple one-by-one testing of the members that are identified in the first stage as potentially
positives. This latter approach is usually called Two-Stage Group Testing [29].

In NAGT, the algorithm to determine the positives is usually represented by means of a
t×n binary matrixM , where each row ofM represents a test while each column is associated
to a distinct member of the population I = {1, 2, . . . , n}. More precisely, we have Mij = 1
if and only if the member j ∈ I belongs to the i-th test. In general, one assumes a known
upper bound k on the cardinality of the unknown set of positives P . Having said that, the
property one usually requires for M to represent a correct (and efficiently decodable) NAGT
is the following [57]: for any k-tuple of the n columns of M we demand that for any column
c of the given k-tuple, there exists a row i ∈ {1, . . . , t} such that c has symbol 1 in row i and
all the remaining k − 1 columns of the k-tuple have a 0 in the same row i. This condition
renders matrices M with such a property equivalent to the well known superimposed codes
introduced in the seminal paper by Kautz and Singleton [85] and, independently, by Erdös
et al. in [64].

This chapter includes research results published in [53].

55
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Motivated by applications in topological DNA-based data storage, the authors of [2]
introduced an interesting new variant of NAGT, in which the associated test matrix M has
to satisfy additional constraints, in order to comply with the biological constraints of the
problem they want to solve. Informally, one of the main problems studied in [2] is to show
the existence of a superimposed code M with a ”small” number t of rows and satisfying
the following additional property: any two 1’s in each column are separated by a run of at
least d 0’s. We refer the reader to [2] for the rationale behind this run-length constraint.
The main achievability result obtained in [2] says that codes with these properties exist for
t = Θ(dk log(n/k) + k2 log(n/k)).

In Section 4.2, we study bounds on the minimum length of (k, n, d)-superimposed codes
introduced by Agarwal et al. [2], in the context of Non-Adaptive Group Testing algorithms
with runlength constraints. A (k, n, d)-superimposed code of length t is a t×n binary matrix
such that any two 1’s in each column are separated by a run of at least d 0’s, and such that
for any column c and any other k − 1 columns, there exists a row where c has 1 and all
the remaining k − 1 columns have 0. Agarwal et al. [2] proved the existence of such codes
with t = Θ(dk log(n/k) + k2 log(n/k)). Here we investigate more in detail the coefficients
in front of these two main terms as well as the role of lower order terms. We show that
improvements can be obtained over the construction in [2] by using different constructions
and by an appropriate exploitation of the Lovász Local Lemma in this context. Our findings
also suggest O(nk) randomized Las Vegas algorithms for the construction of such codes. We
also extend our results to Two-Stage Group Testing algorithms with runlength constraints.

4.2. New lower bounds on (k, n, d)-superimposed codes

4.2.1. Preliminaries. Throughout the section, the logarithms without subscripts are
in base two, and we denote with ln(·) the natural logarithm. For notation convenience we
denote with [a, b] the set {a, a+ 1, . . . , b}.

Definition 4.2.1. [2] Let k, n, d be positive integers, k ≤ n. A (k, n, d)-superimposed
code is a t × n binary matrix M such that any two 1’s in each column of M are separated
by a run of at least d 0’s, and for any k-tuple of the columns of M we have that for any
column c of the given k-tuple, there exists a row i ∈ [1, t] such that c has symbol 1 in row i
and all the remaining k − 1 columns of the k-tuple are equal to 0. The number of rows t of
M is called the length of the (k, n, d)-superimposed code.

Definition 4.2.2. A (k, n, d, w)-superimposed code is a (k, n, d)-superimposed with the
additional constraint that each column has weight w (number of ones).

First, we need the following enumerative lemma.

Lemma 4.2.1. Let S ⊆ {0, 1}t be the set of all distinct binary vectors of length t such
that each vector has Hamming weight w ≥ 1 and any two 1’s in each vector are separated
by a run of at least d 0’s. If t ≥ (w − 1)d+ w, then

|S| =
(
t− (w − 1)d

w

)
.

Proof. Let A be the set of all distinct binary vectors of length t− (w− 1)d and weight
w. One can see that |S| = |A| since each element of S can be obtained from an element
a ∈ A by adding between each pair of consecutive ones in a exactly d 0’s. Conversely, each
element of A can be obtained from an element s ∈ S by removing between each pair of
consecutive ones in s exactly d 0’s. □
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We also need the following technical lemma and an easy corollary, which have been
proved in [74]. We report here the proofs for the reader’s convenience.

Lemma 4.2.2. Let a, b, c be positive integers such that c ≤ a ≤ b. We have that

a

b
· a− c

b− c
≤
(
a− c

2

b− c
2

)2

.

Proof. Clearly a(a− c)c2 ≤ b(b− c)c2. Then adding the quantity 4ab(a− c)(b− c) to
both members implies that a(a − c)(2b − c)2 ≤ b(b − c)(2a − c)2. Therefore Lemma 4.2.2
follows. □

Corollary 4.2.1. Let a, b, c be positive integers such that c ≤ a ≤ b. We have that

(65)

(
a
c

)(
b
c

) ≤ (a− c−1
2

b− c−1
2

)c

.

Proof. Expanding the LHS of (65) we get

(66)

(
a
c

)(
b
c

) =
a

b
· a− 1

b− 1
· · · a− c+ 1

b− c+ 1
.

Let us group the terms in (66) into pairs as follows

(67)
a− i

b− i
· a− (c− i− 1)

b− (c− i− 1)
for i = 0, . . . ,

⌈
c− 1

2

⌉
− 1 .

If c is odd then we leave alone the term (a− c−1
2 )/(b− c−1

2 ). By Lemma 4.2.2, each term in
(67) can be upper bounded by

a− i

b− i
· a− (c− i− 1)

b− (c− i− 1)
≤

(
a− c−1

2

b− c−1
2

)2

.

Hence Corollary 4.2.1 follows. □

4.2.2. New upper bounds. The main tool to prove Theorem 4.2.1 is the Lovász Local
Lemma for the symmetric case, see Lemma 2.1.1 for the statement. We are ready to state
our main result.

Theorem 4.2.1. There exists a (k, n, d, w)-superimposed code of length t, where t is the
minimum integer such that the following inequality holds

(68) ek

[(
n

k

)
−
(
n− k + 1

k

)](
w(k − 1)− w−1

2

t− (w − 1)d− w−1
2

)w

≤ 1.

Proof. Let M be a t × n binary matrix, where each column c is picked uniformly at
random between the set of all distinct binary vectors of length t such that each column has
weight w and any two 1’s in each column of M are separated by a run of at least d 0’s.
Therefore by Lemma 4.2.1 we have that

Pr(c) =

(
t− (w − 1)d

w

)−1

.

For a given index i ∈ [1, n] and a set of column-indices B, |B| = k − 1, i ̸∈ B, let Ei,B be
the event such that for every row in which ci (the i-th column) has 1, there exists an index
j ∈ B such that cj has 1 in that same row. We can write this event in terms of supports
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as Supp(ci) ⊆ Supp(cB). There are n
(
n−1
k−1

)
such events. We can express the probability of

such an event as follows

Pr(Ei,B) =
∑

c′=(c′1,...,c
′
k−1)

Pr(cB = c′) · Pr(Supp(ci) ⊆ Supp(cB)|cB = c′),(69)

where we have denoted with cB the vector (cj1 , . . . , cjk−1
) in which j1, . . . , jk−1 are the

elements of B. The sum in (69) is over all the possible configurations of k − 1 vectors of
length t, weight w and the distance between ones in each column is at least d. Then, we
can upper bound (69) by the maximum of Pr(Supp(ci) ⊆ Supp(cB)|cB = c′) over all k − 1
vectors c′ = (c′1, . . . , c

′
k−1). Therefore, we can consider the worst-case scenario where the

k − 1 columns of M with indices in B maximize this probability. It can be seen that the
maximum is achieved when the w(k− 1) ones of the k− 1 columns indexed by B are placed
in w(k − 1) different rows. Hence,

(70) Pr(Ei,B) ≤
(
w(k−1)

w

)(
t−(w−1)d

w

) .
Using Corollary 4.2.1 we upper bound (70) as follows

(71) Pr(Ei,B) ≤

(
w(k − 1)− w−1

2

t− (w − 1)d− w−1
2

)w

.

Proceeding as in [74], it can be proved that an arbitrary event Ei,A is mutually independent
from all the events Ej,C , where C ⊆ [1, n] \ (A∪{i}) and j ̸∈ C. Since the number of events
Ej,C is equal to (

n− k

k − 1

)
(n− k + 1) = k

(
n− k + 1

k

)
,

each event Ei,A is dependent of at most

(72) D := k

[(
n

k

)
−
(
n− k + 1

k

)]
other events. If the probability that none of the events Ei,A occurs is strictly positive then
there exists a matrix M that is a (k, n, d, w)-superimposed code of length t. Therefore, using
Lemma 2.1.1 and taking P equal to the RHS of (71) and D as defined in equation (72),
Theorem 4.2.1 follows. □

Remark 4.2.1. We note that in Theorem 4.2.1 we could use the union bound instead of
the Local Lemma. Since the total number of events is n

(
n−1
k−1

)
, we have that there exists a

(k, n, d, w)-superimposed code of length t, provided that

(73) n

(
n− 1

k − 1

)(
w(k − 1)− w−1

2

t− (w − 1)d− w−1
2

)w

< 1 .

In [2] the authors proved that a (k, n, d, w)-superimposed code of length t exists, provided
that

(74) n

(
n− 1

k − 1

)(
w(k − 1)

t− (2d+ 1)(w − 1)

)w

< 1 .
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It is clear that our bound given in Remark 4.2.1 is better than the bound given in (74)
since

w(k − 1)− w−1
2

t− (w − 1)d− w−1
2

≤ w(k − 1)

t− (2d+ 1)(w − 1)

for all positive integers w, k, d.
If we compare the bounds of Theorem 4.2.1 and Remark 4.2.1 then it has been proved

in [74] that

(75) ek

[(
n

k

)
−
(
n− k + 1

k

)]
≤ n

(
n− 1

k − 1

)
for all k ≤ 0.667

√
n. Therefore when k is much smaller than n (which is indeed the case in

circumstances of interest), the Local Lemma performs better than the union bound. It is
important to note that a conjecture of Erdős, Frankl and Füredi [64] says that for k ≥

√
n

optimal superimposed codes have length equal to n. The current best known result has been
proved in [105] which states that if k ≥ 1.157

√
n then the minimum length of superimposed

codes is equal to n.

Corollary 4.2.2. There exists a (k, n, d, w)-superimposed code of length t, where

(76) t ≤

⌈
(w − 1)d+

w − 1

2
+

(
w(k − 1)− w − 1

2

)
·

(
min

{
n

(
n− 1

k − 1

)
, ek

[(
n

k

)
−
(
n− k + 1

k

)]}) 1
w

⌉
.

Proof. It easily follows rearranging the terms in equation (68) and in equation (73). □

Corollary 4.2.3. There exists a (k, n, d)-superimposed code of length t with k ≤ n/e,
where

t ≤ ln 2 · dk log(n/k) + e2 · k2 log(n/k)−
(
3e2 − ln 2

)
2

k log(n/k)− d+O(1) .

Proof. Substitute w = k ln(n/k) in (76) and upper bound

min

{
n

(
n− 1

k − 1

)
, ek

[(
n

k

)
−
(
n− k + 1

k

)]}
< k

(en
k

)k
.

Therefore we obtain

(77) t ≤ d (k ln(n/k)− 1) +
k

2
ln(n/k) + e · (kek)

1
k ln(n/k)k

(
k − 3

2

)
ln(n/k) +O(1).

Hence Corollary 4.2.3 follows since n ≥ ek and k1/k ≤ 1
ln 2 for every integer k ≥ 1. □

We note that in the explicit bound given in Corollary 4.2.3 the leading coefficient of
the term k log(n/k) can be improved, for k ≤ 0.667

√
n, by using a better estimation of the

minimum in equation (76) that comes from the use of the Local Lemma.
By exploiting the celebrated result by Moser and Tardos [95], this directly implies a

O(nk) randomized Las Vegas algorithm to construct the codes of Corollary 4.2.3

From the inequality (74) we can derive an explicit upper bound on the length of the

codes whose existence was showed in [2] when w = k ln(n/k) by upper bounding n
(
n−1
k−1

)
with k

(
en
k

)k
. We report here the obtained result.
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Theorem 4.2.2. [2] There exists a (k, n, d)-superimposed code of length t, where

t ≤ 2d (k ln(n/k)− 1) + k ln(n/k) + e · (kek)
1

k ln(n/k)k(k − 1) ln(n/k) +O(1).

It is clear that our result given in equation (77) improves the one of Theorem 4.2.2.

Remark 4.2.2. We note that it was proved in [2] that every (k, n, d)-superimposed code
of length t must satisfy

t ≥ min {n, 1 + (k − 1)(d+ 1)} .
This implies that if k ≥ n−1

d+1 +1 then t = n, so we cannot construct a (k, n, d)-superimposed
code of length t that is better than the identity matrix of size n× n.

By Remark 4.2.2, it is clear that the constraint k ≤ n/e in Corollary 4.2.3 is reasonable
since 1 + (k − 1)(d+ 1) ≥ ek for every k, d ≥ 2.

We also note that a simple generalization of the method given by Cheng et al. in [37]
provide the following result.

Theorem 4.2.3. There exists a (k, n, d)-superimposed code of length t, t ≤ 1
Bk

(k log(n/k)

+ log(kek)), where

Bk = max
q≥2

Bk,q ,(78)

Bk,q =

− log

[
1−

(
1− 1

q

)k−1
]

q + d
.

For k →∞, the point q that maximize (78) is linear in k.

The proof of Theorem 4.2.3 is similar to the one in [37], we only need to ensure that
when we construct a binary matrix M starting from a random q-ary matrix each column c
of M has a run of at least d 0’s between any two 1’s. This can be done by mapping each
q-ary symbol into a binary vector of length q + d where the last d elements are fixed to 0.

If we lower bound Bk with Bk,q for the choice q = 1
ln 2(k − 1) then, for k sufficiently

large, Theorem 4.2.3 gives the following explicit bound on the minimum length t of (k, n, d)-
superimposed codes

(79) t ≤ dk log(n/k) +
1

ln 2
· k(k − 1) log(n/k) +

(
1

ln 2
(k − 1) + d

)
log
(
kek
)
+O(1).

One can see that this bound already improves, for k sufficiently large, the one given in
Theorem 4.2.2 but not the one obtained in Corollary 4.2.3 for k < d.

4.2.3. Selectors. Selectors were introduced in [29] and they can be seen as a general-
ization of superimposed codes. Like superimposed codes, selectors find applications in many
circumstances, like Group Testing [29], efficient conflict resolution in the transmission model
of [86], etc.. In this subsection, we introduce selectors in which the weight of each column is
equal to some fixed value w and where any two 1’s in each column of M are separated by a
run of at least d 0’s, so that they can be applied to the scenario of [2]. Successively, we will
show that selectors can be used to construct efficient two-stage procedure for Group Testing
with runlength constraints, that require a much smaller number of tests, with respect to the
NAGT considered in [2] and in the previous subsection of the present section. Let us start
by giving some definitions.
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Definition 4.2.3. Let k, n, d, p be positive integers, 1 ≤ p ≤ k ≤ n. A (k, n, d, p)-
selector is a t×n binary matrix M such that any two 1’s in each column of M are separated
by a run of at least d 0’s, and for any k-tuple of the columns of M we have that at least
p rows of the identity matrix of size k × k are contained in that k-tuple of columns. The
number of rows t of M is called the length of the (k, n, d, p)-selector.

One can see that for p = k we get the definition of (k, n, d)-superimposed codes studied
in Subsection 4.2.1.

Definition 4.2.4. A (k, n, d, p, w)-selector is a (k, n, d, p)-selector with the additional
constraint that each column has weight w.

It can be seen (see [74, Lemma 2]) that Definition 4.2.3 is equivalent to requiring that for
any k-tuple of columns of a (k, n, d, p)-selector and any k−p+1 columns among the selected
k-tuple, there exists a row of the identity matrix of size k × k where the 1 is contained in
one of the k − p + 1 columns. Therefore, thanks to this equivalence, we can generalize the
proof of Theorem 4.2.1 to obtain the following.

Theorem 4.2.4. There exists a (k, n, d, p, w)-selector of length t, where t is the minimum
integer such that the following inequality holds

(80) e

(
k

p− 1

)[(
n

k

)
−
(
n− k

k

)]
·

(
w(k − 1)− w−1

2

t− (w − 1)d− w−1
2

)w(k−p+1)

≤ 1.

Proof. Let M be a t × n binary matrix, where each column c is picked uniformly at
random between the set of all distinct binary vectors of length t such that each column has
weight w and with distance between ones in each column at least d. As in Theorem 4.2.1,
by Lemma 4.2.1 we have that

Pr(c) =

(
t− (w − 1)d

w

)−1

.

For a given pair of sets B1, B2 ⊆ [1, n] where |B1| = k−p+1, |B2| = p−1 and B1∩B2 = ∅,
let EB1,B2 be the event such that for each column ci with i ∈ B1 and every row r where
ci(r) = 1 there exists an index j ∈ (B1 ∪ B2 \ {i}) such that cj has 1 in that same row r.

There are
(

k
p−1

)(
n
k

)
such events. Then, by the same argument used in the proof of Theorem

4.2.1 we can easily upper bound the probability of such events as follows

(81) Pr(EB1,B2) ≤

( (
w(k−1)

w

)(
t−(w−1)d

w

))k−p+1

.

Using Corollary 4.2.1 we upper bound (81) as follows

(82) Pr(EB1,B2) ≤

(
w(k − 1)− w−1

2

t− (w − 1)d− w−1
2

)w(k−p+1)

.

Let us fix an arbitrary event EA1,A2 then it is easy to see that it is mutually independent
from all the events EA′

1,A
′
2
such that A′

1 ⊆ [1, n]\ (A1∪A2), A
′
2 ⊆ [1, n]\ (A1∪A2∪A′

1). The

number of events EA′
1,A

′
2
is equal to

(
k

p−1

)(
n−k
k

)
. Therefore each event EA1,A2 is dependent

of at most

(83) D :=

(
k

p− 1

)[(
n

k

)
−
(
n− k

k

)]
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other events. If the probability that none of the events EA1,A2 occurs is strictly positive
then there exists a matrix M that is a (k, n, d, p, w)-selector of length t. Using Lemma 2.1.1
and taking P equal to the RHS of (82) and D as defined in equation (83), Theorem 4.2.4
follows. □

Corollary 4.2.4. There exists a (k, n, d, p, w)-selector of length t, where

(84) t ≤

⌈
(w − 1)d+

w − 1

2
+

(
w(k − 1)− w − 1

2

)
·

(
e

(
k

p− 1

)[(
n

k

)
−
(
n− k

k

)]) 1
w(k−p+1)

⌉
.

Proof. It follows rearranging the terms in equation (80). □

Again, by exploiting the result by Moser and Tardos [95], we get a O(nk) randomized
Las Vegas algorithm to construct the codes of Corollary 4.2.4

Thanks to Corollary 4.2.4 we obtain the following upper bound on the minimum length
of (k, n, d, p)-selectors.

Corollary 4.2.5. There exists a (k, n, d, p)-selector of length t with k ≤ n/e, where

t ≤ ln 2 · dk

k − p+ 1
log(n/k) + ln 2 · e3+

1
e

k2

k − p+ 1
log(n/k) +O(k log(n/k)) .

Proof. Substituting w = k
k−p+1 ln(n/k) in (84) and using the well-known inequality(

m
s

)
≤
(
em
s

)s
, we get

t ≤ dk

k − p+ 1
ln(n/k) + e

[
e1+

p
k

(
k

p− 1

) p−1
k

] 1
ln(n/k)

k2

k − p+ 1
ln(n/k) +O(k ln(n/k)) .

Hence Corollary 4.2.5 follows since p ≤ k, n ≥ ek and since the function x1/x takes its
maximum at x = e. □

4.2.4. Application of (k, n, d, p)-selectors to two-stage Group Testing. We need
the following result, whose proof for ”classical” selectors (that is, for selectors without the
runlength constraint studied in this subsection) is implicit in the discussion before Theorem
3 of [29]. It is trivial to see that the proof carries out also in the present scenario.

Lemma 4.2.3. Let M be a (k, n, d, p)-selector with t rows, and let f be the t× 1 columns
vector obtained by the bitwise OR of at most q, q ≤ p− 1, columns ci1 , . . . , ciq of M . Then,
apart from ci1 , . . . , ciq , there are at most other k − q − 1 columns of M whose 1’s are in a
subset of the positions in which the vector f also has 1’s.

