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Information Theory Interpretation

Signaling over a multiple access channel. Let {a1, ..., an}
be a set, where ai ∈ Zk for some k ≥ 1, such that the sums of
up to λn elements of the set be distinct with 0 < λ < 1. We
have n trasmitters.

...

{0, a1}

{0, a2}

{0, an}

Σi∈J :|J |≤λnai

Each one can send a signal of amplitude ai to the base station
saying that it wants to start a communication session.



Formulation of the original problem

Let {a1, ..., an} be a set of positive integers with a1 < . . . < an
such that all 2n subset sums are distinct.

Conjecture.

A famous conjecture by Erdős states that an > c · 2n for some
constant c.

Theorem.
The best results known to date are of the form an > c · 2n/

√
n

for some constant c.

Improving the factor
√
n is a very hard task and so only the

constant c has been improved in the past 65 years.



Known bounds from literature

Lower bounds on an

• Trivial one → an ≥ 1
n2n

• Erdős and Moser (1955) → an ≥ 1
4 ·

2n√
n

• Alon and Spencer (1981) → an ≥ (1 + o(1)) 2
3
√

3
· 2n√

n

• Elkies (1986) → an ≥ (1 + o(1)) 1√
2π
· 2n√

n

• Guy (1981) → an ≥ (1 + o(1)) 1√
3
· 2n√

n

• Dubroff, Fox and Xu (2020) → an ≥ (1 + o(1))
√

2
π ·

2n√
n

Upper bounds on an

• Trivial one → an ≤ 2n−1 (take each ai = 2i−1)

• Bohman (1998) → an ≤ 0.22002 · 2n



Variations on the original problem

First variation.
The distinct-sums condition is weakened by only requiring that
the sums of up to λn elements of the set be distinct with
0 < λ < 1.

Second variation.
The elements ai ∈ Zk for some k ≥ 1.



More formally...

Problem.
Let Fλ,n be the family of all subsets of {1, . . . , n} whose size is
smaller than or equal to λn. We are interested in the minimum
M such that there exists a sequence Σ = (a1, . . . , an) in Zk,
ai ∈ [0,M ]k ∀i, such that for all distinct A1, A2 ∈ Fλ,n,
S(A1) 6= S(A2), where

S(A) =
∑
i∈A

ai .

Remark.
For λ = 1 and k = 1 we obtain the same problem as the original
one.



Trivial Lower Bounds on M

Proposition.

Let Σ = (a1, . . . , an) be an Fλ,n-sum distinct sequence in Zk
that is M -bounded. Then

M ≥ (1 + o(1)) ·


1

dλne k
√

2πnλ(1−λ)
2nh(λ)/k if λ < 1/2;

1
dλne · 2

(n−1)/k if 1/2 ≤ λ < 1;
1
n · 2

n/k if λ = 1;

Proof.
Since the maximum possible sum is at most dλneM in each
component, by the pigeonhole principle, we have that

Mk ≥ 1

dλnek

dλne∑
i=0

(
n

i

)
.



Harper Isoperimetric Inequality

Following the idea of Dubroff, Fox and Xu the previous bounds
for k = 1 and λ ≥ 1/2 can be improved as follow

Theorem
Let Σ = (a1, . . . , an) be an Fλ,n-sum distinct sequence in Z that
is M -bounded. Then

M ≥ (1 + o(1)) ·


1√
2πn
· 2n if λ = 1/2;√

2
πn · 2

n if λ ∈]1/2, 1].



Lower bound - Variance method for k > 1

Using the variance method, it is possible, to improve the
previous bounds for k > 1 and λ ≥ 1/2.

Theorem
Let λ ≥ 1/2 and let Σ = (a1, . . . , an) be an Fλ,n-sum distinct
sequence in Zk that is M -bounded. Then

M ≥ (1+o(1))·


√

4
πn(k+2) · Γ(k/2 + 1)1/k · 2n/k if λ = 1;√

4
πn(k+2) · Γ(k/2 + 1)1/k · 2(n−1)/k if 1/2 ≤ λ < 1;

where Γ is the gamma function.



Variance method for k > 1 and 1/2 ≤ λ ≤ 1

Sketch of the proof.

Consider a random variable X =
∑n

i=1 εiai where the random
vectors (ε1, ε2, . . . , εn) are uniformly distributed over the set
Fλ,n. It can be proved that E[εiεj ] ≤ 0 for each i 6= j. Hence
σ2 ≤ 1/4

∑n
i=1 |ai|2 ≤ 1/4nkM2.

The variance can be lower bounded by placing each sum within
a ball of the smallest possible radius R centered at µ := E[X].

σ2 ≥ (1 + o(1))

|Fλ,n|

∫ R

0
Sk−1(ρ)ρ2dρ

≥ (1 + o(1))

|Fλ,n|
kπk/2

Γ(k/2 + 1)

Rk+2

k + 2
.



Polynomial method

Using the polynomial method (Alon’s combinatorial
nullstellensatz) we get the following theorem.

Theorem
For any λ < 1/3, there exists a sequence Σ = (a1, . . . , an) that is
M -bounded positive integers and Fλ,n-sum distinct with

M ≥ λ3n22f(λ)n ,

where f(λ) = −2λ log2 λ− (1− 2λ) log2(1− 2λ).

Remark.
The previous bound is non-trivial for λ < 3/25.



Upper bound - Probabilistic method

Using the probabilistic method we get an improvement on the
trivial bound (i.e., c · 2n/k) for k > 1 and λ < 3/25.

Theorem
Let

Cλ,n = k

√
λ2n2

2τλ
2f(λ)τλ and τλ =

⌈
1

loge 2 · f(λ)

⌉
,

where f(λ) = −2λ log2 λ− (1− 2λ) log2(1− 2λ).

Then there exists a sequence Σ = (a1, . . . , an) of(
Cλ,n · 2f(λ)n/k

)
-bounded elements of Zk that is Fλ,n-sum

distinct.



Improvements for k = 1 and λ ∈]3/25, 1/4]

Using the Bohman construction it can be shown that if λ < 1/4,
if n is big enough, there exists a sequence Σ = (a