Now we proceed as follows. Let k be an upper bound on the number of possible positives
in the Group Testing problem. We perform all the tests corresponding to the rows of a
(2k, n, d, k + 1)-selector M , as explained in the introduction. More precisely, the generic
i-th pool Ti, for i = 1, . . . , t, contains all elements j ∈ [1, n] for which Mij = 1. After
having performed (in parallel) all tests on pools T1, . . . , Tt, we get a ”sindrome” vector f (of
dimension t× 1) equal to the bitwise OR of the (at most) k columns that correspond to the
unknown positive elements. The number of columns of M that are ”covered” by f (that is,
that have their 1’s in a subset of the positions in which the vector f also has 1’s) is upper
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bounded by 2k (by Lemma 4.2.3). In other words, there are at most s ≤ 2k potentially
positive elements, and the true positive are among them. Hence, one can test individually
those s elements to discover the true positives. Altogether, we have used t+ 2k tests.

By using Corollary 4.2.5 to estimate t, we get that we can discover all the positive
elements by performing a number of tests upper bounded by a quantity that is

(85) 2d ln(n/k) +O(k ln(n/k)).

The bound (85) shows that our two-stage Group Testing algorithm outperforms both the
NAGT algorithm presented in [2] and also our improved one given in the previous subsection
of the present section. It is interesting to notice that the bound (85) is information-theoretic
optimal, for d = O(k), and that this optimality can be achieved by introducing the least
amount of adaptivity in the testing algorithm.





CHAPTER 5

A famous sum-distinct problem by Erdős

In this chapter, all the results are obtained in collaboration with Marco Dalai and
Simone Costa.

5.1. Introduction

For any n ≥ 1, consider sets {a1, ..., an} of positive integers with a1 < · · · < an whose
subset sums are all distinct. A famous conjecture, due to Paul Erdős, is that an ≥ c · 2n for
some constant c > 0. Using the variance method, Erdős and Moser [101] (see also [8]) were
able to prove that

an ≥ 1/4 · n−1/2 · 2n.
No advances have been made so far in removing the term n−1/2 from this lower bound,
but there have been several improvements on the constant factor, including the works of
Dubroff, Fox and Xu [58], Guy [81], Elkies [61], Bae [18], and Aliev [6]. In particular, the
best currently known lower bound states that

an ≥ (1 + o(1))

√
2

π

1√
n
2n .

Two simple proofs of this result, first obtained unpublished by Elkies and Gleason, are
presented in [58]. In the other direction, the best-known construction is due to Bohman
[27], who showed that there exist arbitrarily large such sets with an ≤ 0.22002 · 2n.

Remark 5.1.1. In Chapter 3 (Section 3.2), we studied B2 codes that are subsets of
{0, . . . , q − 1}n with the property that all the vector sums over real field between pairs of
codewords are different. The notion of B2 codes was introduced by Sidon for integers in
[108]. The problem introduced in this chapter, instead, deal with a distinct-sum problem
over the integers with the additional constraint that all the subset-sums have to be different
(not only the subsets of cardinality 2).

5.2. A variation on the Erdős distinct-sums problem

In this section, we propose a generalization of the problem in two directions. One is that
the distinct-sums condition is weakened by only requiring that the sums of up to λn elements
of the set be distinct, a direction with connections with the recent study independently
proposed in [17]. The second is that the integers ai be replaced by elements in Zk for some
k ≥ 1. For these cases we derive both upper and lower bounds on the smallest possible value
of the largest component among all of the ai’s, that is on the smallest cube which contains
all the ai elements.

This variation on the problem is inspired by an information-theoretic interpretation,
namely in the setting of signaling over a multiple access channel. Looking at the original

This chapter includes research results published in [45] and [44].
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problem, we can interpret the ai integers as pulse amplitudes that n transmitters can trans-
mit over an additive channel to send one bit of information each, for example, to signal to
the base station that they want to start a communication session. The requirement that
all subset sums be distinct expresses the desire that the base station be able to infer any
possible subset of active users. In this setting, a natural assumption to consider is that only
a maximum fraction of the users might actually be active at the same time, and that signals
be vector-valued rather than scalars since the channel would be used over an interval of time
sending a sequence of pulses (codewords) rather than a single pulse.

5.2.1. Preliminaries. More formally, we consider the following problem.

Problem 5.2.1. Let Fλ,n be the family of all subsets of {1, . . . , n} whose size is smaller
than or equal to λn. We are interested in the minimum M such that there exists a sequence
Σ = (a1, . . . , an) in Zk, ai ∈ [0,M ]k ∀i, (i.e. Σ is M -bounded) such that for all distinct
A1, A2 ∈ Fλ,n, S(A1) ̸= S(A2), where

S(A) =
∑
i∈A

ai .

In the following, we will call such sequences Fλ,n-sum distinct.

Throughout the section, the logarithms are in base two and we denote the open interval
with endpoints x and y by (x, y) and the closed interval by [x, y].

The section is organized as follows. Subsection 5.2.2 is devoted to lower bounds on the
values of M in Problem 5.2.1. We show that for λ ≥ 1/2, both the isoperimetric approach
(see [58]) and the variance method can be applied to obtain non-trivial lower bounds. Then,
in Subsection 5.2.3, we derive three upper bounds using, respectively, the combinatorial
nullstellensatz, the probabilistic method, and a direct construction.

5.2.2. Lower bounds. In this subsection we will derive three different lower bounds
on M . Firstly, we provide a very elementary (but still interesting since, for λ < 1/2 we have
no better results) lower bound.

Proposition 5.2.1. Let Σ = (a1, . . . , an) be an Fλ,n-sum distinct sequence in Zk that
is M -bounded. Then

M ≥ (1 + o(1)) ·


1

⌈λn⌉ 2k
√

2πnλ(1−λ)
2nh(λ)/k if λ < 1/2;

1
⌈λn⌉ · 2

(n−1)/k if 1/2 ≤ λ < 1;
1
n · 2

n/k if λ = 1;

where h(λ) = −λ log λ− (1− λ) log(1− λ) is the binary entropy function.

Proof. The maximum possible sum we can get on some coordinates is at most ⌈λn⌉M .
Then by the pigeonhole principle, for values of λ ∈ (0, 1/2), we have that

Mk ≥ 1

⌈λn⌉k

⌈λn⌉∑
i=0

(
n

i

)
≥ 1

⌈λn⌉k
√

2πnλ(1− λ)
2nh(λ)/k .

This leads to the asymptotic bound as n→∞

M ≥ (1 + o(1))
1

⌈λn⌉ 2k
√
2πnλ(1− λ)

2nh(λ)/k.
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For values of λ ∈ [1/2, 1] the lower bound on M can be easily derived noticing that the

sum
∑⌈λn⌉

i=0

(
n
i

)
is greater than or equal to 2n−1 for λ ∈ [1/2, 1) and it is equal to 2n for

λ = 1. Therefore, we have that

(86) M ≥ (1 + o(1)) ·

{
1

⌈λn⌉ · 2
(n−1)/k if 1/2 ≤ λ < 1;

1
n · 2

n/k if λ = 1.

□

Now, if λ ≥ 1/2, we see that it is possible to improve on the term Cn = 1/⌈λn⌉ in (86)
using the Harper isoperimetric inequality (see [83]) as done in [58] for λ = 1. In particular,
we see that the same bound obtained for λ = 1 also holds for all λ > 1/2. For λ = 1/2,
instead, a weakening by a factor of 2 appears, which can be explained in terms of the
concentration of measure around the average value of the sums.

Theorem 5.2.1. [Harper vertex-isoperimetric inequality] Let G be a family of subsets of

[1, n] with cardinality
∑k

i=0

(
n
i

)
≤ |G| ≤ 2n−1 then |∂G| ≥

(
n

k+1

)
where

∂G = {F | F ∈ P([1, n]),minY ∈G |F∆Y | = 1} is called the border of G.

Inspired by [58], we obtain the following theorem.

Theorem 5.2.2. Let Σ = (a1, . . . , an) be an Fλ,n-sum distinct sequence in Z that is
M -bounded. Then

M ≥ (1 + o(1)) ·


1√
2πn
· 2n if λ = 1/2;√

2
πn · 2

n if λ ∈ (1/2, 1].

Proof. Assume that there exists an Fλ,n-sum distinct sequence Σ = (a1, a2, . . . , an)
and, without loss of generality, that a1 < a2 < · · · < an. Let G be a set of vectors
ϵ = (ϵ1, . . . , ϵn) such that ϵi ∈ {−1/2, 1/2} and the dot product ϵ · Σ < 0 ∀ϵ ∈ G. Clearly
|G| = 2n−1 by symmetry. Then by Theorem 5.2.1 we know that |∂G| ≥

(
n

⌈n/2⌉
)
. If we take

η ∈ ∂G then 0 < η · Σ < an. We can express ∂G = ∂G1 ∪ ∂G2 where

∂G1 = {η ∈ ∂G : supp(η + 1/2) ≤ ⌊λn⌋}
and

∂G2 = {η ∈ ∂G : supp(η + 1/2) ≥ ⌊λn⌋+ 1}.
If λ ∈ (1/2, 1], then we have that

(87) |∂G1| ≥
(

n

⌈n/2⌉

)
− |∂G2|.

Because of the definition of ∂G2

|∂G2| ≤
n∑

i=⌊λn⌋+1

(
n

i

)
≤ 2h(λ)n.

Since in this case h(λ) < 1, from (87) we obtain

|∂G1| ≥ (1 + o(1))

(
n

⌈n/2⌉

)
.

Again, by the pigeonhole principle there exists η1, η2 ∈ ∂G1 such that

|(η1 − η2) · Σ| < an/|∂G1| ≤ (1 + o(1))an/

(
n

⌈n/2⌉

)
.
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Finally, by the hypothesis of sum-distinctness we have that |(η1 − η2) · Σ| ≥ 1, and hence

an > (1 + o(1))

(
n

⌈n/2⌉

)
= (1 + o(1))

√
2

πn
· 2n.

For λ = 1/2 we need a tweak. In this case we see that either ∂G1 or ∂G2 is greater
than or equal to (1/2)

(
n

⌈n/2⌉
)
. Here we note that, since Σ is F1/2,n-sum distinct, it is also

F1/2,n-sum distinct, where F1/2,n is the complement of F1/2,n in the power set P([1, n]).
Therefore we can assume, without loss of generality, that ∂G1 is greater than or equal to
(1/2)

(
n

⌈n/2⌉
)
. Proceeding as in the previous case, here we obtain that

an > (1/2)

(
n

⌈n/2⌉

)
= (1 + o(1))

1√
2πn

· 2n.

□

Remark 5.2.1. A simple extension of Theorem 5.2.2 to the case k > 1 leads, for λ > 1/2,
to the bound

M ≥ (1 + o(1))
k

√
2

π
n

1
2k

−12n/k.

Although a more refined reasoning might lead to better results, we did not manage to obtain
something which could compete with Theorem 5.2.3 below.

Now we see that, using the variance method (see [8], [101] or [81]), it is possible to
improve the bound of Remark 5.2.1 whenever k > 1.

Theorem 5.2.3. Let λ ≥ 1/2 and let Σ = (a1, . . . , an) be an Fλ,n-sum distinct sequence

in Zk that is M -bounded. Then

M ≥ (1 + o(1)) ·


√

4
πn(k+2) · Γ(k/2 + 1)1/k · 2n/k if λ = 1;√

4
πn(k+2) · Γ(k/2 + 1)1/k · 2(n−1)/k if 1/2 ≤ λ < 1;

where Γ is the gamma function.

Proof. Let Σ = (a1, . . . , an) be an M -bounded and Fλ,n-sum distinct sequence in Zk

where λ ≥ 1/2. Consider a random variable X =
∑n

i=1 ϵiai where the random vectors
(ϵ1, ϵ2, . . . , ϵn) are uniformly distributed over the set {ϵ ∈ {−1/2, 1/2}n : supp(ϵ + 1/2) ≤
λn}. We denote with µ and σ2 respectively the expected value and the variance of the
random variable X.

We know that σ2 = E[|X|2]− |E[X]|2 ≤ E[|X|2]. Expanding E[|X|2] we get

(88) E[|X|2] = 1/4

n∑
i=1

|ai|2 + 2
∑
i<j

E[ϵiϵj ](ai · aj),

where E[ϵiϵj ] does not depend on the specific values chosen for i and j. Then for each i ̸= j
the following inequality holds

E[ϵiϵj ] = 1/4 ·
∑⌊λn⌋

i=0

(
n−2
i

)
+
∑⌊λn⌋−2

i=0

(
n−2
i

)
− 2

∑⌊λn⌋−1
i=0

(
n−2
i

)∑⌊λn⌋
i=0

(
n
i

)
= 1/4 ·

(
n−2
⌊λn⌋

)
−
(

n−2
⌊λn⌋−1

)
∑⌊λn⌋

i=0

(
n
i

)
≤ 0 ,(89)
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where the inequality holds since λ ≥ 1/2. By (88), (89), since |ai|2 ≤ kM2, we have that

(90) σ2 ≤ E[|X|2] ≤ knM2

4
.

Now we want to provide a lower bound on σ2. We know, by the sum-distinctness
property of Σ, that each possible value ofX, has a probability of happening equal to 1/|Fλ,n|.
Therefore, considered the possible outcomes s1, s2, . . . , s|Fλ,n| of the random variable X and
its mean µ, the variance can be expressed as follows

σ2 =
1

|Fλ,n|

|Fλ,n|∑
i=1

|si − µ|2.

Thus, we can lower bound the variance by the minimum value that the above expression
can take for distinct values of the si’s on a discrete grid when we relax the constraint that
µ be their average. For any fixed µ, the sum is minimized when the si’s are packed as close
as possible around µ, that is, if d = maxi |si − µ|, then no point in the grid at a distance
d′ < d from µ is left unused (otherwise we can move one of the si’s closer to µ and make
the sum smaller). Let R be the radius of a ball of volume |Fλ,n|, that is,

(91) R =
Γ(k/2 + 1)1/k√

π
|Fλ,n|1/k.

By considering unit-volume non-overlapping cubes around each point in the grid, we deduce
that d ≥ R′ = R−

√
k, so that we have an si in any discrete point at distance d′ < R′ from

µ. So, we have

σ2 ≥ 1

|Fλ,n|
∑

|s−µ|<R′

|s− µ|2

where s runs over all points in the ball on a discrete grid with spacing 1. If we thus scale
everything down by R′, renaming s̃ and µ̃ the scaled quantities, we find

σ2 ≥ R′2

|Fλ,n|
∑

|s̃−µ̃|<1

|s̃− µ̃|2

=
R′2+k

|Fλ,n|
∑

|s̃−µ̃|<1

|s̃− µ̃|2 1

R′k

where now s̃ runs over all points in the ball on a discrete grid with spacing 1/R′. For fixed
k, as n→∞ R′ grows to infinity with R′ = (1+ o(1))R, and the sum in the last expression
behaves as a Riemann approximation for an integral over a unit ball. So, asymptotically as
n→∞ we have

σ2 ≥ (1 + o(1))
R2+k

|Fλ,n|

∫
|x̃−µ̃|≤1

|x̃− µ̃|2 dx̃ .

Integrating in polar coordinates, using the (k − 1)-dimensional volume of the (k − 1)-

dimensional sphere of radius ρ, Sk−1(ρ) =
kπk/2

Γ(k/2+1)ρ
k−1, we obtain

σ2 ≥ (1 + o(1))
R2+k

|Fλ,n|

∫ 1

0
Sk−1(ρ)ρ

2dρ

≥ (1 + o(1))
R2+k

|Fλ,n|
kπk/2

Γ(k/2 + 1)(k + 2)
.
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(b) k > 1

Figure 1. Representation of the sub-exponential factor Cn of the lower
bounds for 1/2 ≤ λ ≤ 1.

Using (91) and (90) we obtain the thesis. □

5.2.3. Upper bounds. The goal of this subsection is to provide upper bounds on M .
We remark that the best known upper bound for the classical Erdős distinct-sums problem
(see Bohman [27]) is always (i.e. for any λ) an upper bound on M for the Fλ,n distinct-sums
problem. Now we will see that this bound can be improved in several situations.

5.2.3.1. One dimensional Upper Bounds. In this paragraph, we consider the one dimen-
sional case that is k = 1. In this case, we can provide an upper bound by using Alon’s
combinatorial nullstellensatz. This Theorem has been applied in several Combinatorial
Number Theory problems; we refer to [84] (see also [39]) for applications in the similar
context of Alspach’s partial sums conjecture and to [40] for background on that problem.
We report here the theorem for the reader’s convenience.

Theorem 5.2.4. [7, Theorem 1.2] Let F be a field and let f = f(x1, . . . , xk) be a polyno-

mial in F[x1, . . . , xk]. Suppose the degree of f is
k∑

i=1
ti, where each ti is a nonnegative integer,

and suppose the coefficient of
k∏

i=1
xtii in f is nonzero. Then, if A1, . . . , Ak are subsets of F

with |Ai| > ti, there are a1 ∈ A1, . . . , ak ∈ Ak so that f(a1, . . . , ak) ̸= 0.

Before providing our upper bound, we need an enumerative lemma. The bound that
we will derive is non-trivial, i.e., it is better than the one derived from the powers of two
sequence, for λ < λ̄ ≈ 0.113546, so we assume for simplicity that λ < 1/3.

We define for convenience

f(λ) = H(λ, λ, 1− 2λ),

where H(p1, . . . , ph) =
∑h

i=1−pi log pi is the Shannon entropy of a probability vector
(p1, . . . , ph).

Lemma 5.2.1. Let Cī be the family of the unodered pairs {A1, A2} of subsets of [1, n]
such that, given an element ī ∈ [1, n]:

• A1 ∩A2 = ∅;
• The element ī belongs to A1 ∪A2;
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• The cardinalities of A1 and A2 are smaller than or equal to λn.

Then, for λ < 1/3, we have the following upper bound on the cardinality of Cī

|Cī| < λ3n2 · 2f(λ)n .

Proof. Suppose, without loss of generality, that ī ∈ A1. Then we can upper bound the
size of Cī as follows

|Cī| ≤
⌊λn⌋∑
i=1

⌊λn⌋∑
j=0

(
n− 1

i− 1, j, n− i− j

)
where i represents the cardinality of A1 while j that of A2. Using the fact that

(
n−1

i−1,j,n−i−j

)
≤

λ ·
(

n
i,j,n−i−j

)
for each i ∈ [1, λn] and j ∈ [0, λn], we get

|Cī| < λ3n2

(
n

⌊λn⌋, ⌊λn⌋, n− 2⌊λn⌋

)
,

since the multinomial coefficient is maximized when all numbers are as equal as possibile.
Then, by a well-known entropy bound on the multinomial coefficient (see [47, Lemma 2.2])
we have that

|Cī| < λ3n2 · 2nH(
⌊λn⌋
n

,
⌊λn⌋
n

,1−2
⌊λn⌋
n

) ≤ λ3n2 · 2nH(λ,λ,1−2λ)

where the last inequality holds because, for λ < 1/3, f(λ) is an increasing function. □

We are now ready to state our bound.

Theorem 5.2.5. For any λ < 1/3, there exists a sequence Σ = (a1, . . . , an) of (λ3n2

2f(λ)n)-bounded positive integers that is Fλ,n-sum distinct.

Proof. For any pair (A1, A2) ∈ F2
λ,n, we define the linear polynomial

lA1,A2(x1, . . . , xn) :=
∑
i∈A1

xi −
∑
j∈A2

xj .

Now, let us denote by Pλ,n the family of the pairs (A1, A2) of elements of Fλ,n such that
A1 ∩A2 = ∅ and min(A1) < min(A2). Then we set

qFλ,n
(x1, . . . , xn) :=

∏
(A1,A2)∈Pλ,n

lA1,A2(x1, . . . , xn).

We note that, for any pair (A′
1, A

′
2) ∈ F2

λ,n such that A′
1 ̸= A′

2, the linear polynomial

lA′
1,A

′
2
(x1, . . . , xn) is equal to ±lA1,A2(x1, . . . , xn) for some (A1, A2) ∈ Pλ,n. Therefore Σ =

(a1, . . . , an) is Fλ,n-sum distinct if and only if qFλ,n
(a1, . . . , an) ̸= 0.

Since Z[x1, . . . , xn] is an integral domain, qFλ,n
is not constantly zero. Therefore there

exist t1, . . . , tn, where each ti is a nonnegative integer, such that the coefficient of
n∏

i=1
xtii in

qFλ,n
is nonzero. Since qFλ,n

is homogeneous, we also have that its degree is
n∑

i=1
ti. Let us

consider ī such that t̄i = maxi ti. The term x
t̄i
ī
originates from the factor rī of qFλ,n

defined
by the product

rī(x1, . . . , xn) :=
∏

(A1,A2)∈Pλ,n: ī∈A1∪A2

lA1,A2(x1, . . . , xn).
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Figure 2. Binary representation of the bn integers used in Lemma 5.2.2.

Hence, because of Lemma 5.2.1, we have that t̄i < λ3n2 · 2f(λ)n. This means that the
hypotheses of Theorem 5.2.4 are satisfied whenever M ≥ λ3n2 · 2f(λ)n > maxi ti and hence,
under this constraint, there exist a1 ∈ [1,M ], . . . , an ∈ [1,M ] such that qFλ,n

(a1, . . . , an) ̸=
0. □

We recall that the result of Theorem 5.2.5 is non-trivial only when λ < λ̄ ≈ 0.113546.
Now, we investigate the range λ ∈ [λ̄, 1/4).

5.2.3.2. Direct constructions. Here we provide a direct construction that improves the
constant of Bohman [27] bound.

Lemma 5.2.2. Let us consider the sequence Σ̃n = (b1, . . . , bn) where

bi :=

{
2i−1 i = 1, 2 . . . n− 1∑j<n/2−1

j=0 22j i = n;

Then, given two subsets A1, A2 of [1, n] such that |A1|+ |A2| < n/2,

S(A1) =
∑
i∈A1

bi ̸=
∑
j∈A2

bj = S(A2).

The structure of the set Σ̃n is better understood by writing a table of the binary repre-
sentations of the integers bn, as shown in Figure 2.

Proof. Let us suppose, by contradiction, that there exist n, A1 and A2 with |A1| +
|A2| < n/2 such that S(A1) = S(A2), and let us consider the smallest n for which this holds.

We note that if two sets A1 and A2 have the same sum, then also A1 \ (A1 ∩ A2) and
A2 \ (A1 ∩ A2) have the same sum. Therefore we may also assume that A1 and A2 are
disjoint. Since a simple check shows that the thesis is true for n ≤ 5, n must be bigger

than 5. Moreover, since Σ̃n \ {bn} is clearly sum-distinct, we can assume without loss of
generality that n ∈ A1. Therefore we have

bn +
∑

i∈A1\{n}

bi =
∑
j∈A2

bj .

which can be rewritten as

(92)

i<n/2−1∑
i=0

22i +
∑

i∈A1\{n}

2i−1 =
∑
j∈A2

2j−1.
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Now we divide the proof in two cases, according to whether n is even or n is odd. The
binary representations shown in Figure 2 might be useful as a complement in some steps of
the discussion.

Consider the case of even n. First observe that in this case equation (92) can rewritten
by replacing n with n− 1 in the upper extreme of the first summation, that is,

(93)

i<(n−1)/2−1∑
i=0

22i +
∑

i∈A1\{n}

2i−1 =
∑
j∈A2

2j−1.

We now claim that n − 1 ∈ A2. Indeed, if n − 1 is neither in A1 nor in A2, we see that

equation (93) provides a counterexample which is already contained in Σ̃n−1. Formally,

the sets A′
1 = A1 \ {n} ∪ {n − 1} and A′

2 = A2 give a counterexample for Σ̃n−1 satisfying
|A′

1| + |A′
2| = |A1| + |A2| < (n − 1)/2, because |A1| + |A2| < n/2 with even n. This

contradicts the minimality of n. It is easy to see that n − 1 ∈ A1 is impossible, since we
would have S(A2) ≤ b1+ . . .+bn−2 < bn−1. This implies that n−1 ∈ A2. As a consequence,
n − 2 must be in A1, for otherwise we would have S(A1) ≤ bn + b1 + b2 + . . . + bn−3 <
2(b1+ b2+ . . .+ bn−3) < bn−1 ≤ S(A2). So A1 contains both n and n− 2, while A2 contains
n− 1, and we have

i<(n−1)/2−1∑
i=0

22i + 2n−3 +
∑

i∈A1\{n,n−2}

2i−1 = 2n−2 +
∑

j∈A2\{n−1}

2j−1 .

Defining now A′
1 = A1 \ {n, n− 2} ∪ {n− 1} and A′

2 = A2 \ {n− 1} ∪ {n− 2}, again these

two sets give a valid counterexample in Σ̃n−1, contradicting the minimality of n.
Consider now the case of odd n. In this case we can rewrite (92) as

2n−3 +

i<(n−1)/2−1∑
i=0

22i +
∑

i∈A1\{n}

2i−1 =
∑
j∈A2

2j−1 .

We notice that A2 must contain either n− 2 or n− 1, but not both, because b1 + b2 +
. . .+ bn−3 < bn but at the same time b1+ b2+ . . .+ bn−3+ bn < bn−2+ bn−1. Also note that
n− 1 cannot be in A1, for the same reason mentioned in the case of even n. So, we are left
with the following cases to consider:

a) n− 2 ∈ A2, n− 1 /∈ A1 ∪A2 and

2n−3 +

i<(n−1)/2−1∑
i=0

22i +
∑

i∈A1\{n}

2i−1 =
∑

j∈A2\{n−2}

2j−1 + 2n−3 ,

In this case, by defining A′
2 = A2 \ {n− 2} A′

1 = A1 \ {n} ∪ {n− 1} we see that these two

sets of indices satisfy |A′
1| + |A′

2| < (n − 1)/2 and give a counterexample in Σ̃n−1, which
contradicts the minimality of n.

b) n− 2 ∈ A1, n− 1 ∈ A2 and

2 · 2n−3 +

i<(n−1)/2−1∑
i=0

22i +
∑

i∈A1\{n,n−2}

2i−1 =
∑

j∈A2\{n−1}

2j−1 + 2n−2 ,

Here we obtain a counterexample valid for Σ̃n−1 by setting A′
1 = A1 \ {n, n− 2} ∪ {n− 1}

and A′
2 = A2 \ {n− 1}.
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c) n− 2 /∈ A1 ∪A2, n− 1 ∈ A2 and

2n−3 +

i<(n−1)/2−1∑
i=0

22i +
∑

i∈A1\{n}

2i−1 =
∑

j∈A2\{n−1}

2j−1 + 2n−2 .

In this case we note that n− 3 must be in A1, for otherwise S(A1) ≤ bn + b1 + . . .+ bn−4 <
bn+ bn−3 < bn−1 ≤ S(A2) (see Figure 2). We can then define A′

1 = A′
1 \ {n, n− 3}∪{n− 1}

and A′
2 = A2 \ {n − 1} ∪ {n − 3} and again obtain a valid counterexample in Σ̃n−1 which

contradicts the minimality of n. □

Remark 5.2.2. We note that the condition |A1|+ |A2| < n/2 in the statement of Lemma
5.2.2 is tight, when n is even and greater than or equal to 6, because if we take A1 = {bn}
and A2 = {b2i+1 : i = 0, . . . , n/2− 2} then, clearly, |A1|+ |A2| = n/2 and S(A1) = S(A2).

The following corollary follows.

Corollary 5.2.1. If λ < 1/4, Σ̃n is Fλ,n-sum distinct.

The meaning of this Corollary is that it is possible to add one more element to the
sequence of powers of two in such a way that it remains Fλ,n-sum distinct. With the same
procedure we can also prove the following statement:

Lemma 5.2.3. Let us consider the sequence Σ̃n = (b1, . . . , bn) where, as in Lemma 5.2.2,
we have that

bi :=

{
2i−1 i = 1, 2 . . . n− 1∑j<n/2−1

j=0 22j i = n;

Then, given two subsets A1, A2 of [1, n] such that |A1|+ |A2| < (n− 1)/2,

S(A1) =
∑
i∈A1

bi ̸=
∑
j∈A2

bj + 2n−1 = S(A2) + 2n−1.

Proof. We note that the set Σ̃n∪{2n−1} is Σ̃n+1 whenever n is odd. Therefore, in this
case, a contradiction to the statements leads to a contradiction to Lemma 5.2.2 and we can
assume n to be even.

Hence, we suppose now we have a counterexample with n even. We would have that
bn =

∑n−4
i=0, i≡0 (mod 2) 2

i and n must belong to A1. It follows that

n−4∑
i=0, i≡0 (mod 2)

2i +
∑

i∈A1\{n}

bi =
∑
j∈A2

bj + 2n−1.

Here we note that, since

2n−1 = 2n−2 + 2n−2 > bn +

n−3∑
i=0

2i = bn +

n−2∑
i=1

bi,

n− 1 must also belong to A1. In this case we would have that:

bn + 2n−2 +
∑

i∈A1\{n,n−1}

bi =
∑
j∈A2

bj + 2n−1.

We remark that the (n + 1)-th element of the sequence Σ̃n+1 is
∑n−2

i=0, i≡0 (mod 2) 2
i that is

bn + 2n−2. It follows that the set (Σ̃n \ {bn}) ∪ {2n−1, bn + 2n−2} is Σ̃n+1 that would be a
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Figure 3. Binary representation of the an integers used in Proposition 5.2.2.

counterexample to Lemma 5.2.2. Therefore, also for n even, we would obtain a contradiction
to Lemma 5.2.2 and thus the statement is verified. □

The ideas of Lemmas 5.2.2 and 5.2.3 can be adapted to the following sum-distinct
sequence.

Theorem 5.2.6 ([93]). Given n ≥ 67, there exists a sum-distinct sequence Σn of integers
such that c1,n < c2,n < · · · < cn,n, 0, 22 · 2n < cn,n < 0, 22096 · 2n and such that, denoted by
(c1, c2, . . . , c67) the sequence for n = 67, we have

ci,n =

{
2i−1 if i ≤ n− 67;

2n−67 · ci−(n−67) otherwise.

Now we show that it is possible to add one more element also to this sequence in such
a way that it remains Fλ,n-sum distinct. We observe that the proof of our result does not
depend on the specific c̄i values which appear in Theorem 5.2.6. Indeed, it suffices to analyze
only less significant bits in the binary representation of the ci,n’s, which are all zeros for
i ≥ n− 66.

Proposition 5.2.2. Let Σ = (a1, . . . , an) be the sequence of integers defined by

ai :=

{
ci,n−1 i = 1 . . . , n− 1∑j<(n−68)/2−1

j=0 22j i = n

Then, if λ < 1/4 and n is big enough, Σ is Fλ,n-sum distinct.

The structure of the set Σ in Proposition 5.2.2 is better understood by writing a table
of the binary representations of the integers an, as shown in Figure 3.

Proof. Let us suppose, by contradiction, that there exists two disjoint sets A1 and A2

in Fλ,n such that S(A1) = S(A2). We note that, if n ̸∈ A1 ∪A2, we would have two distinct

sets of elements of Σn−1 with the same sums which is in contradiction with the fact that,
due to Theorem 5.2.6, Σn−1 is sum-distinct. Therefore, we may assume, without loss of
generality, that n ∈ A1. It follows that

an +
∑

i∈A1\{n}

ai =
∑
j∈A2

aj .

Set n′ := n − 68. As a generalization of the method used in Lemma 5.2.2, we first look
at the equation modulo some appropriate power of 2, namely 2n

′−1 in this case, and then
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consider possible reminders in the binary expressions for the sums. We set then A′
1 :=

(A1 \ [n′, n]) ∪ {n′}, A′
2 := A2 \ [n′, n], and we redefine an′ as an′ :=

∑i<n′/2−1
i=0 22i. Since

S(A1) = S(A2) and S(A′
2) ≤ a1+a2+. . .+an′−1 < 2n

′−1 we have that either S(A′
1) = S(A′

2)

or S(A′
1) = S(A′

2)+ 2n
′−1. Also, since n′ ∈ A′

1 we have that both A′
1 and A′

2 are not empty.
Here, in the first case, if n is big enough, we would have that

|A′
1|+ |A′

2| ≤ |A1|+ |A2| ≤ 2λn < n′/2.

This would imply that Σ̃n′ is a contradiction to the statement of Lemma 5.2.2 considered
for sets A′

1, A
′
2 and for n′.

Similarly, in the second case, if n is big enough, we would have that

|A′
1|+ |A′

2| ≤ |A1|+ |A2| ≤ 2λn < (n′ − 1)/2.

Here we would have that Σ̃n′ is a contradiction to the statement of Lemma 5.2.3 considered
for sets A′

1, A
′
2 and for n′.

Since we obtain a contradiction in all cases, Σ is Fλ,n-sum distinct. □

In case λ < 1/8 we can even add two elements to the sequence Σ dividing again the
coefficient by 2. At this purpose we need another technical lemma.

Lemma 5.2.4. Let us consider the sequence (d1, . . . , dn) where di := 2i−1.
Then, given three subsets A1, A2, A3 of [1, n] such that S(A1) + S(A2) = S(A3) we have

that

|A1|+ |A2| ≥ |A3|.

Proof. Assume A1, A2 and A3 form a counterexample with minimum possible value of
|A1|+|A2|. By the uniqueness of the binary representation, it is clear that Y := A1∩A2 ̸= ∅.
Also, we note that n /∈ Y . Then we have∑

i∈A1

2i−1 +
∑
i∈A2

2i−1 =
∑

i∈A1\Y

2i−1 +
∑

i∈A2\Y

2i−1 + 2
∑
i∈Y

2i−1

=
∑
i∈A′

1

2i−1 +
∑
i∈A′

2

2i−1

where A′
1 = A1 ∪A2 \Y and A′

2 = Y +1 is obtained by adding 1 to each element of Y . But
here |A′

1| + |A′
2| = |A1 ∪ A2| < |A1| + |A2|, contradicting the assumption that the chosen

counterexample minimizes |A1|+ |A2|. □

Proposition 5.2.3. Let n be a positive integer, let us set n′ = ⌊(n − 69)/2⌋ and let
Σ = (a1, . . . , an) be the sequence of integers defined by

ai :=


∑j<(n−69)/2−1

j=⌈n′/2⌉−1 22j if i = n;∑j<n′/2−1
j=0 22j if i = n− 1;

ci,n−2 otherwise.

Then, if λ < 1/8 and n is big enough, Σ is Fλ,n-sum distinct.

The structure of the set Σ in Proposition 5.2.3 is better understood by writing a table
of the binary representations of the integers an. In Figure 4 we show the table only for even
n and n′ (the other configurations of n and n′ can be easily derived).



5.2. A VARIATION ON THE ERDŐS DISTINCT-SUMS PROBLEM 77
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Figure 4. Binary representation of the an integers used in Proposition 5.2.3
when n and n′ are even.

Proof. Let us suppose, by contradiction, that there exists A1 and A2 in Fλ,n such

that S(A1) =
∑

i∈A1
ai =

∑
j∈A1

aj = S(A2). Since Σn−2 is sum distinct, we may assume,
without loss of generality, that n − 1 ∈ A1 or n ∈ A1 and n − 1 ̸∈ A1, A2. Indeed, if both
n and n− 1 do not belong to A1 ∪A2 we would have two distinct sets of elements of Σn−2

with the same sums which is in contradiction with Theorem 5.2.6.
In the first case we may assume due to Proposition 5.2.2 that n /∈ A1 and hence we have

an−1 +
∑

i∈A1\{n,n−1}

ai =
∑
j∈A2

aj .

As done in Proposition 5.2.2, we first look at the equation modulo some appropriate
power of 2, namely 2n

′−2 in this case, and then consider possible reminders in the binary
expressions for the sums. We set A′

1 := (A1 \ [n′ − 1, n]) ∪ {n′}, A′
2 := A2 \ [n′ − 1, n] and

we rename an′ by setting an′ :=
∑i<n′/2−1

i=0 22i where we recall that n′ = ⌊(n− 69)/2⌋. Since
S(A1) = S(A2) and S(A′

2) ≤ a1+a2+. . .+an′−2 < 2n
′−2 we have that either S(A′

1) = S(A′
2)

or S(A′
1) = S(A′

2)+2n
′−2. In the first case this leads to contradict the statement of Lemma

5.2.2 considered for the sets A′
1, A

′
2 and for n′. In the second case, we get a contradiction

to the statement of Lemma 5.2.2 considered for the sets A′
1, A

′
2 ∪ {n′ − 1} and for n′.

Let us assume now that n ∈ A1 and n− 1 ̸∈ A1, A2, that is:

(94) an +
∑

i∈A1\{n,n−1}

ai =
∑
j∈A2

aj .

Here we note that by setting A3 := {2i+ 1 : 0 ≤ i < n′/2− 1} and by adding an−1 to both
sides of equation (94) we get

(95) an + an−1 +
∑

i∈A1\{n,n−1}

ai =
∑
j∈A2

aj +
∑
j∈A3

aj ,

because clearly an−1 =
∑

j∈A3
aj .
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Since |A2| < 1
8n, there exists h ∈ [n′− 1, n− 69] that is not in A2 and for which we have

that ah > an−1. This implies that

(96) 2h >
∑
j∈A2
j<h

aj + ah >
∑
j∈A2
j<h

aj + an−1 =
∑
j∈A2
j<h

aj +
∑
j∈A3

aj .

Considering the binary representation of the natural numbers there exists a set A′′
2 such that

(97)
∑
j∈A2,
j<h

aj +
∑
j∈A3

aj =
∑
j∈A′′

2

2j−1.

Set A′′
1 := (A1 \{n})∪{n−1} and redefine an−1 by setting an−1 =

∑i<(n−69)/2−1
i=0 22i. Then

thanks to the upper bound of equation (96) we know that A′′
2 ⊆ [1, h] and hence aj = 2j−1

for j ∈ A′′
2 and equation (95) can be rewritten as:

(98)
∑
i∈A′′

1

ai =
∑
j∈A′′

2

aj +
∑
j∈A2,
j>h

aj .

Set A′′′
2 := A′′

2 ∪ (A2 \ [1, h]). Since A′′
2 and A2 \ [1, h] are disjoint, equation (98) becomes∑
i∈A′′

1

ai =
∑
j∈A′′′

2

aj .

Now it follows from Lemma 5.2.4 that |A′′
2| ≤ |A2 \ [h, n]|+ |A3|. Therefore we have that

|A′′′
2 | = |A′′

2|+ |A2 \ [1, h]| ≤ |A2|+ |A3|.

Moreover, since, |A2| ≤ λn < 1
8(n− 1) for n big enough and |A3| < 1

4(n− 1), we obtain that

|A′′′
2 | < 1

8(n−1)+
1
4(n−1). We also have that, for n big enough, |A′′

1| = |A1| ≤ λn < 1
8(n−1).

Here we note that |A′′
1|+ |A′′′

2 | < 1
2(n− 1) but this is in contradiction with the statement of

Proposition 5.2.2 considered for the sets A′′
1, A

′′′
2 and for n− 1. □

As a consequence, we have the following result.

Theorem 5.2.7. Let λ < 1/4, (resp. λ < 1/8) then, if n is big enough, there exists

a sequence Σ = (a1, . . . , an) of
(
0,22096

2 · 2n
)
-bounded integers (resp.

(
0,22096

4 · 2n
)
-bounded

integers) that is Fλ,n-sum distinct.

5.2.3.3. Multi-Dimensional upper bounds. In this paragraph we consider the general case
k ≥ 1. First of all, we note that both Theorem 5.2.5 and Theorem 5.2.7 can be used to
obtain an upper bound for the M of Problem 5.2.1 also in Zk.

Proposition 5.2.4. Let Σ̄ be an integer M -bounded, Fλ′,n′-sum distinct sequence of

length n′. Then there exists an M -bounded sequence Σ in Zk of length n that is Fλ,n-sum
distinct where n = kn′ and λ = λ′/k.

Proof. We set Σ̄j to be the sequence in Zk whose j-th projection is Σ̄ and that is
zero on the other coordinates. It suffices to consider the sequence Σ = (Σ̄1, Σ̄2, . . . , Σ̄k).
Clearly Σ is a sequence in Zk of length n. It is also easy to see that, the existence of A1, A2

in Fλ,n such that S(A1) = S(A2) would imply the existence of A′
1, A

′
2 in Fλ′,n′ such that

S(A′
1) = S(A′

2) for Σ̄. But, since Σ̄ is an Fλ′,n′-sum distinct sequence, it follows that Σ is
Fλ,n-sum distinct. □
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On the other hand, assuming k > 1, these results can be improved for several values of
λ using the probabilistic method (see [8]). If k = 1, instead, the probabilistic method fails
to beat the upper bound of Theorem 5.2.5 (see Remark 5.2.3).

We first need another enumerative lemma.

Lemma 5.2.5. Let C be the family of the unordered pairs {A1, A2} of subsets of [1, n]
such that:

• A1 ∩A2 = ∅;
• The cardinalities of A1 and A2 are smaller than or equal to λn.

Then, for λ < 1/3, we have the following upper bound on the cardinality of C

|C| < λ2n2

2
· 2f(λ)n .

Proof. It can be easily derived from the proof of Lemma 5.2.1. □

Theorem 5.2.8. Let

Cλ,n = k

√
λ2n2

2τλ
2f(λ)τλ and τλ =

⌈
1

2f(λ) − 1

⌉
.

Then there exists a sequence Σ = (a1, . . . , an), for n big enough, of
(
Cλ,n · 2f(λ)n/k

)
-bounded

elements of Zk that is Fλ,n-sum distinct.

Proof. We recall that, if two sets A1 and A2 have the same sum, then also A1\(A1∩A2)
and A2\(A1∩A2) have the same sum. Therefore, a sequence Σ is Fλ,n-sum distinct whenever
S(A1) ̸= S(A2) for any A1, A2 ∈ Fλ,n such that A1 ∩A2 = ∅. Moreover, since A1 ̸= A2, we
can assume without loss of generality that A2 is not the empty set.

Now we choose, uniformly at random, the sequence Σ′ with elements in [1,M ]k and of
length n′ (whose value will be specified later). Let X be a random variable that represents
the numbers of pairs of elements of Fλ,n′ such that A1 ∩ A2 = ∅, S(A1) = S(A2) and A2 is
not the empty set.

Then we need to estimate

E[X] = E(|{{A1, A2} : S(A1) = S(A2), A1, A2 ∈ Fλ,n′ , A1 ∩A2 = ∅ ≠ A2}|)

=
∑

{A1,A2}: A1,A2∈Fλ,n′ ,A1∩A2=∅≠A2

p[S(A1) = S(A2)].

Since A1 ∩ A2 = ∅, the value of S(A1) is independent from the value of S(A2). Then the
probability p[S(A1) = S(A2)] is the following

p[S(A1) = S(A2)] =
∑
s∈Zk

p[S(A1) = s] · p[S(A2) = s].

We recall that A1 ∩ A2 = ∅ ̸= A2 and hence there exists i ∈ A2 \ A1. Clearly, A2 can sum
to s only if ai = s− S(A2 \ {i}) that happens with probability at most 1/Mk. This means
that

E[X] ≤
∑

{A1,A2}: A1,A2∈Fλ,n,A1∩A2=∅̸=A2

∑
s∈Zk

p[S(A1) = s](1/Mk)


=

1

Mk
|{{A1, A2} : A1, A2 ∈ Fλ,n, A1 ∩A2 = ∅ ≠ A2}|.
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Figure 5. Exponent of the upper and lower bounds for k = 1 and for k > 1.
Here the bounds of Bohman [27], Theorem 5.2.5 and Theorem 5.2.7 have been
extended via Proposition 5.2.4.

Therefore, according to Lemma 5.2.5, we have that

(99) E[X] <
1

Mk
(λn′)2 · 2f(λ)n′−1.

This means that, in case (1/Mk)(λn′)2·2f(λ)n′−1 ≤ t, there exists a sequence Σ′ = (a1, . . . , an′)
of elements in Zk with at most t pairs {A1, A2} that have the same sum and satisfy
the assumptions. Hence, we can remove t elements from Σ′ and obtain a new sequence
Σ = (a1, . . . , an), with n = n′ − t elements, that is Fλ,n-sum distinct. Since n′ = n+ t and
due to inequality (99), Σ exists whenever

(100) M ≥ (1 + o(1))
k

√
λ2n2

2

2f(λ)t

t
· 2f(λ)n/k.

It can be seen that the function gλ(t) :=
2f(λ)t

t is strictly convex for t > 0 and the minimum

integer m for which gλ(m+ 1) ≥ gλ(m) is equal to τλ. Therefore t = τλ =
⌈

1
2f(λ)−1

⌉
is the

best choice in order to optimize the inequality (100). □

Remark 5.2.3. We note that for k = 1 and n sufficiently large the upper bound given
in Theorem 5.2.5 improves the one given in Theorem 5.2.8 since

λ <
2f(λ)τλ

2τλ
,

for every 0 < λ ≤ 1/3.



CHAPTER 6

Sequenceability of cyclic groups

In this chapter, the results presented in Section 6.2 are obtained in collaboration with
Simone Costa, M. A. Ollis and Sarah Z. Rovner-Frydman. All the results presented in
Section 6.3 are obtained with Simone Costa.

6.1. Introduction

Given a subset of an abelian group, is it possible to order the elements of the subset in
such a way that the partial sums of the ordering are distinct? This type of problem goes
back at least fifty years and there are several conjectures on the topic, described below.
The successful resolution, or partial resolution, of these conjectures, has implications in the
study of graph decompositions and embeddings and in the construction of Heffter arrays
and other combinatorial designs.

We introduce some definitions and notation to make the previous question precise. Let G
be an abelian group and let S be a subset of G \ {0} of size k.

Let x = (x1, x2, . . . , xk) be an ordering of the elements of S and define its partial sums
y = (y0, y1, . . . , yk) by y0 = 0 and yi = x1 + · · · + xi for i > 0. Denote the sum of the
elements of S by ΣS. As G is abelian, for any ordering of the elements of S the final partial
sum yk is equal to ΣS.

If the elements of y are distinct, then x is a sequencing of S. If the elements of y
are distinct with the exception that y0 = 0 = yk, then x is a rotational sequencing or R-
sequencing of S. We sometimes refer to a sequencing as a linear sequencing to emphasize
the distinction from rotational sequencings. As G is abelian, a subset S cannot have both
a linear and a rotational sequencing. If S has one or the other, call it sequenceable. If every
subset S ⊆ G \ {0} is sequenceable then G is strongly sequenceable.

This nomenclature is consistent with the definition of sequencing and R-sequencing
introduced by Gordon in 1961 and Friedlander, Gordon and Miller in 1978 respectively
for the case S = G \ {0} [71, 76]. Replacing “R-” with the more descriptive “rotational”
was suggested by Ahmed, Azimli, Anderson and Preece in 2011 [3]. The term “strongly
sequenceable” was first used in the literature by Alspach and Liversidge in 2020, where they
say that Alspach and Kalinowski have posed the problem of determining which groups are
strongly sequenceable and also make a conjecture that would imply that every finite abelian
group is strongly sequenceable.

We now come to the main conjecture.

Conjecture 6.1.1. Every abelian group is strongly sequenceable.

Conjecture 6.1.1 is the amalgamation of several questions and conjectures. In 1971,
Graham asked whether every subset S of Zn, the additively written cyclic group of order n,
with 0 ̸∈ S and ΣS = 0, has a rotational sequencing when n is prime [77]. Independently
of this, in 2016 Archdeacon, Dinitz, Mattern and Stinson conjectured that any subset S of

This chapter includes research results published in [43].
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82 6. SEQUENCEABILITY OF CYCLIC GROUPS

Zn\{0} with ΣS = 0 has a rotational sequencing [13]. In 2005, Bode and Harborth published
the first results on Alspach’s conjecture that every subset S of Zn \ {0} with ΣS ̸= 0 has a
linear sequencing [26]. In 2018, Costa, Morini, Pasotti and Pellegrini suggested that these
conjectures may be generalized from subsets of Zn to finite subsets of arbitrary (including
infinite) abelian groups [40].

Costa, Morini, Pasotti and Pellegrini also put forward a weaker version of Conjec-
ture 6.1.1 that is sufficient for some applications to Heffter arrays, a combinatorial structure
introduced by Archdeacon in [14]:

Conjecture 6.1.2. Let G be an abelian group and let S be a finite subset of G \ {0}
such that ΣS = 0 and |S∩{x,−x}| ≤ 1 for any x ∈ G. Then S has a rotational sequencing.

As suggested by the discussion of nomenclature above, the case S = G \ {0} was consid-
ered earlier (mostly) than these conjectures. Gordon posed and solved the question in this
instance for linear sequenceability in 1961. Friedlander, Gordon and Miller conjectured the
rotational sequenceability version in 1978 [71] and this was recently resolved by Alspach,
Kreher and Pastine [9].

Theorem 6.1.1. Let G be an abelian group of order n and S ⊆ G \ {0} with |S| = k.
Then S is sequenceable in the following cases:

(1) k ≤ 9 [10],
(2) k = 10 when n is prime [84],
(3) k = n− 3 when n is prime and ΣS ̸= 0 [84],
(4) k = n− 2 when G is cyclic and ΣS ̸= 0 [26],
(5) k = n− 1 [9, 76],
(6) n ≤ 21 [40],
(7) n ≤ 23 and

∑
S = 0 [40], and

(8) n ≤ 25 for G cyclic and
∑

S = 0 [13].

Furthermore, if G is a torsion-free abelian group, then any subset S of G \ {0} whose size
is at most 11 is sequenceable [39].

This chapter is organized as follows. In Section 6.2, we demonstrate the sequenceability
of subsets of size k of Zn \ {0} when n = mt in many cases, when m is prime and for k ≤ 11
and t ≤ 5 and for k = 12 and t ≤ 4. We obtain similar, but partial, results for 13 ≤ k ≤ 15.
This represents progress on a variety of questions and conjectures in the literature concerning
the sequenceability of subsets of abelian groups, which we combine and summarize into the
conjecture that if a subset of an abelian group does not contain 0 then it is sequenceable.
If the elements of a sequenceable set A do not sum to 0 then there exists a simple path P
in the Cayley graph Cay[G : ±A] such that ∆(P ) = ±A. In Section 6.3, inspired by this
graph-theoretical interpretation, we propose a weakening of a conjecture given by Alspach
and Liversidge [10]. The goal is to find an ordering whose partial sums define a walk W
of girth bigger than t (for a given t < k) and such that ∆(W ) = ±A. In this case, we say
that the set A is t-weakly sequenceable. The main result presented in Section 6.3 is that any
subset A of Zp \ {0} is t-weakly sequenceable whenever t < 7 or when A does not contain
pairs of type {x,−x} and t < 8.

Remark 6.1.1. In Chapter 5, we studied a distinct-sum problem over the integers with
the constraint that all the subset-sums have to be different. In this Chapter, instead, we con-
sider sequences of distinct elements that belong to the cyclic group Zn with the property that
the partial sums have to be different. So we are both weakening the subset-sums constraint
and strengthening the requirements since we need to work in a cyclic group.
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6.2. On sequences in cyclic groups with distinct partial sums

The main purpose of this section is to prove more instances of Conjecture 6.1.1. In
the next subsection we adapt the polynomial method used in [84] so that it may be used
to prove instances of the conjecture in cyclic groups of order pt, where p is prime and t is
small. This requires computing coefficients of monomials in various polynomials, the results
of which are summarized in Subsection 6.2.2. As well as composite orders, we are able to
push k higher in the prime case. In sum, we prove:

Theorem 6.2.1. Let n = pt with p prime. Then subsets S of size k of Zn \ {0} are
sequenceable in the following cases:

(1) k ≤ 11 and t ≤ 5,
(2) k = 12 and t ≤ 4,
(3) k = 13 and t ∈ {2, 3}, provided S contains at least one element not in the subgroup

of order p,
(4) k = 14 and t = 2, provided S contains at least one element not in the subgroup of

order p, and
(5) k = 15 and t = 2, provided S does not contain exactly 0, 1, 2 or 15 elements of the

subgroup of order p.

6.2.1. Applying the polynomial method. The method relies on the Non-Vanishing
Corollary to the Combinatorial Nullstellensatz (see [7, 94]).

Theorem 6.2.2. (Non-Vanishing Corollary) Let F be a finite field and let f(x1, x2, . . . , xk)

be a polynomial in F [x1, x2, . . . , xk]. Suppose the degree deg(f) of f is
∑k

i=1 γi, where

each γi is a nonnegative integer, and suppose the coefficient of
∏k

i=1 x
γi
i in f is nonzero.

If C1, C2, . . . , Ck are subsets of F with |Ci| > γi, then there are c1 ∈ C1, . . . , ck ∈ Ck such
that f(c1, c2, . . . , ck) ̸= 0.

In the notation of the Non-Vanishing Corollary, call the monomial x
|C1|−1
1 · · ·x|Ck|−1

k the
bounding monomial. The corollary can be rephrased as requiring the polynomial to include
a monomial of maximum degree that divides the bounding monomial (where by “include”
we mean that it has a nonzero coefficient).

To use the Non-Vanishing Corollary we require a polynomial for which the nonzeros
correspond to successful solutions to the case of the problem under consideration.

We work in the group Zp×Zt, where p is prime and p ∤ t. This means that p is coprime
with t, hence Zp × Zt

∼= Zpt. The set Zp is a field, and this plays the role of the field F in
the Non-Vanishing Corollary.

Let π2 : Zp ×Zt → Zt be the projection map that picks out the second coordinate of an
element and for a subset S ⊆ (Zp × Zt) \ {(0, 0)} let π2(S) be the multiset {π2(s) : s ∈ S}.
Define the type of S to be the sequence λ = (λ0, . . . , λt−1), where λi is the number of times
that i appears in π2(S).

Let T be a multiset of elements from Zt \ {0} with size k. Let a = (a1, . . . , ak) be an
arrangement of the elements of T with partial sums b = (b0, b1, . . . , bk). If, for each i, the
element i appears at most r times in b, then a is a quotient sequencing of T with respect to r.
In our setting, given some S ⊆ (Zp × Zt) \ {(0, 0)} for which we wish to find a sequencing,
we shall be interested in quotient sequencings of π2(S) with respect to p.

When S = G \ {0}, quotient sequencings have been a useful tool in the construction of
sequencings from the earliest papers on the subject; see [99] for a summary of the history.
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Given S ⊆ (Zp × Zt) \ {(0, 0)} we first construct a quotient sequencing of π2(S) with
respect to p. We then use the polynomial method to show that there is a sequencing for S
that projects elementwise onto that quotient sequencing. Given such a quotient sequencing
a = (a1, . . . , ak) with partial sums b = (b0, b1, . . . , bk), let

xa = ((x1, a1), (x2, a2), . . . , (xk, ak))

be a putative arrangement of the elements of S with partial sums

ya = ((y0, b0), (y1, b1), . . . , (yk, bk)) .

Define a polynomial in variables x1, x2, . . . , xk by

pa =
∏

1≤i<j≤k
ai=aj

(xj − xi)
∏

0≤i<j≤k
bi=bj
j ̸=i+1

(i,j)̸=(0,k)

(yj − yi)

where the variable xi ranges over the values {c : (c, ai) ∈ S} for each i.
We claim that an assignment of the variables makes xa a sequencing of S if and only if

this polynomial is nonzero.
The first product compares elements in the sequencing: it contains a factor that is zero

if and only if (xi, ai) = (xj , aj) for some i, j. The second product does a similar task for
the partial sums when the first two conditions on the product are considered. The second
two conditions reduce the degree of the polynomial, which is generally a positive effect as it
makes it easier to meet the degree condition in the Non-Vanishing Corollary and reduces the
amount of work required to calculate a coefficient. The condition j ̸= i + 1 is permissible,
because we know that (yi, bi) ̸= (yi+1, bi+1) by the assumption that (0, 0) ̸∈ S. The condition
(i, j) ̸= (0, k) is permissible as we know that (y0, b0) = (0, 0) and (yk, bk) = ΣS: the
polynomial will detect linear or rotational sequencings according to whether ΣS is nonzero
or zero respectively.

For each i, the number of possible values for xi is |{c : (c, ai) ∈ S}|. Therefore the

bounding monomial for use with the Non-Vanishing Corollary is given by x
|C1|−1
1 · · ·x|Ck|−1

k ,

where Ci is the set of elements in S that are in the coset (0, ai) with respect to the subgroup
Zp × {0}.

Example 6.2.1. Let G = Zp×Z2 with p > 2 and p prime. Suppose S ⊆ G\{(0, 0)} with
|S| = 5 and of type (3, 2). The sequence a = (0, 1, 0, 0, 1) has partial sums (0, 0, 1, 1, 1, 0)
and so is a quotient sequencing of π2(S) with respect to p. We desire a sequencing of S of
the form

((x1, 0), (x2, 1), (x3, 0), (x4, 0), (x5, 1)) .

The polynomial is

pa = (x3 − x1)(x4 − x1)(x4 − x3)(x5 − x2)(y5 − y1)(y4 − y2)

= (x3 − x1)(x4 − x1)(x4 − x3)(x5 − x2)(x2 + x3 + x4 + x5)(x3 + x4).

To apply the Non-Vanishing Corollary we need a monomial of this polynomial which di-
vides the bounding monomial x21x2x

2
3x

2
4x5 with a nonzero coefficient. One such is x21x

2
3x4x5,

which has coefficient −1. Hence whenever S has this form it has a sequencing.
Noting that G ∼= Z2p, we can rephrase this as showing that a subset S of Z2p \ {0} has

a sequencing whenever |S| = 5 and S has exactly 3 even elements.
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When t = 1 we always have ai = 0 = aj and bi = 0 = bj and the polynomial pa reduces
to the one used in [84] to investigate Alspach’s Conjecture in Zp for p prime:

pa =
∏

1≤i<j≤k

(xj − xi)
∏

0≤i<j≤k
j ̸=i+1

(i,j)̸=(0,k)

(yj − yi).

As noted in the introduction, that paper was concerned only with the case ΣS ̸= 0, but the
above discussion shows that the same calculations also prove Theorem 6.1.1.3 when ΣS = 0.

The polynomial method approach may also be used for Conjecture 6.1.2. While the
same polynomial suffices, we can reduce the degree slightly by considering this alternative:

qa =
∏

1≤i<j≤k
ai=aj

(xj − xi)
∏

0≤i<j≤k
bi=bj

j ̸∈{i+1,i+2}
(i,j) ̸=(0,k)

(yj − yi).

The difference compared to pa is that we have removed factors of the form (yi+2 − yi). In
the context of Conjecture 6.1.2 we know that a factor of this form is nonzero when yi and
yi+2 are in the same coset because (xi+1, ai+1) ̸= −(xi, ai). However, in the next subsection
all computations use pa rather than qa.

6.2.2. Computational results. We begin with the case t = 1; that is, groups of prime
order.

Theorem 6.2.3. Let p be prime and let S ⊆ Zp \ {0} with |S| ∈ {11, 12}. Then S is
sequenceable.

Proof. First, consider the case |S| = 11. The polynomial pa for this situation has
degree 109 and to use the Non-Vanishing Corollary we require a monomial that divides
the bounding monomial x101 x102 · · ·x1011 of degree 110, which gives eleven possible monomials.
Over the integers, the coefficient on x91x

10
2 · · ·x1011 is

−18128730243333160 = −23 · 5 · 11 · 3019 · 13647452681

and the coefficient on x101 x92x
10
3 · · ·x1011 is

−46383022877233608 = −23 · 32 · 644208651072689

(in each case the right-hand side gives the prime factorization).
The two integers have no odd prime factors in common. Therefore, for any odd prime p

(in particular, for any prime greater than 11, which is the current concern) the coefficient
in Zp is nonzero for at least one of these two monomials. The Non-Vanishing Corollary gives
the result.

We use the same approach for |S| = 12. The polynomial pa now has degree 131 and the
prime factorizations of the coefficients on the monomials x101 x112 · · ·x1112 and x111 x102 x113 · · ·x1112
are

24 · 3 · 29 · 12953077208391719881 and 23 · 3 · 277 · 1901 · 786640832519761
and the result follows. □

The program used for the computation used in the proof of Theorem 6.2.3 was indepen-
dent of those used in [84]. This new program recalculated the coefficients obtained in that
paper, obtaining the same results.
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Moving on to t > 1, the method described in the previous subsection divides the proof
into a case for each type. For each case, the first step of the process is to find a quotient
sequencing that matches the type. There are typically many of these. We tend to choose a
quotient sequencing whose partial sums are distributed among the elements of Zt as evenly
as possible, as this both reduces the degree of pa and minimizes the smallest value of p with
respect to which it is a quotient sequencing.

For many types of S, we find a quotient sequencing for which the degree of pa is sig-
nificantly lower than the degree of the bounding monomial. This gives the scope to prove
slightly stronger results with less computation.

Suppose that we have set a quotient sequencing a = (a1, . . . , ak). Take ℓ with 1 ≤ ℓ ≤ k
and assume xℓ = c for some constant c such that (c, aℓ) ∈ S. Then we define the following
non-homogeneous polynomial that is nonzero if and only if there is a sequencing of S that
has quotient sequencing a and with (c, aℓ) in position ℓ:

p′a =
∏

1≤i<j≤k
ai=aj
i,j ̸=ℓ

(xj − xi)
∏

0≤i<j≤k
bi=bj
j ̸=i+1

(i,j)̸=(0,k)

(yj − yi).

As we are interested in terms of maximum degree, we may replace factors in p′a that include
c as a summand by the same factor with c removed.

This process reduces the complexity of the initial polynomial pa, which is an advantage
for computing coefficients. It also reduces the degree of the bounding monomial as there
is one fewer element available in the coset (0, aℓ). This can mean that the Non-Vanishing
Corollary does not apply and that we therefore cannot make this step.

The process may be repeated by choosing multiple elements to fix as arbitrary constants.
However, we must ensure that there are no relations between the constants and their po-
sitions that could lead to the polynomial returning a nonzero for a non-sequencing, which
could happen if a factor is a linear combination of constants with no variables. We achieve
this by never fixing both xℓ and xℓ′ with ℓ′ ∈ {ℓ− 1, ℓ+ 1}, which means that every factor
retains at least one variable.

In general, we keep fixing elements until there are no more that we may fix without
becoming unable to apply the Non-Vanishing Corollary.

Example 6.2.2. Let G = Zp × Z2 with p > 3 and p prime. Suppose S ⊆ G \ {(0, 0)}
with |S| = 7 and of type (5, 2). The sequence a = (0, 0, 1, 0, 0, 0, 1) has partial sums
(0, 0, 0, 1, 1, 1, 1, 0) and so is a quotient sequencing of π2(S) with respect to p. We desire
a sequencing of S of the form

((x1, 0), (x2, 0), (x3, 1), (x4, 0), (x5, 0), (x6, 0), (x7, 1))

with partial sums

((y0, 0), (y1, 0), (y2, 0), (y3, 1), (y4, 1)(y5, 1), (y6, 1), (y7, 0)) .

The polynomial is

pa = (x2 − x1)(x4 − x1)(x5 − x1)(x6 − x1)(x4 − x2)(x5 − x2)(x6 − x2)(x7 − x3)

(x5 − x4)(x6 − x4)(x6 − x5)(y2 − y0)(y7 − y1)(y7 − y2)(y5 − y3)(y6 − y3)(y6 − y4)

= (x2 − x1)(x4 − x1)(x5 − x1)(x6 − x1)(x4 − x2)(x5 − x2)(x6 − x2)(x7 − x3)

(x5 − x4)(x6 − x4)(x6 − x5)(x1 + x2)(x2 + x3 + x4 + x5 + x6 + x7)

(x3 + x4 + x5 + x6 + x7)(x4 + x5)(x4 + x5 + x6)(x5 + x6).
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Since the polynomial pa has degree 17 and the bounding monomial x41x
4
2x3x

4
4x

4
5x

4
6x7 has

degree 22, we can fix x3 = c1 and x6 = c2, where (c1, 1), (c2, 0) ∈ S, without violating the
constraint on the degree of the polynomial which has to be less than or equal to the degree of
the bounding monomial to satisfy the hypotheses of the Non-Vanishing Corollary. Therefore
we get the following simplified polynomial of degree 12

p′a = (x2 − x1)(x4 − x1)(x5 − x1)(x4 − x2)(x5 − x2)(x5 − x4)(x1 + x2)(x4 + x5)

(x2 + c1 + x4 + x5 + c2 + x7)(c1 + x4 + x5 + c2 + x7)(x4 + x5 + c2)(x5 + c2).

To apply the Non-Vanishing Corollary we need a monomial of this polynomial which
divides the new bounding monomial x31x

3
2x

3
4x

3
5 with a nonzero coefficient. Since the degree

of p′a is equal to the degree of the new bounding monomial, the only feasible monomial is
x31x

3
2x

3
4x

3
5, which has coefficient −2. Hence whenever S has this form it has a sequencing.

The following result completes the proof of Theorem 6.2.1.

Theorem 6.2.4. Let n = pt with p prime. Then subsets S of size k of Zn \ {0} are
sequenceable in the following cases:

(1) k ≤ 11 and t ∈ {2, 3, 4, 5},
(2) k = 12 and t ∈ {2, 3, 4},
(3) k = 13 and t ∈ {2, 3}, provided S contains at least one element not in the subgroup

of order p,
(4) k = 14 and t = 2, provided S contains at least one element not in the subgroup of

order p, and
(5) k = 15 and t = 2, provided S does not contain exactly 0, 1, 2 or 15 elements of the

subgroup of order p.

Proof. We can suppose that k ≥ 10 since by [10] we know that the subsets S of size
k ≤ 9 in an arbitrary abelian group are sequenceable. Then, in all of the cases stated
in the theorem, we can use the Non-Vanishing Corollary since Zp × Zt

∼= Zpt except for
p = t = 5 which has been treated separately. In that case we have checked computationally
that each subset of size 10 and 11 of Z25 \ {0} is sequenceable. All of the other results
are obtained using the Python framework SageMath [55] mainly because it has efficient
libraries to handle multivariate polynomials. The polynomial multiplication was carried out
by multiplying pairs of factors and then all the resulting terms together. The specific order
of the products is described by the pseudo-code in Algorithm 2.

In addition, after each multiplication, we only keep the terms that divide the bounding
monomial. If we are searching for the coefficient of a specific monomial then we can also
lower bound the exponents of each term because at some point of the computation the
degrees of the variables xi’s cannot be too small. For the sake of readability, the pseudo-
code reported in Algorithm 2 does not include the restrictions on the exponents of each
monomial. However, the code associated with the final version of the algorithm is given in
the Appendix of this section.

All the tables reporting the monomials’ coefficients for each case listed in Theorem 6.2.4
can be found at

https://arxiv.org/abs/2203.16658.

All of the computations were completed in less than 5 days on a PC with a 4.6 GHz AMD
Ryzen 9 processor and 128 GB of RAM. □

https://arxiv.org/abs/2203.16658
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Algorithm 2 Polynomial multiplication

Require:
G = Zp × Zt, p prime, t ≥ 1 and p coprime with t
S ⊆ G \ {(0, 0)}, |S| = k
a = (a1, a2, . . . , ak) with partial sums b = (b0, b1, . . . , bk)
p← 1
for 1 ≤ i < j ≤ k do

f ← 1
if ai = aj then

f ← f · (xj − xi)
end if
if bi−1 = bj and (i− 1, j) ̸= (0, k) then

f ← f · (xi + · · ·+ xj)
end if
p← p · f

end for
return p

Table 1. Monomials and their coefficients sufficient for the proof of Theo-
rem 6.2.4 in the case |S| = 10 and t = 2.

λ a deg monomial/s coefficient/s

(10, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 89
x8
1x

9
2x

9
3x

9
4x

9
5x

9
6x

9
7x

9
8x

9
9x

9
10

x9
1x

8
2x

9
3x

9
4x

9
5x

9
6x

9
7x

9
8x

9
9x

9
10

25 · 7 · 112 · 21966239
2 · 13 · 211 · 256046627

(9, 1) (0, 0, 0, 0, 0, 1, 0, 0, 0, 0) 52 x2
2x

4
3x

7
4x

8
5x

7
7x

8
8x

8
9x

8
10 −1 · 22

(8, 2) (0, 1, 0, 0, 0, 0, 1, 0, 0, 0) 45 x1x3x
7
4x

7
5x

7
6x7x

7
8x

7
9x

7
10 −1 · 2 · 3 · 7

(7, 3) (0, 0, 0, 0, 1, 0, 0, 0, 1, 1) 42 x6
2x

6
3x

6
4x

2
5x

6
6x

6
7x

6
8x

2
9x

2
10 −1 · 2 · 3 · 7

(6, 4) (0, 0, 0, 1, 0, 0, 0, 1, 1, 1) 39 x5
1x

5
2x

5
3x

3
4x

5
5x

5
6x

3
7x

3
8x

3
9x

2
10 2 · 5

(5, 5)
(0, 0, 0, 1, 0, 0, 1, 1, 1, 1)
(0, 1, 0, 1, 0, 1, 0, 1, 0, 1)

40
40

x4
1x

4
2x

4
3x

4
4x

4
5x

4
6x

4
7x

4
8x

4
9x

4
10

x4
1x

4
2x

4
3x

4
4x

4
5x

4
6x

4
7x

4
8x

4
9x

4
10

22 · 157
5 · 19 · 41 · 83

(4, 6) (0, 1, 0, 1, 1, 1, 1, 0, 1, 0) 41
x2
1x

5
2x

3
3x

5
4x

5
5x

5
6x

5
7x

3
8x

5
9x

3
10

x3
1x

4
2x

3
3x

5
4x

5
5x

5
6x

5
7x

3
8x

5
9x

3
10

24 · 3 · 5 · 13
2 · 3 · 463

(3, 7) (0, 0, 1, 0, 1, 1, 1, 1, 1, 1) 46 x2
2x

6
3x

2
4x

6
5x

6
6x

6
7x

6
8x

6
9x

6
10 −1 · 23 · 32

(2, 8) (0, 1, 0, 1, 1, 1, 1, 1, 1, 1) 51
x1x2x3x

6
4x

7
5x

7
6x

7
7x

7
8x

7
9x

7
10

x1x3x
7
4x

7
5x

7
6x

7
7x

7
8x

7
9x

7
10

−1 · 2 · 1277
−1 · 2 · 172

(1, 9) (1, 0, 1, 1, 1, 1, 1, 1, 1, 1) 60
x2
1x

2
3x

8
4x

8
5x

8
6x

8
7x

8
8x

8
9x

8
10

x2
1x

3
3x

7
4x

8
5x

8
6x

8
7x

8
8x

8
9x

8
10

2 · 172
22 · 647

(0, 10) (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 69
x2
1x

2
2x

4
3x

7
4x

9
5x

9
6x

9
7x

9
8x

9
9x

9
10

x2
1x

2
2x

4
3x

9
4x

7
5x

9
6x

9
7x

9
8x

9
9x

9
10

2 · 3 · 733
25 · 32 · 5
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Appendix

We report here the full SageMath code used to provide the results of the previous section.

import numpy as np

import gc

import math

import time

def poldeg(seq_type,qs,bs):

deg = 0

occ = np.zeros(k, dtype=int)

for i in range(0, k-1):

for j in range(i+1, k):

if qs[j] == qs[i]:

occ[i] = occ[i] + 1

occ[j] = occ[j] + 1

deg = deg + 1

if bs[j+1] == bs[i] and (i != 0 or j != k-1):

for l in range(i, j+1):

occ[l] = occ[l] + 1

deg = deg + 1

return deg, occ

def remTerms(f, ubound, occs):

R = f.parent()

d = f.dict()

k = len(ubound)

dd = {ee: c for ee, c in d.items() if all(ee[i] <= ubound[i] and

ee[i] >= ubound[i]-occs[i] for i in range(0, k))}

return R(dd)

k = 10

dataset = {"(6,4)": {"(0,0,0,1,0,0,0,1,1,1)":

{"(5,5,5,3,5,5,3,3,3,2)": 10}}}

R = PolynomialRing(ZZ,k,"x")

vars = R.gens()

print("Variables: ", vars, "\n")

allCorrect = True

for typ, coset in dataset.items():

seq_type = [int(x) for x in typ.strip(’)][(’).split(’,’)]

t = len(seq_type)

print("Type: ", seq_type, "\n")

for qseq, monomials in coset.items():

qs = [int(x) for x in qseq.strip(’)][(’).split(’,’)]

seq_test = [qs.count(i) for i in range(0, t)]
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bs = np.mod(np.cumsum(qs), t)

bs = np.insert(bs, 0, 0)

pdeg, occs = poldeg(seq_type, qs, bs)

print("Quotient sequence: ", qs)

print("Cumsum quotient sequence: ", bs)

print("Polynomial degree: ", pdeg)

print("Variables occurrence: ", occs)

for monomial, coeff in monomials.items():

coccs = occs.copy()

bounding_exponents =

[int(x) for x in monomial.strip(’)][(’).split(’,’)]

print("Exponents of the monomial: ", bounding_exponents)

check_degree = True

for i in range(0, k):

if bounding_exponents[i] > seq_type[qs[i]]-1:

check_degree = False

break

p = 1

nitems = 0

for i in range(0, k-1):

for j in range(i+1, k):

remove = False

f1 = 1

f2 = 1

if qs[j] == qs[i]:

f1 = (vars[j] - vars[i])

coccs[i] = coccs[i] - 1

coccs[j] = coccs[j] - 1

remove = True

nitems = nitems + 1

if bs[j+1] == bs[i] and (i != 0 or j != k-1):

f2 = sum(vars[k] for k in range(i, j+1))

for l in range(i, j+1):

coccs[l] = coccs[l] - 1

remove = True

nitems = nitems + 1

ff = f1 * f2

p = p * ff

if remove == True:

p = remTerms(p, bounding_exponents, coccs)

print("Monomial: ", p)

pcoeff = p.lc()

print("Coefficient: ", factor(pcoeff))

testcorr = (p.total_degree() == pdeg and coeff == pcoeff and

seq_type==seq_test and check_degree)

print("Is correct? ", testcorr, "\n")

allCorrect = allCorrect and testcorr
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6.3. Weak sequenceability in cyclic groups

6.3.1. Preliminaries. We recall and change, for notational convenience, some defini-
tions and notation used in Section 6.2. Let G be an abelian group and let A be a subset of
G \ {0} whose cardinality is equal to k. Let ω = (a1, a2, . . . , ak) be an ordering of the ele-
ments of A and we define its partial sums s = (s0, s1, . . . , sk) by s0 = 0 and si = a1+ · · ·+ai
for i > 0. We denote the sum of the elements of A by ΣA. As G is abelian, for any ordering
of the elements of A the final partial sum sk is equal to ΣA. Then, as done in Section 6.2,
we give the following definitions.

Definition 6.3.1.

• The ordering ω is said to be a sequencing (or a linear sequencing) of A if the
elements of s are distinct;
• the ordering ω is said to be an R-sequencing (or a rotational sequencing) of A if
the elements of s are distinct with the exception that s0 = 0 = sk;
• a subset A of an abelian group is said to be sequenceable if it admits a sequencing
or an R-sequencing;
• an abelian group G is said to be strongly sequenceable if every subset A of G \ {0}
is sequenceable.

We remark that a set A can have a linear sequencing only if ΣA ̸= 0. On the other
hand, A can have a rotational sequencing only when ΣA = 0.

Inspired by the graph-theoretical interpretation, we propose the following weakening of
the concept of sequenceability.

Definition 6.3.2.

• Given a positive integer t and a set A whose cardinality is k > t, the ordering ω is
said to be a t-weak sequencing of A if the elements of s = (s0, s1, . . . , sk) are such
that si ̸= sj whenever i ̸= j and |i− j| ≤ t;
• a subset A of an abelian group is said to be t-weakly sequenceable if it admits a
t-weak sequencing;
• an abelian group G is said to be strongly t-weakly sequenceable if every subset A
of G \ {0} whose cardinality is bigger than t is t-weakly sequenceable.

Note that this notion is related with that of sequenceability of triple systems introduced
in [11] and [89] (see also [48] and the references therein).

Here, if a set A admits a t-weak sequencing and ΣA ̸= 0, then the partial sums
(s0, s1, . . . , sk) define a walk in Cay[G : ±A] whose girth is strictly bigger than t. Exploiting
this interpretation, we can state the analogy of Conjecture 6.1.1 for weak sequenceability.

Conjecture 6.3.1. Let t be a positive integer, G be an abelian group and let A be a finite
subset of G \ {0} whose cardinality is k > t. Then A is t-weakly sequenceable. Equivalently,
we conjecture that any abelian group G is strongly t-weakly sequenceable.

Then, as done with Conjecture 6.1.1, we propose a variation of Conjecture 6.1.2 for the
weak sequenceability.

Conjecture 6.3.2. Let t be a positive integer, G be an abelian group and let A be a
finite subset of G \ {0} such that |A ∩ {x,−x}| ≤ 1 for any x ∈ G and |A| > t. Then A is
t-weakly sequenceable.
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In this section, we will work on these weak forms of Conjectures 6.1.1 and 6.1.2. In
particular, when G is the field Zp, we will use a polynomial approach whose starting point
is the same as [84]. Here, after some manipulations, we surprisingly obtain a polynomial
whose expression does not depend on the cardinality of A and this allows us to have a result
that is very general on the parameter k = |A|. On the other hand, since the degree of
this polynomial increases very quickly in t, we can resolve computationally, using SageMath
[55], only the cases where t is smaller than 7 and 8, respectively, for Conjectures 6.3.1
and 6.3.2. These results will be presented in Subsection 6.3.2. We also remark that the
polynomial method provides better results than the ones that can be obtained by using the
direct construction. Indeed, in the third subsection of this section we will show how a direct
approach, similar to that of [40], can effectively solve only very small values of t: we can
prove, directly and with a great effort, Conjectures 6.3.1 and 6.3.2 only when t is smaller
respectively than 4 and 5.

Finally, in the last subsection, we will outline a probabilistic approach. We will start
from the result of [13] that almost all the sets are sequenceable (fixed |A| and asymptotically
in |G|) and we will prove the existence of sequences that are not too far from being t-weak
sequencings.

6.3.2. Applying the polynomial method. In this subsection, we apply a method
that relies on the Non-Vanishing Corollary of the Combinatorial Nullstellensatz, see Theo-
rem 6.2.2. Given a prime p (in the following p will be always assumed to be a prime), this
corollary allows us to obtain a non-zero point to suitable polynomials on Zp derived starting
from the ones defined in [84]. Then, after some manipulations, surprisingly, we obtain a
polynomial whose expression does not depend on the cardinality of A and this allows us to
have a result that is very general on the parameter k = |A|.

In the notation of the Non-Vanishing Corollary, we call the monomial x
|C1|−1
1 · · ·x|Ck|−1

k
the bounding monomial. The corollary can be rephrased as requiring the polynomial to
include a monomial of maximum degree that divides the bounding monomial (where by
“include” we mean that it has a nonzero coefficient).

To use the Non-Vanishing Corollary we require a polynomial for which the non-zeros
correspond to successful solutions to the case of the problem under consideration. We recall
that in order to attack Conjecture 6.1.1, the following polynomial was defined in [84]:

Fk(x1, · · · , xk) :=
∏

1≤i<j≤k

(xj − xi)
∏

0≤i<j≤k
j ̸=i+1,(i,j)̸=(0,k)

(xi+1 + · · ·+ xj).

It is clear that, given A = {a1, . . . , ak} ⊆ Zp \ {0} of cardinality k, Fk(a1, . . . , ak) ̸= 0 if
and only if the sequence (a1, . . . , ak) is a solution to Conjecture 6.1.1 for the set A. In
other words A is sequenceable if and only if there exists an ordering that we denote, up to
relabeling, with (a1, . . . , ak) such that Fk(a1, . . . , ak) ̸= 0.

6.3.2.1. Polynomial method for Conjecture 6.3.1. In addition to requiring that xi−xj ̸=
0 for 1 ≤ i < j ≤ k, we seek an ordering to have no two of its partial sums si, sj equal for
1 ≤ i < j ≤ k and |i − j| ≤ t (here there is the weakening of Conjecture 6.1.1). Hence,
modifying the expression of Fk, we define, for t < k, the following polynomial:

Pk,t(x1, · · · , xk) :=
∏

1≤i<j≤k

(xj − xi)
∏

0≤i<j≤k
j−i≤t,j ̸=i+1

(xi+1 + · · ·+ xj).
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In this case we have that a set A = {a1, . . . , ak} ⊆ Zp of cardinality k is t-weakly se-
quenceable if and only if there exists an ordering (a1, . . . , ak) of its elements such that
Pk,t(a1, . . . , ak) ̸= 0.

Now, given a set A = {a1, . . . , ak} of k elements, the idea is to fix, a priori, the first h
elements (a1, . . . , ah), where h is not too big, of the ordering in such a way that none of its
partial sums si, sj are equal for 1 ≤ i < j ≤ h and |i − j| ≤ t. This can be expressed by
requiring that Ph,t(a1, · · · , ah) ̸= 0 and we show that this can be done under the hypothesis
of the following Proposition.

Proposition 6.3.1. Let A = {a1, . . . , ak} ⊆ Zp \ {0} be a set of cardinality k and let
h and t be positive integers such that h ≤ k − (t − 1). Then there exists an ordering of
h-elements of A that we denote, up to relabeling, with (a1, . . . , ah), such that

Ph,t(a1, · · · , ah) ̸= 0.

Proof. Given k and t, we prove this statement by induction on h.
BASE CASE: Let h = 1. Since P1,t(x) = 1 for any t and for any x ∈ A, the statement

is realized for h = 1.
INDUCTIVE CASE: Let us assume the statement for h ∈ {1, . . . ,m} and let us prove

it for h = m + 1 where m + 1 ≤ k − (t − 1). Since the statement is true for h = m, there
exists an m-tuple (a1, . . . , am) such that

Pm,t(a1, · · · , am) ̸= 0.

We note that

Pm+1,t(a1, . . . , am, x)

Pm,t(a1, . . . , am)
=

∏
1≤i<m+1

(x− ai)
∏

0≤i<m
m+1−i≤t

(ai+1 + · · ·+ am + x).

Here, any element x of A \ {a1, . . . , am} satisfies
∏

1≤i<m+1(x − ai) ̸= 0. Hence, to have
Pm+1,t(a1,...,am,x)

Pm,t(a1,...,am) ̸= 0, it suffice to find x such that
∏

max(0,m+1−t)≤i<m(ai+1+· · ·+am+x) ̸= 0.

Note that for each relation ai+1 + · · · + am + x = 0 there is at most one solution
x ∈ A \ {a1, . . . , am}. Since those relations are at most t− 1, we have at most t− 1 values x
in A \ {a1, . . . , am} such that

∏
max(0,m+1−t)≤i<m(ai+1 + · · ·+ am + x) = 0. We recall that

m+ 1 ≤ k − (t− 1) that is

|A \ {a1, . . . , am}| = k −m ≥ t > t− 1.

This means that there exists am+1 ∈ A \ {a1, . . . , am} such that

Pm+1,t(a1, . . . , am, am+1)

Pm,t(a1, . . . , am)
=

∏
1≤i<m+1

(am+1 − ai)
∏

max(0,m+1−t)≤i<m

(ai+1 + · · ·+ am+1) ̸= 0.

Since Zp is a field and due to the inductive hypothesis Pm,t(a1, . . . , am) ̸= 0, we also have
that

Pm+1,t(a1, . . . , am, am+1)

Pm,t(a1, . . . , am)
· Pm,t(a1, . . . , am) = Pm+1,t(a1, . . . , am+1) ̸= 0

which completes the proof. □

In the following we assume that we have fixed, according to Proposition 6.3.1, {a1, . . . ,
ah} ⊆ A such that Ph,t(a1, . . . , ah) ̸= 0. We note that every x ∈ A \ {a1, . . . , ah} is such
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that x − ai ̸= 0 for any i ∈ {1, . . . , h}. Therefore, it is left to find a nonzero point for the
polynomial

Pk,t(a1, . . . , ah, xh+1, . . . , xk)

Ph,t(a1, . . . , ah)
∏

1≤i≤h<j≤k(xj − ai)
.

Since the free variables are now xh+1, . . . , xk, we set ℓ := k − h and yi := xi+h; here the
constraint h ≤ k− (t− 1) of Proposition 6.3.1 becomes ℓ ≥ t− 1. Then we denote by Hk,t,ℓ

the polynomial

(101) Hk,t,ℓ(y1, . . . , yℓ) :=
Pk,t(a1, . . . , ak−ℓ, y1, . . . , yℓ)

Pk−ℓ,t(a1, . . . , ak−ℓ)
∏

1≤i≤k−ℓ; 1≤j≤ℓ(yj − ai)
.

Assuming now that k − ℓ ≥ t − 1, that is, k − (t − 1) ≥ ℓ ≥ t − 1, we obtain the following
expression:

Hk,t,ℓ(y1, · · · , yℓ) =

(102) Pℓ,t(y1, . . . , yℓ)
∏

0≤i≤t−1; 1≤j≤t−i−1

(ak−ℓ + ak−ℓ−1 + · · ·+ ak−ℓ−i + y1 + y2 + · · ·+ yj).

Now our aim is to apply the Non-Vanishing Corollary (i.e. Theorem 6.2.2) to the polynomial
Hk,t,ℓ. For this purpose it is enough to consider the terms of Hk,t,ℓ of maximal degree in
the variables y1, . . . , yℓ that are the ones where no ai appears. We denote by Qk,t,ℓ the
polynomial given by those terms, that is,

(103) Qk,t,ℓ := Pℓ,t(y1, . . . , yℓ)
∏

0≤i≤t−1
1≤j≤t−i−1

(y1 + y2 + · · ·+ yj).

Now we can state the following simple but very powerful remark.

Remark 6.3.1. The expression of Qk,t,ℓ does not depend on k. In the following, we just
denote this polynomial by Qt,ℓ.

Indeed Remark 6.3.1 means that, after these manipulations, we are left to consider a
polynomial that does not depend on k = |A| and hence we have chances to get a result that
is very general on k.

To apply the Non-Vanishing Corollary, we also need to know the degree of Qt,ℓ (and
hence that of Hk,t,ℓ) in order to compare it with the one of the bounding monomial.

Lemma 6.3.1. We have

deg(Qt,ℓ) = (t− 1)ℓ+
ℓ(ℓ− 1)

2
.

Proof. It is more convenient to consider the degree of the polynomial Hk,t,ℓ defined in
eq. (102) since that of Qt,ℓ is the same.

We note that in Hk,t,ℓ, each variable yj is the ending point of t− 1 terms whose length
is i+ 1 and that are of the form (yj + yj−1 + · · ·+ yj−i) or, if i ≥ j, (yj + yj−1 + · · ·+ y1 +
ak−ℓ + · · ·+ ak−ℓ−(i−j)).

The other terms of Hk,t,ℓ are those of the form (yj − yi) where ℓ ≥ j > i ≥ 1. Therefore
we have that

deg(Hk,t,ℓ) = (t− 1)ℓ+
ℓ(ℓ− 1)

2
.

□
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To apply Theorem 6.2.2 we need to find a nonzero coefficient of some monomials of type∏ℓ
i=1 y

γi
i in Qt,ℓ where each γi is smaller than the number of choices for yi, i.e. γi ≤ ℓ − 1.

Note that this is possible only if deg(Qt,ℓ) ≤ ℓ(ℓ − 1): indeed this is the degree of the
bounding monomial. Therefore we need that

(t− 1)ℓ+
ℓ(ℓ− 1)

2
≤ ℓ(ℓ− 1),

that is, 2t − 1 ≤ ℓ. Recalling that we are assuming k − (t − 1) ≥ ℓ ≥ t − 1, the conditions
on ℓ to apply Theorem 6.2.2 to the polynomial Hk,t,ℓ defined in eq. (102) are that

(104) k − (t− 1) ≥ ℓ ≥ 2t− 1.

From the previous discussion, it follows that

Proposition 6.3.2. Let t, ℓ be positive integers such that ℓ ≥ 2t − 1. Let us also
suppose that the coefficient of Πℓ

i=1y
γi
i in Qt,ℓ is nonzero in Zp where γi ≤ ℓ − 1 for every

i ∈ {1, . . . , ℓ}.
Then, any subset A of Zp\{0} whose cardinality is k ≥ ℓ+(t−1) is t-weakly sequenceable.

Remark 6.3.2. Since to apply Proposition 6.3.1 we need ℓ ≥ t− 1, it is not guaranteed
that we can find ℓ such that k − ℓ ≥ t − 1. If this condition it is not satisfied, we can still
define the polynomial Hk,t,ℓ via equation (101) even though equations (102) and (103) do
not hold. Then, since given t those cases are only a finite number, we can apply directly the
Non-Vanishing Corollary to equation (101).

Now we are ready to prove the main result of this subsection

Theorem 6.3.1. Let t ≤ 6 be a positive integer, then for any prime p the field Zp is
strongly t-weakly sequenceable.

Proof. Since a strongly t-weakly sequenceable group is also strongly (t − 1)-weakly
sequenceable, we can suppose that t = 6. By [45] we know that each subset A ⊆ Zp \ {0}
of cardinality k ≤ 12 is sequenceable, therefore we can suppose that k ≥ 13. We divide the
proof considering two different ranges of k.

For each 13 ≤ k ≤ 15 and for k = 16 when p is coprime with 379 · 167938950753577,
the polynomial Hk,t,ℓ, defined in eq. (101), for ℓ ∈ {2t− 1, 2t} has monomials with non-

zero coefficients that divide the bounding monomial yℓ−1
1 yℓ−1

2 · · · yℓ−1
ℓ (see Table 2). Then

thanks to the Non-Vanishing Corollary each subset A ⊆ Zp, |A| ≤ 15 (or 16 under the above
assumption), is sequenceable.

For k ≥ 17 and for k = 16 when p is coprime with 34 · 5 · 47 · 97 · 271 · 15985681, we
consider the polynomials Qt,ℓ defined in eq. (103) for ℓ ∈ {11, 12}. Since these polynomials
have monomials that divide the bounding monomial with non-zero coefficients (see Table 3),
and since k ≥ ℓ+ t− 1, we can apply Proposition 6.3.2 to obtain that each subset A ⊆ Zp,
|A| ≥ 17 (or 16 under the above assumption), is sequenceable. □

Table 2. Monomials and their coefficients sufficient for the proof of Theo-
rem 6.3.1 in the case A ⊆ Zp, |A| ≤ 16.

k ℓ deg monomial/s coefficient/s
16 12 125 y51y

10
2 y113 y114 y115 y116 y117 y118 y119 y1111y

11
11y

11
12 −379 · 167938950753577

15 11 109
y91y

10
2 y103 y104 y105 y106 y107 y108 y109 y1010y

10
11

y101 y92y
10
3 y104 y105 y106 y107 y108 y109 y1010y

10
11

−34 · 5 · 47 · 97 · 271 · 15985681
−22 · 3 · 401 · 1305987719053
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14 11 107
y71y

10
2 y103 y104 y105 y106 y107 y108 y109 y1010y

10
11

y81y
9
2y

10
3 y104 y105 y106 y107 y108 y109 y1010y

10
11

−22 · 3 · 5 · 72 · 37 · 433 · 81945547
−3 · 5 · 555349 · 496867859

13 11 104
y51y

9
2y

10
3 y104 y105 y106 y107 y108 y109 y1010y

10
11

y61y
8
2y

10
3 y104 y105 y106 y107 y108 y109 y1010y

10
11

−2 · 11 · 946021 · 34341337
−7 · 211 · 73019 · 7962769

Table 3. Monomials and their coefficients sufficient for the proof of Theo-
rem 6.3.1 in the case A ⊆ Zp, |A| ≥ 16

ℓ deg monomial/s coefficient/s
11 110 y101 y102 y103 y104 y105 y106 y107 y108 y109 y1010y

10
11 −34 · 5 · 47 · 97 · 271 · 15985681

12 126 y61y
10
2 y113 y114 y115 y116 y117 y118 y119 y1111y

11
11y

11
12 −379 · 167938950753577

6.3.2.2. Polynomial method for Conjecture 6.3.2. We recall that, in order to attack Con-
jecture 6.1.2, in [84] the following polynomial was defined:

F k(x1, · · · , xk) :=
Fk(x1, · · · , xk)∏
1≤i<k(xi + xi+1)

.

Indeed, given A = {a1, . . . , ak} ⊆ Zp \ {0} of cardinality k and such that |A ∩ {x,−x}| ≤ 1
for any x ∈ Zp, we do not need to impose that xi + xi+1 is different from zero. Therefore

F k(a1, . . . , ak) ̸= 0 if and only if the sequence (a1, . . . , ak) is a solution to Conjecture 6.1.2
for the set A. Under the above assumptions, we can also say that A is sequenceable if and
only if there exists an ordering that we denote, up to relabeling, with (a1, . . . , ak) such that
F k(a1, . . . , ak) ̸= 0.

Reasoning in a similar way, with respect to Conjecture 6.3.2, we define, for t < k, the
following polynomial:

P k,t(x1, · · · , xk) :=
Pk,t(x1, · · · , xk)∏
1≤i<k(xi + xi+1)

.

In this case we have that a set A = {a1, . . . , ak} ⊆ Zp of cardinality k and such that
|A ∩ {x,−x}| ≤ 1 for any x ∈ Zp is t-weakly sequenceable if and only if there exists an

ordering (a1, . . . , ak) of its elements such that P k,t(a1, . . . , ak) ̸= 0.
Then, with the same proof of Proposition 6.3.1, and keeping in mind that we do not

need to impose that xi + xi+1 ̸= 0, we obtain the next result.

Proposition 6.3.3. Let A = {a1, . . . , ak} ⊆ Zp \ {0} be a set of cardinality k such that
|A∩{x,−x}| ≤ 1 for any x ∈ Zp, and let h and t be positive integers. Then, if h ≤ k−(t−2),
there exists an ordering of h-elements of A that we denote, up to relabeling, with (a1, . . . , ah),
such that

P h,t(a1, · · · , ah) ̸= 0.

Here we can assume that we have fixed, according to Proposition 6.3.3, {a1, . . . , ah} ⊆ A
such that P h,t(a1, . . . , ah) ̸= 0. Then, proceeding as we did with Conjecture 6.3.1, we have
that if we set ℓ = k − h and ℓ ≥ t − 2 it is enough to find y1, . . . , yℓ in A \ {a1, . . . , ak−ℓ}
such that Hk,t,ℓ(y1, . . . , yℓ) ̸= 0, where

(105) Hk,t,ℓ(y1, . . . , yℓ) :=
Hk,t,ℓ(y1, . . . , yℓ)

(y1 + ak−ℓ)
∏

1≤i<k(yi + yi+1)
.



6.3. WEAK SEQUENCEABILITY IN CYCLIC GROUPS 97

Assuming now that k− ℓ ≥ t− 1, that is, k− (t− 1) ≥ ℓ ≥ t− 2, we obtain the following
expression:

Hk,t,ℓ(y1, · · · , yℓ) =

(106) P ℓ,t(y1, . . . , yℓ)
∏

0≤i≤t−1; 1≤j≤t−i−1
i+j>1

(ak−ℓ + ak−ℓ−1 + · · ·+ ak−ℓ−i + y1 + y2 + · · ·+ yj).

Here our aim is to apply the Non-Vanishing Corollary (i.e. Theorem 6.2.2) to the polynomial
Hk,t,ℓ. For this purpose it is enough to consider the terms of Hk,t,ℓ of maximal degree in the

variables y1, . . . , yℓ which are those where no ai appears. We denote by Qk,t,ℓ the polynomial
given by those terms, that is,

(107) Qk,t,ℓ := P ℓ,t(y1, . . . , yℓ)
∏

0≤i≤t−1; 1≤j≤t−i−1
i+j>1

(y1 + y2 + · · ·+ yj).

Also in this case we can state this simple but very powerful remark.

Remark 6.3.3. The expression of Qk,t,ℓ does not depend on k. In the following, we just

denote this polynomial by Qt,ℓ.

In this case the degree of Qt,ℓ (and that of Hk,t,ℓ) is

deg(Qt,ℓ) = (t− 2)ℓ+
ℓ(ℓ− 1)

2
.

This means that in order to apply the Non-Vanishing Corollary (i.e. Theorem 6.2.2) to the
polynomial Hk,t,ℓ defined in eq. (106), we need that

(108) k − (t− 1) ≥ ℓ ≥ 2t− 3.

From the previous discussion, we obtain the next result.

Proposition 6.3.4. Let t, ℓ be positive integers such that ℓ ≥ 2t − 3. Let us also
suppose that the coefficient of Πℓ

i=1y
γi
i in Qt,ℓ is nonzero in Zp, where γi ≤ ℓ − 1 for every

i ∈ {1, . . . , ℓ}.
Then any subset A of Zp \ {0} such that |A ∩ {x,−x}| ≤ 1 for every x ∈ Zp and whose

cardinality is k ≥ ℓ+ (t− 1) is t-weakly sequenceable.

Now we are ready to prove our main result about Conjecture 6.3.2

Theorem 6.3.2. Let t ≤ 7 be a positive integer and A be a finite subset of Zp \ {0} such
that |A ∩ {x,−x}| ≤ 1 for any x ∈ Zp and |A| > t. Then A is t-weakly sequenceable.

Proof. Since a t-weakly sequenceable set A is also (t− 1)-weakly sequenceable, we can
suppose that t = 7. By [45] we know that each subset A ⊆ Zp \ {0} of cardinality k ≤ 12 is
sequenceable, therefore we can assume that k ≥ 13 and thus p > 13. We divide the proof
considering two different ranges of k.

For each 13 ≤ k ≤ 16 and for k = 17 when p is coprime with 2·7·13·4679·3953841444019,
the polynomial Hk,t,ℓ, defined in eq. (105), for ℓ ∈ {2t− 3, 2t− 2} has monomials with non-

zero coefficients that divide the bounding monomial yℓ−1
1 yℓ−1

2 · · · yℓ−1
ℓ (see Table 4). Then

thanks to the Non-Vanishing Corollary each subset A ⊆ Zp \ {0}, |A| ≤ 16 (or 17 under the
assumption above), that satisfies the hypothesis of Theorem 6.3.2, is sequenceable.

For k ≥ 18 and for k = 17 when p is coprime with 13 · 67 · 451441944254443, we consider
the polynomials Qt,ℓ defined in eq. (107) for ℓ ∈ {11, 12}. Since these polynomials have
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monomials that divide the bounding monomial with non-zero coefficients (see Table 5), and
since k ≥ ℓ + t − 1, we can apply Proposition 6.3.4 to prove Theorem 6.3.2 for k ≥ 18 (or
17 under the assumption above). □

Table 4. Monomials and their coefficients sufficient for the proof of Theo-
rem 6.3.1 in the case A ⊆ Zp, |A| ≤ 17.

k ℓ deg monomial/s coefficient/s
17 12 125 y51y

10
2 y113 y114 y115 y116 y117 y118 y119 y1111y

11
11y

11
12 2 · 7 · 13 · 4679 · 3953841444019

16 11 109
y91y

10
2 y103 y104 y105 y106 y107 y108 y109 y1010y

10
11

y101 y92y
10
3 y104 y105 y106 y107 y108 y109 y1010y

10
11

13 · 67 · 451441944254443
32 · 281 · 1163 · 112116705839

15 11 107
y71y

10
2 y103 y104 y105 y106 y107 y108 y109 y1010y

10
11

y81y
9
2y

10
3 y104 y105 y106 y107 y108 y109 y1010y

10
11

22 · 59 · 708923 · 1059330263
7 · 149 · 239 · 4073 · 212718109

14 11 104
y51y

9
2y

10
3 y104 y105 y106 y107 y108 y109 y1010y

10
11

y61y
8
2y

10
3 y104 y105 y106 y107 y108 y109 y1010y

10
11

23 · 41 · 7682093 · 13267117
22 · 16834339 · 679071929

13 11 100
y21y

8
2y

10
3 y104 y105 y106 y107 y108 y109 y1010y

10
11

y31y
7
2y

10
3 y104 y105 y106 y107 y108 y109 y1010y

10
11

33 · 708569 · 33345973
3 · 19 · 7829 · 31223 · 121843

Table 5. Monomials and their coefficients sufficient for the proof of Theo-
rem 6.3.1 in the case A ⊆ Zp, |A| ≥ 17

ℓ deg monomial/s coefficient/s
11 110 y101 y102 y103 y104 y105 y106 y107 y108 y109 y1010y

10
11 13 · 67 · 451441944254443

12 126 y61y
10
2 y113 y114 y115 y116 y117 y118 y119 y1111y

11
11y

11
12 2 · 7 · 13 · 4679 · 3953841444019

6.3.3. Direct construction(s). In this subsection we want to attack Conjecture 6.3.1
with a direct construction. Even though we are able to solve it only for t = 3, for this value
we obtain a solution in any cyclic group. Then we outline the proof of a similar statement
for Conjecture 6.3.2. Indeed, in a very similar way, it is possible to prove that the latter
conjecture holds, in cyclic groups, for t ≤ 4.

First of all, we note that with the same proof of Proposition 6.3.1, we obtain the follow-
ing.

Proposition 6.3.5. Let A = {a1, . . . , ak} ⊆ Zn \ {0} be a set of cardinality k and
let h and t be positive integers such that h ≤ k − (t − 1). Then there is an ordering
of h-elements of A that we denote, up to relabeling, with (a1, . . . , ah), such that for any
0 ≤ i < j ≤ min(h, i+ t)

si = a1 + a2 + · · ·+ ai ̸= a1 + a2 + · · ·+ aj = sj .

Moreover, if n is even and n/2 ∈ A, we can assume a1 = n/2.

Here we can not apply directly Proposition 6.3.1 because Zn is not necessary a field.
However, with this new proposition we obtain the main result of this subsection.

Theorem 6.3.3. Let t ≤ 3 be a positive integer. Then the cyclic group Zn is strongly
t-weakly sequenceable for any positive integer n.
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Proof. As usual it is enough to consider only the case t = 3 and let A = {a1, . . . , ak}
be a subset of Zn \ {0}. Here we can assume k > 9 because, due to the result of [10],
Conjecture 6.1.1 holds for sets of cardinality at most 9. According to Proposition 6.3.5, for
h = k − 4, there is an ordering of h elements of A that we denote, up to relabeling, with
(a1, . . . , ah) such that si ̸= sj whenever 0 ≤ i < j ≤ min(h, i + t). Moreover, if n is even
and n/2 ∈ A, we can assume a1 = n/2.

We then need to order the last four elements ak−3, ak−2, ak−1, ak. We divide the proof
into two cases.

CASE 1: ak−3 + ak−2 + ak−1 = 0. Here we first assume that −ak ̸∈ {ak−3, ak−2, ak−1}.
In this case we look for an ordering of type

(a1, . . . , ak−5, ak−4, y1, y2, ak, y3),

where y1, y2, y3 ∈ {ak−3, ak−2, ak−1}. Indeed there exists y1 ∈ {ak−3, ak−2, ak−1} such that{
y1 + ak−4 ̸= 0;

y1 + ak−4 + ak−5 ̸= 0.

Then we can easily check that all the partial sums si and sj such that 0 ≤ i < j ≤ min(k, i+t)
are different.
Let us now assume that −ak = ak−3. Here if ak ̸= ak−4 + ak−5 we can choose an ordering
of type

(a1, . . . , ak−5, ak−4,−ak, y1, ak, y2),
where y1, y2 ∈ {ak−2, ak−1}. Indeed there exists y1 ∈ {ak−2, ak−1} such that

y1 − ak + ak−4 ̸= 0.

Then we can easily check that all the partial sums si and sj such that 0 ≤ i < j ≤ min(k, i+t)
are different.
Let us now assume that −ak = ak−3 and ak = ak−4 + ak−5. Here we have that

{ak−3, ak−2, ak−1, ak} = {−(ak−4 + ak−5), ak−2, ak−1, ak−4 + ak−5}
and we look for an ordering of type

(a1, . . . , ak−5, ak−4, y1, ak−4 + ak−5, y2,−(ak−4 + ak−5)),

where y1, y2 ∈ {ak−2, ak−1}. We first note that we can choose y1 ∈ {ak−2, ak−1} such that{
y1 + ak−4 ̸= 0;

y1 + 2ak−4 + ak−5 ̸= 0.

Indeed, if such y1 does not exist, we would have that

{ak−3, ak−2, ak−1, ak} = {−(ak−4 + ak−5),−ak−4,−2ak−4 − ak−5, ak−4 + ak−5}.
We recall that also ak−3 + ak−2 + ak−1 = 0 and hence it would follows that −4ak−4 −
2ak−5 = 0. This means that −2ak−4−ak−5 is an involution and hence, because Zn is cyclic,
−2ak−4− ak−5 ∈ {0, n/2}. Since −2ak−4− ak−5 ∈ {ak−2, ak−1} this is in contradiction with
the choice of the first element of the ordering. Then we can easily check that all the partial
sums si and sj such that 0 ≤ i < j ≤ min(k, i+ t) are different.

CASE 2: Since we have already considered CASE 1, here we can assume, without loss
of generality, that all the triples of elements do not sum to zero. Moreover, let us assume
that ak−3 + ak−2 = 0. Here we can choose an ordering of type

(a1, . . . , ak−5, ak−4, y1, z1, y2, z2),
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where y1, y2 ∈ {ak−3, ak−2} and z1, z2 ∈ {ak−1, ak}. Indeed there exist y1 ∈ {ak−3, ak−2}
and z1 ∈ {ak−1, ak} such that {

y1 + ak−4 + ak−5 ̸= 0;

z1 + y1 + ak−4 ̸= 0.

Then we can easily check that all the partial sums si and sj such that 0 ≤ i < j ≤ min(k, i+t)
are different.

Finally, let us assume that all the triples and all the pairs of elements from {ak−3, ak−2,
ak−1, ak} do not sum to zero. Here, due to the pigeonhole principle, we can choose an
ordering of type

(a1, . . . , ak−5, ak−4, y1, y2, y3, y3),

where y1, y2 are such that 
y1 + ak−4 ̸= 0;

y1 + ak−4 + ak−5 ̸= 0;

y2 + y1 + ak−4 ̸= 0.

Then we can easily check that all the partial sums si and sj such that 0 ≤ i < j ≤ min(k, i+t)
are different. □

Moreover, with a very similar but more tedious proof, one could get an analogous result
about Conjecture 6.3.2.

Theorem 6.3.4. Let t ≤ 4 be a positive integer and A be a finite subset of Zn \ {0} such
that |A ∩ {x,−x}| ≤ 1 for any x ∈ Zp and |A| > t. Then A is t-weakly sequenceable.

This Theorem can be proved by fixing the first k − 6 elements of the ordering and then
choosing ak−5 in such a way that 2ak−5 + 2ak−6 + ak−7 ̸= 0 and sk−5 is different from sk−8

and sk−9. Then we can proceed, similarly to what we did for Theorem 6.3.3, by considering
two cases according to whether ak−4 + ak−3 + ak−2 + ak−1 = 0 or not. However, we prefer
not to write a complete proof of this statement since we believe it goes beyond the scope
of this subsection and we have the feeling that it is not very deep from the mathematical
point of view.

6.3.4. A probabilistic approach. In this subsection, we prove that a randomly cho-
sen subset A ⊆ Zn \ {0} of cardinality k is t-weakly sequenceable when tk is small with
respect to n and t ≥ 2. This result corresponds to Theorem 4.2 of [13] in the case of weak
sequenceability. In addition we also prove that for every A ⊆ Zn \ {0} of cardinality k there
exists an ordering ω of A with at most t − 2 pairs of partial sums si, sj such that si = sj
and |j − i| ≤ t.

Definition 6.3.3. Let An,k be the set of all subsets of cardinality k of Zn \ {0} that are
t-weakly sequenceable. We say that almost all k-subsets of Zn are t-weakly sequenceable if

lim
n→∞

|An,k|(
n−1
k

) = 1 .

Proposition 6.3.6. Let us choose an ordered sequence ω = (a1, a2, . . . , ak) of distinct
elements of Zn \ {0} uniformly at random. The probability that ω is a t-weak sequencing of

the set {a1, a2, . . . , ak} is greater than or equal to 1− (t−1)(k−2)
n−2 .
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Proof. Let q be the probability that ω is not a t-weak sequencing of {a1, . . . , ak}.
Then, letting s = (s0, s1, . . . , sk) denote the partial sums of ω, we get

q ≤
∑

0≤i<j≤k
j−i≤t,j ̸=i+1

P(sj = si) =
∑

0≤i<j≤k
j−i≤t,j ̸=i+1

P(ai+1 + . . .+ aj = 0)

=
∑

0≤i<j≤k
j−i≤t,j ̸=i+1

n−1∑
s=0

P(ai+1 + . . .+ aj−1 = s) · P(aj = −s|ai+1 + . . .+ aj−1 = s) .

We can upper bound P(aj = −s|ai+1+ . . .+aj−1 = s) by 1/(n− j+ i) for each s ∈ Zn since
there is at most one possible outcome for aj ∈ Zn \ {0, ai+1, . . . , aj−1} that makes the sum
ai+1 + . . .+ aj = 0. Hence

q ≤
∑

0≤i<j≤k
j−i≤t,j ̸=i+1

1

n− j + i
=

t∑
l=2

∑
0≤i<j≤k
j−i=l

1

n− j + i
=

t∑
l=2

k − l

n− l
≤ (t− 1)(k − 2)

n− 2
,

where we used the fact that (k − l)/(n − l) ≤ (k − 2)/(n − 2) for every n > k ≥ 2 and
l ≥ 2. □

Theorem 6.3.5. Almost all k-subsets of Zn are t-weakly sequenceable when tk = o(n)
for n→∞.

Proof. By Proposition 6.3.6 it is easy to see that the probability a randomly chosen

subset of Zn \ {0} of cardinality k is not t-weakly sequenceable is at most (t−1)(k−2)
n−2 . □

Proposition 6.3.7. Let A be a subset of cardinality k of Zn \ {0} and let us choose
uniformly at random an ordering ω = (a1, a2, . . . , ak) of A. Denoting the partial sums of
ω by s = (s0, s1, . . . , sk), let X be the random variable that represents the number of pairs
(i, j) such that si = sj with 0 ≤ i < j ≤ k and j − i ≤ t, where 2 ≤ t < k.

Then the expected value E(X) is smaller than t− 1.

Proof. Proceeding as in Proposition 6.3.6 we get

E(X) =
∑

0≤i<j≤k
j−i≤t,j ̸=i+1

P(sj = si) =
∑

0≤i<j≤k
j−i≤t,j ̸=i+1

P(ai+1 + . . .+ aj = 0)

≤
∑

0≤i<j≤k
j−i≤t,j ̸=i+1

1

k − j + i+ 1
=

t∑
l=2

k − l

k − l + 1
< t− 1 .

□

From Proposition 6.3.7 the following result is immediate.

Theorem 6.3.6. For every A ⊆ Zn \ {0} and 2 ≤ t < |A|, there exists an ordering of A
with less than t− 1 pairs of equal partial sums si = sj where |j − i| ≤ t.

Appendix

We report here the full SageMath code used to provide the results of the previous section.
We have omitted to report the function remTerms since is the same function stated in the
Appendix of Section 6.2.
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import numpy as np, gc, math, time

def poldeg(l):

deg = 0; occ = np.zeros(l, dtype=int)

for i in range(0, l-1):

for j in range(i+1, l):

occ[i] += 1

occ[j] += 1

deg += 1

if j - i + 1 <= t:

for k in range(i, j+1):

occ[k] += 1

deg += 1

for i in range(0, t-1):

for k in range(0, i+1):

occ[k] += t-i-1

deg += t-i-1

return deg, occ

t = 6; l = 2*t-1; p=1

R = PolynomialRing(ZZ,l,"x")

vars = R.gens()

print("Variables: ", vars, "\n")

deg, occs = poldeg(l)

print("Deg: ", deg, " Occs: ", occs)

bounding_exponents = np.ones(l, dtype=int) * (l-1)

print(list(bounding_exponents))

for i in range(0, l-1):

for j in range(i+1, l):

f1 = vars[j]-vars[i]

occs[i] -= 1; occs[j] -= 1

f2 = 1

if j - i + 1 <= t:

f2 = sum(vars[k] for k in range(i, j+1))

for k in range(i, j+1):

occs[k] -= 1

ff = f1 * f2; p = p * ff

p = remTerms(p, bounding_exponents, occs)

print(p.total_degree(), " / ", deg)

if i < t-1:

print(sum(vars[k] for k in range(0, i+1)), "^", t-i-1)

for s in range(0, t-i-1):

f3 = sum(vars[k] for k in range(0, i+1))

for k in range(0, i+1):

occs[k] -= 1

p = p * f3

p = remTerms(p, bounding_exponents, occs)

print("2) ", p.total_degree(), " / ", deg)

print("Degree: ", p.total_degree())

print(p)

print(factor(p.lc()))



CHAPTER 7

Higher Degree Erdős-Ginzburg-Ziv Constants

In this chapter, all the results are obtained in collaboration with Simone Costa.

7.1. Introduction

One significant subfield of additive group theory and combinatorial number theory is the zero-
sum theory that studies the sums behavior of suitable sequences of elements in an abelian finite
group G (see, for instance, the surveys [31, 73]). In this context, a typical kind of problem considers
the existence of constants ℓ such that any sequence of elements of G whose length is bigger than ℓ
satisfies an additive property P. Among these constants, an important role is taken by the classical
Erdős-Ginzburg-Ziv constant of a group G that denotes the smallest positive integer ℓ such that any
sequence of length |S| ≥ ℓ contains a zero-sum subsequence of length |G|. This constant has been
well studied in the literature, we refer to the survey paper [73]. Here we recall that in [63], Erdős,
Ginzburg and Ziv completely determined its value over cyclic groups and that in [70] and in [96],
respectively Fox, Sauermann and Naslund, derived nontrivial upper bounds on groups of type Fn

p ,
they assumed a slightly different definition of Erdős-Ginzburg-Ziv constant. Using this definition
Sidorenko [109] showed the equivalence between this generalized Erdős-Ginzburg-Ziv constant over
Zd
2 and the problem of finding the lowest redundancy of a linear binary code of a given length which

does not contain words of a specific hamming weight.
In the recent paper [33], Caro and Schmitt generalized this concept, using the m-th degree

symmetric polynomial em(g1, . . . , gt) =
∑

1≤i1<···<im≤t

∏m
j=1 gij instead of the sum of the elements

of S and considering subsequences of a given length t (see also [4, 21, 22] and [23] that considered
some related problems). In particular, they defined the higher degree Erdős-Ginzburg-Ziv constants
EGZ(t, R,m) as follows. For a finite commutative ring R, EGZ(t, R,m) is the smallest positive
integer ℓ such that every sequence S over R of length |S| ≥ ℓ contains a subsequence S′ of length t
for which em(S′) evaluates to the zero-element in R. If such ℓ does not exists, EGZ(t, R,m) is set
to ∞.

They also present several lower and upper bounds to these constants solving the case where
R is Z2 and the case where R is Zps if t and m are powers of the same prime. For a generic
finite commutative ring R, their best lower bound is expressed in term of the generalized Davenport
constant D(R,m) of the ring R (see Caro, Girard and Schmitt, [32]) that is the smallest integer ℓ
such that any sequence S over R of length |S| ≥ ℓ contains a subsequence S′ of length |S′| ≥ m for
which em(S′) equals the zero element of R. Indeed they prove that

(109) EGZ(t, R,m) ≥ t+D(R,m)−m.

This chapter aims to determine lower and upper bounds for EGZ(t, R,m) in case R = Fn
q for

some prime power q (in the following we will always use the letter q for a prime power and p for
a prime). The chapter is organized as follows. In Section 7.2.1 we will present two lower bounds
obtained, respectively, using Lovász Local Lemma and the Expurgation method. Here we will also
compare our lower bounds with each other. Then, in Section 7.2.2, we will show that, for sufficiently
large n, our bounds improve the ones given by Caro and Schmitt in the same context. Finally, in
Section 7.2.3, we will apply Tao’s Slice Rank method to provide an upper bound to EGZ(3, R, 2)
in case R = Fn

q and q = 3k for k > 1. In particular, here, we will apply the asymptotic rank

103
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theory developed by Tao and Sawin in [116] and we will prove, purely theoretically, the existence of
a nontrivial upper bound. In addition, for k = 2, 3, 4, 5, we provide explicit numerical upper bounds.

7.2. Bounds on the Higher Degree Erdős-Ginzburg-Ziv Constants

7.2.1. Lower bounds. In this subsection, we will present two kinds of probabilistic lower
bounds on the Erdős-Ginzburg-Ziv constants of rings of type Fn

q . Both those bounds exploit the
following upper bound on the probability that a given t-sequence S of elements in Fn

q is such that
em(S) = 0. The following proposition easily follows by Schwartz–Zippel lemma [104], we report here
a proof for the reader convenience.

Proposition 7.2.1. Let us choose, uniformly at random, a sequence S = (g1, g2, . . . , gt) of t ≥ m
elements in Fn

q . Then

P[em(S) = 0] ≤
(
m

q

)n

.

Proof. We prove this result first assuming n = 1, by induction on m.
BASE STEP. Let us consider the case m = 1. Let us assume we have already chosen, uniformly

at random, the first t− 1 elements g1, . . . , gt−1 of S then we note that the equation

e1(g1, . . . , gt−1, x) = g1 + g2 + · · ·+ gt−1 + x = 0

has only one solution in Fq. It means that

P[e1(S) = 0] ≤ 1

|Fq|
=

1

q
.

INDUCTIVE STEP. Here we assume the thesis is true for m−1 and we prove it for m. We note
that

em(g1, . . . , gt−1, gt) = em(g1, . . . , gt−1) + gtem−1(g1, . . . , gt−1).

Therefore, we can upper bound the probability that, chosen, uniformly at random the elements
g1, . . . , gt, em(g1, . . . , gt) = 0 as follows

P[em(g1, . . . , gt) = 0]

≤ P[em−1(g1, . . . , gt−1) = 0] + P[em(g1, . . . , gt) = 0|em−1(g1, . . . , gt−1) ̸= 0].

Here we note that, if em−1(g1, . . . , gt−1) ̸= 0, there is exactly one x ∈ Fq such that

em(g1, . . . , gt−1, x) = em(g1, . . . , gt−1) + xem−1(g1, . . . , gt−1) = 0.

It follows that

P[em(g1, . . . , gt) = 0|em−1(g1, . . . , gt−1) ̸= 0] ≤ 1

q
.

Moreover, due to the inductive hypothesis, we have that P[em−1(g1, . . . , gt−1) = 0] ≤ m−1
q . Therefore

the inductive claim is proved, since:

P[em(g1, . . . , gt) = 0] ≤ m− 1

q
+

1

q
=

m

q
.

It means that, in Fq, if we choose uniformly at random a sequence S of t ≥ m elements then

P[em(S) = 0] ≤ m

q
.

Now we note that, if we consider a sequence a sequence S of t ≥ m elements in Fn
q , then em(S) = 0

if and only if each of the n projections πi(S) of S over the i-th coordinate satisfies em(πi(S)) = 0.
Since those projections are independent, it follows that

P[em(S) = 0] =

n∏
i=1

P[em(πi(S)) = 0] ≤
(
m

q

)n

.

□
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7.2.1.1. Lovász Local Lemma. We provide a first new lower bound on EGZ(t,Fn
q ,m) by exploit-

ing the so-called Lovász Local Lemma, see also the work [23] of Bitz, Griffith and He for a similar
application of this method. Here we restate the lemma (in the symmetric case), already stated in
Chapter 2, for the reader’s convenience.

Lemma 7.2.1 ([65] (see also [8])). Let E1, E2, . . . , Ek be events in an arbitrary probability space.
Suppose that each event Ei is mutually independent of the set of all other events Ej but at most D,
and that P[Ei] ≤ P for all 1 ≤ i ≤ k. If

eDP ≤ 1

then P[∩ki=1Ei] > 0.

Now, we are ready to state the following theorem.

Theorem 7.2.1. Let ℓ be such that

e

[(
ℓ

t

)
−
(
ℓ− t

t

)](
m

q

)n

≤ 1

where
(
ℓ−t
t

)
is set to zero if ℓ < 2t. Then EGZ(t,Fn

q ,m) > ℓ.

Proof. Here we need to prove the existence of a sequence S of length ℓ for which any subse-
quence S′ of length t is such that em(S′) ̸= 0.

Let us choose, uniformly at random, a sequence S of length ℓ in Fn
q . For a given subsequence

S′ of length t contained in S, let ES′ be the event such that em(S′) = 0. Clearly, there are
(
ℓ
t

)
such

events. Due to Proposition 7.2.1, we know that

P[ES′ ] ≤
(
m

q

)n

for all S′ ⊆ S, |S′| = t.

It is easy to see that each event ES′ is mutually independent from all the events ES′′ where S′′ ⊆ S\S′

and |S′′| = t. Therefore each event ES′ is dependent by at most(
ℓ

t

)
−
(
ℓ− t

t

)
other events. Hence, due to Lemma 7.2.1 we obtain the thesis. □

7.2.1.2. Expurgation. Now we provide a second lower bound that, in some regime of the param-
eters turns out to improve that of Subsection 7.2.1.1. The method we use here is sometimes called
Expurgation in the literature. We refer the reader to the book [8, Chapter 3 (Alterations)].

Theorem 7.2.2. Let ℓ be such that(
ℓ+ s

t

)(
m

q

)n

< s+ 1

for some s ≥ 0. Then EGZ(t,Fn
q ,m) > ℓ.

Proof. We first note that the thesis is equivalent to prove the existence of a sequence S of
length ℓ for which any subsequence S′ of length t is such that em(S′) ̸= 0.

Here we choose, uniformly at random, a sequence T of length ℓ+s and we evaluate the expected
value of the random variable X given by the number of subsequences T ′ of T of length t and such
that em(T ′) = 0. Because of Proposition 7.2.1, we have that

E(X) ≤
∑

T ′⊆T :|T ′|=t

(
m

q

)n

=

(
ℓ+ s

t

)(
m

q

)n

.

Moreover, due to the hypothesis, we have that

E(X) < s+ 1.

It follows that there exists a set T of length ℓ+s with at most s subsequences T ′ such that em(T ′) = 0
that we call bad subsequences. If we remove from T one element from each bad subsequence we
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have removed at most s elements and we are left with a sequence S of length at least ℓ for which
any subsequence S′ of length t is such that em(S′) ̸= 0. Clearly, we may assume, without loss of
generality, that the length of S is exactly ℓ obtaining the thesis. □

In the following proposition, we show that when t ≤ c
√
ℓ for some constant c, the bound given

in Theorem 7.2.1 is better than the one given in Theorem 7.2.2 with s = 0.

Proposition 7.2.2. Let ℓ and t be positive integers such that ℓ ≥ 2t. Then

(110) e

[(
ℓ

t

)
−
(
ℓ− t

t

)]
≤
(
ℓ

t

)
for every t ≤

√
ℓ+1
e+1 .

Proof. Inequality (110) can be easily restated as

(111)

(
1− t

ℓ

)
·
(
1− t

ℓ− 1

)
· · ·
(
1− t

ℓ− t+ 1

)
≥ 1− 1

e
.

Then lower bounding each factor on the LHS of equation (111) by
(
1− t

ℓ−t+1

)
we get

t−1∏
i=0

(
1− t

ℓ− i

)
≥
(
1− t

ℓ− t+ 1

)t

.

Using Bernoulli’s inequality (1 + x)r ≥ 1 + rx we obtain that(
1− t

ℓ− t+ 1

)t

≥ 1− t2

ℓ− t+ 1
.

For (e+ 1)t2 ≤ ℓ+ 1, the following inequality

1− t2

ℓ− t+ 1
≥ 1− 1

e

is satisfied. Hence we proved the proposition. □

An immediate corollary of this proposition is that, if t is fixed and ℓ is big enough,

e

[(
ℓ

t

)
−
(
ℓ− t

t

)](
m

q

)n

< 1

for any ℓ such that (
ℓ

t

)(
m

q

)n

< 1.

Equivalently we can say that in this regime the bound provided by Lovász Local Lemma is better
than that of Theorem 7.2.2 with s = 0.

Since finding the optimal s in the bound given in Theorem 7.2.2 is not easy even for small values
of t, we are interested in studying the optimal s when ℓ → ∞ and t = o(ℓ). It can be seen that in
this case, the optimal value of s is equal to ℓ/(t− 1). This can be easily proved observing that(

ℓ+ s

t

)
=

(ℓ+ s)t

t!
(1 + o(1))

and deriving in s the function
(ℓ+ s)t

t!(1 + s)
(1 + o(1)).

In this regime, we provide the following proposition which implies that the bound given in Theorem
7.2.2 with s = ℓ/(t− 1) provides a better result than the one given in Theorem 7.2.1 for sufficiently
large ℓ’s.
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Proposition 7.2.3. If t = o(
√
ℓ) then we have that

(112) lim
ℓ→∞

( t
t−1ℓ

t

)
1

ℓ
t−1 + 1

/
e

[(
ℓ

t

)
−
(
ℓ− t

t

)]
≤ 1

t
.

Proof. First, we lower bound the denominator on the LHS of (112) as follows

e

[(
ℓ

t

)
−
(
ℓ− t

t

)]
= e

(
ℓ

t

)(
1−

t−1∏
i=0

(
1− t

ℓ− i

))
≥ e

(
ℓ

t

)(
1−

(
1− t

ℓ

)t
)
.

Since (1− t/ℓ)
t ≤ e−t2/ℓ = 1− t2/ℓ+ o(t2/ℓ) and since t2 = o(ℓ) we obtain that

e

(
ℓ

t

)(
1−

(
1− t

ℓ

)t
)
≥ e

(
ℓ

t

)
t2

ℓ
(1 + o(1)) = et

(
ℓ− 1

t− 1

)
(1 + o(1)).

Then, we upper bound the numerator on the LHS of (112) as follows( t
t−1ℓ

t

)
1

ℓ
t−1 + 1

=

( t
t−1ℓ− 1

t− 1

) t
t−1ℓ

t

1
ℓ

t−1 + 1
≤
( t

t−1ℓ

t− 1

)
.

Hence, using the estimates for the numerator and the denominator we have that the limit in the
statement of the proposition is upper bounded by

lim
ℓ→∞

( t
t−1ℓ

t− 1

)/
et

(
ℓ− 1

t− 1

)
(1 + o(1)) =

1

et

(
t

t− 1

)t−1

≤ 1

t

where we used the fact that
(
1 + 1

t−1

)t−1

≤ e. □

An immediate corollary of this proposition is that, if t is fixed and ℓ is big enough,(
ℓ+ ℓ/(t− 1)

t

)(
m

q

)n

< 1 + ℓ/(t− 1)

for any ℓ such that

e

[(
ℓ

t

)
−
(
ℓ− t

t

)](
m

q

)n

≤ 1.

Equivalently we can say that, in this regime, the bound provided by Theorem 7.2.2 with s = ℓ/(t−1)
is better than that of Lovász Local Lemma.

Remark 7.2.1. We have been able to compute the optimal value of s in the expurgation bound
(Theorem 7.2.2) only for small values of t, i.e., t = 2, 3, 4, 5. In all these cases and the regime
considered in Theorem 7.2.3 the expurgation bound performs better than the bound given in Theorem
7.2.1 obtained using the Lovász Local Lemma. In view of these results, we are inclined to conjecture
that the expurgation bound provides the best bound for every ℓ ≥ t ≥ 2. However, since we did not
succeed to prove this conjecture, we considered useful to report also the bound given in Theorem 7.2.1.

7.2.2. Comparision with Caro and Schmitt’s bounds. In this subsection, we discuss the
bounds we have obtained in comparison to that of Caro and Schmitt. In particular, in [32] (see
Theorems 3.1 and 3.4), it was proved that for rings of type Fn

p (where p is a prime) the following
bounds on D(Fn

p ,m) hold:

(113) nmp− (n− 1)m ≥ D(Fn
p ,m) ≥ np− (n− 1)m.

It follows that the lower bound of Caro and Schmitt (109) becomes

(114) EGZ(t,Fn
p ,m) ≥ t+ n(p−m).



108 7. HIGHER DEGREE ERDŐS-GINZBURG-ZIV CONSTANTS

Now we consider our lower bound of Theorem 7.2.2 with s = 0 in the case q = p. Note that this is not,
in general, our best lower bound but it is the easiest to consider. We have that EGZ(t,Fn

p ,m) ≥ ℓ,
if ℓ is such that (

ℓ

t

)(
m

p

)n

< 1.

We note that ℓt

t! >
(
ℓ
t

)
and hence EGZ(t,Fn

p ,m) ≥ ℓ for any ℓ such that

ℓt

t!

(
m

p

)n

< 1

that is
ℓt

t!
<
( p

m

)n
and hence

(115) EGZ(t,Fn
p ,m) ≥ (t!)

1
t

( p

m

)n
t

.

Now, since (115) is, when p > m, exponential in n, it is clear that asymptotically in n, it improves
the lower bound of equation (114).

Remark 7.2.2. From equation (115), we also have that, if p > m, for sufficiently large n:

EGZ(t,Fn
p ,m) ≥ (t!)

1
t

( p

m

)n
t

> t+ nm(p− 1) ≥ t+D(Fn
p ,m)−m

where the last inequality follows from the upper bound of equation (113). This means that, for these
kinds of parameters it does not yield a Caro-Gao-type relation (see [31, 73]), i.e. it does not hold
the equality in equation (109).

We also note that the bound of equation (115) can be trivially improved for several values of
q = pk. Indeed, if

(
t
m

)
̸≡ 0 (mod p) we have that EGZ(t,Fn

q ,m) = ∞. It suffices to consider
the infinite constant sequence such that gi = 1 for any i ∈ N. In this case we have that, for any
subsequence S′ of length t, em(S′) =

(
t
m

)
̸≡ 0 (mod p). On the other hand, this is a subset of

the parameters for which our bounds of Subsection 7.2.1 (and in particular equation (115)) hold.
Moreover, we will show in the upcoming subsection that, at least when m = 2, t = 3 and q = 3k, it
is possible to provide nontrivial upper bounds.

Finally, we also note that the bounds here presented can be easily generalized to rings of type
Fq1 × Fq2 × · · · × Fqn (similarly to those of [33] that Caro and Schmitt stated for rings of type
Zm1 × Zm2 × · · · × Zmn) but, since we believe this is not a substantial improvement, we prefer to
keep the notation of this note as simple as possible and to explicitly consider only rings of type Fn

q .

7.2.3. Upper bound via slice rank. In this subsection we provide an upper bound to
EGZ(3,Fn

q , 2) with q = 3k (in this subsection we always consider q to be of that form). Even
though this is a very special case, providing upper bounds seems to be a hard task. The approach
used here is the so-called Slice Rank method, introduced by Terence Tao in [114] and revisited by Tao
and Sawin in [116] (see also [42] for a discussion on the method) in order to generalize the polynomial
approach introduced in [46] and in [62]. Our application of the method is somehow reminiscent of
works on the classical Erdős-Ginzburg-Ziv constants of Fox and Sauermann [70] and Naslund [96].

We begin by recalling some definitions and lemmas from [114] and [116].

Definition 7.2.1. A function T : Ak → F is said to be a slice if it can be written in the form

T (x1, . . . , xk) = T1(xi)T2(x1, . . . , xi−1, xi+1, . . . , xk)

where T1 : A→ F and T2 : Ak−1 → F.

Definition 7.2.2. The Slice Rank srk(T ) of a general function T : Ak → F is the smallest
number m such that T is a linear combination of m slices.
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Lemma 7.2.2 ([114]). Let A be a finite set and F be a field. Let T (x, y, z) be a function A×A×
A→ F such that T (x, y, z) ̸= 0 if and only if x = y = z. Then srk(T ) = |A|.

Now we consider a sequence S = (g1, g2, . . . , gℓ) of elements in Fn
q with q = 3k such that every

triple of elements g′1, g
′
2, g

′
3 of S satisfies e2(g

′
1, g

′
2, g

′
3) = g′1g

′
2 + g′2g

′
3 + g′3g

′
1 ̸= 0. We note that S can

not have elements repeated more than twice since g′1g
′
2 + g′2g

′
3 + g′3g

′
1 = 0 whenever g′1 = g′2 = g′3. It

means that we can split S into two parts S1 and S2 that are both sets of elements in Fn
q . We can

also assume that |S1| ≥ |S|/2. Now we split S1 in n + 1 sets S0
1 , S

1
1 , . . . , S

n
1 where gi ∈ Sj

1 if gi has
exactly j coordinates equal to zero. We note that there exists j such that

|Sj
1| ≥

|S1|
n+ 1

≥ |S|
2(n+ 1)

and hence |S| ≤ 2(n + 1)|Sj
1|. Clearly, to upper bound the length of the sequence S, it suffices

to bound the cardinality of Sj
1 considered as a set (it has no repetitions). Since it does not admit

repeated elements, we already have that

(116) |Sj
1| ≤ qn.

We will see that it is possible, if q = 3k > 3, to improve this bound (even though not explicitly).
In order to apply Lemma 7.2.2, we want to consider a function that is zero whenever we consider

three different elements of Sj
1. In particular, given x, y, z ∈ Fn

q we consider

P (x, y, z) =

n∏
i=1

(1− (xiyi + yizi + zixi)
q−1).

Lemma 7.2.3. Let us consider the function P (x, y, z) on the restricted domain Sj
1×S

j
1×S

j
1 → Fq

where q = 3k. Then P (x, y, z) ̸= 0 if and only if x = y = z.

Proof. Here we have that, if x, y, z are in Sj
1, then P (x, y, z) ̸= 0 if and only if x = y = z.

Indeed, if x, y, and z are three different elements of Sj
1, they are such that xy + yz + zx ̸= 0 and

hence xiyi+ yizi+ zixi ̸= 0 for at least one i ∈ [1, n]. This means that 1− (xiyi+ yizi+ zixi)
q−1 = 0

and hence P (x, y, z) = 0.

We note that also if we consider an element x ∈ Sj
1 repeated twice and z ̸= x, we have that

P (x, x, z) = 0. Indeed, since x and z have the same number of zero components, there exists i such
that xi ̸= 0 and xi ̸= zi. Here we have that

xixi + xizi + zixi = x2
i + 2xizi = xi(xi − zi) ̸= 0

since both xi − zi and xi are nonzero. It follows that P (x, x, z) = 0. Similarly, we prove that also
P (z, x, x) = 0 and P (x, z, x) = 0.

Finally, we consider an element x repeated three times. In this case, we have that

P (x, x, x) =

n∏
i=1

(1− (xixi + xixi + xixi)
q−1) =

n∏
i=1

(1− (3xixi)
q−1) = 1 ̸= 0.

□

As a corollary of Lemmas 7.2.2 and 7.2.3 we have that:

Corollary 7.2.1.

|S| ≤ 2(n+ 1)|Sj
1| = 2(n+ 1)srk(P |Sj

1×Sj
1×Sj

1
).

Now the goal is to upper bound the srk(P |Sj
1×Sj

1×Sj
1
). The following Lemma will help us to

make the first step in this direction.

Lemma 7.2.4 ([114]). Let A be a finite set, A1 ⊆ A and F be a field. Let T (x, y, z) be a function
A×A×A→ F. Then

srk(T |A1×A1×A1
) ≤ srk(T ).
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We immediately get the following corollary:

Corollary 7.2.2. Considering the function P on the domain Fn
q × Fn

q × Fn
q , we have that

|S| ≤ 2(n+ 1)|Sj
1| = 2(n+ 1)srk(P ).

Now we aim to prove that srk(P ) is smaller than an+o(n) for some constant a strictly smaller
than q = 3k.

For this purpose, we recall the asymptotic rank theory studied by Tao and Sawin in [116] in the
special case of polynomial function (we do not need to consider the very general case of tensor Slice
Rank).

Given a polynomial p(x, y, z) whose degree in each variables is at most δ, we define Γ as the
subset of {0, 1, . . . , δ}3 of the triples (d1, d2, d3) such that xd1yd2zd3 has a nonzero coefficient in p.

Proposition 7.2.4 ([116]). Let p(x, y, z) be a polynomial and let Γ be its support. Then:

srk(

n∏
i=1

p(xi, yi, zi)) ≤ exp((H(Γ) + o(1))n)

where

H(Γ) := sup
(X1,...,Xk)

min(h(X1), . . . , h(Xk)),

(X1, . . . , Xk) takes values in Γ and h(X) is the Shannon entropy of the random variable X defined
as −

∑
γ∈Γ′ P[X = γ] log(P[X = γ]) and Γ′ is the support of X.

In our case, we will not find the exact value of H(Γ) but we will prove that H(Γ) < log(q) =
log(3k), providing then an upper bound of type exp((H(Γ) + o(1))n) = exp(H(Γ))(n+o(n)) where
exp(H(Γ)) is strictly smaller than q = 3k. For this purpose, we will recall the following theorem
from [30].

Theorem 7.2.3 (Theorem 8 of [30]). Let Γ be a finite subset of S×S×S for some set S and let
σ ∈ Sym(3) be a permutation such that for each a = (a1, a2, a3) ∈ Γ also σ(a) = (aσ(1), aσ(2), aσ(3)) ∈
Γ. Then there is a random variable Y taking values in Γ such that for all y ∈ Γ we have that
P[Y = y] = P[Y = σ(y)] and

min(h(Y1), h(Y2), h(Y3)) = H(Γ).

This theorem essentially ensures us that the value H(Γ) is attained as a minimum of the en-
tropy of the marginal variables of some random variable Y and that this variable is invariant under
permutations that fix Γ. We are now ready to state and prove the main result of this subsection.

Theorem 7.2.4. Let q = pk, then, if p ̸= 3, we have that

EGZ(3,Fn
q , 2) =∞.

If, instead, p = 3, we obtain the upper bound

EGZ(3,Fn
q , 2) ≤ an+o(n)

where a = q = 3 if k = 1 and a < q = 3k otherwise.

Proof. We note that, if p ̸= 3,
(
3
2

)
= 3 ̸≡ 0 (mod p). In this case we consider the infinite

constant sequence such that gi = 1 for any i ∈ N. Here we have that, for any subsequence S′ of
length 3, e2(S

′) =
(
3
2

)
= 3 ̸≡ 0 (mod p) and hence EGZ(3,Fn

q , 2) =∞ whenever q = pk and p ̸= 3.
Now we assume p to be 3. If k = 1 the upper bound of this theorem follows directly from

equation (116).
Otherwise, if k > 1, we set p(x, y, z) = (1− (xy + yz + zx)q−1) and we note that

P (x, y, z) =

n∏
i=1

p(xi, yi, zi).
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Therefore we can use Proposition 7.2.4 to evaluate srk(P ). To determine Γ, we develop the product.
Here we have that

p(x, y, z) = x0y0z0 −

 ∑
b+c+d=q−1,b,c,d≥0

(
q − 1

b, c, d

)
xb+cyb+dzd+c

 .

It follows that Γ ⊂ S3 where S = {0, 1, . . . , q − 1}. Hence the marginal variables Y1, Y2 and Y3 of
Theorem 7.2.3 have all support S = {0, 1, . . . , q − 1}.

We remark that given a random variable Y1 whose support is the discrete set {0, 1, . . . , q − 1},
as a consequence of the concavity of the entropy function and due to Jensen’s inequality, h(Y1) =
log(q) = log(3k) if and only if Y1 has uniform distribution over {0, 1, . . . , q−1}. It follows that, given
a random variable Y whose support is Γ, min(h(Y1), h(Y2), h(Y3)) = log(q) if and only if Y1, Y2 and
Y3 have all uniform distributions over {0, 1, . . . , q − 1}. Equivalently, H(Γ) = log(q) if and only if
there exists a random variable Y that assume values over Γ (that satisfies the symmetric hypothesis
of Theorem 7.2.3) and such that Y1, Y2 and Y3 have all uniform distributions over {0, 1, . . . , q − 1}.

Now we assume, by contradiction, that there exists such a variable Y and we set:

pi = P[Y = (i, q − 1, q − 1− i)] for i = 0, 1, . . . , q − 1.

Now since Y1 has uniform distribution we have that

(117)


P[Y1 = 1] = 1/q;

P[Y1 = 3] = 1/q;

P[Y1 = q − 1] = 1/q.

It is easy to see that

P[Y1 = 1] = P[Y = (1, q − 1, q − 2)] + P[Y = (1, q − 2, q − 1)] = 2p1

where the last equality holds due to Theorem 7.2.3.
We note that the coefficient of x3yq−2zq−3 (and that of x3yq−3zq−2) in p is(

q − 1

2, 1, q − 4

)
=

(q − 1)(q − 2)(q − 3)

2
≡ 0 (mod 3)

and hence (3, q − 2, q − 3), (3, q − 3, q − 2) ̸∈ Γ. It means that

P[Y1 = 3] = P[Y = (3, q − 1, q − 4)] + P[Y = (3, q − 4, q − 1)] = 2p3.

Finally, we observe that

P[Y1 = q − 1] =

q−1∑
i=0

P[Y = (q − 1, i, q − 1− i)]

and, due to Theorem 7.2.3,

P[Y1 = q − 1] = p0 + 2p1 + 2p3 + 2p2 +

q−5∑
i=4

pi.

Hence system (117) can be rewritten as

(118)


2p1 = 1/q;

2p3 = 1/q;

p0 + 2p1 + 2p3 + 2p2 +
∑q−5

i=4 pi = 1/q.

Since 2p1 = 1/q and 2p3 = 1/q the last equation can be written as

p0 + 2/q + 2p2 +

q−5∑
i=4

pi = 1/q.
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But this would imply that

p0 + 2p2 +

q−5∑
i=4

pi = −1/q < 0

that is a contradiction. It means that it does not exist any variable Y such that Y1, Y2 and Y3 have
all uniform distributions over {0, 1, . . . , q−1}. Therefore H(Γ) < log(q) and due to Proposition 7.2.4
we have that

srk(P ) = srk(

n∏
i=1

p(xi, yi, zi)) ≤ exp((H(Γ) + o(1))n).

Let now S = (g1, g2, . . . , gℓ) be a sequence of elements in Fn
q such that every subsequence of

length three g′1, g
′
2, g

′
3 of S satisfies g′1g

′
2 + g′2g

′
3 + g′3g

′
1 ̸= 0. Then, recalling Corollary 7.2.2, we have

that
|S| ≤ 2(n+ 1)srk(P ) ≤ exp((H(Γ) + o(1))n).

Hence the claim follows by setting a = exp(H(Γ)). □

Remark 7.2.3. We observe that, in the previous theorem, for q = 3 we obtain a weaker bound
than for the other cases of q. Indeed, in this case

Γ = {(0, 0, 0), (2, 2, 0), (0, 2, 2), (2, 0, 2), (2, 1, 1), (1, 2, 1), (1, 1, 2)}
and one can easily check that defining Y that has, neatly, the distribution

(1/4, 1/12, 1/12, 1/12, 1/6, 1/6, 1/6)

over Γ, Y1, Y2 and Y3 have all uniform distributions. It follows that, in this case, H(Γ) = log(3) and
hence our proof fails to provide a better upper bound for q = 3.

We note that, to compute H(Γ) in the previous theorem, we need to solve a convex optimization
problem. Using standard mathematical software we have been able to find an upper bound for H(Γ)
only in the following cases.

q 9 27 81 243

H(Γ) 2.118 3.082 4.07 5.074

For the other values of q (i.e. q > 243) we have not been able to explicitly evaluate H(Γ) since
it seems that there are too many variables for this problem to be treated even with the help of a
computer. Hence we do not provide an explicit upper bound on EGZ(3,Fn

q , 2) for q > 243. Also
developing the product that defines P and trying to group the slices as done by Naslund and Sawin
in [97] appears not helpful in this problem. On the other hand, we believe it is interesting that we
can prove, just theoretically, the upper bound of Theorem 7.2.4.
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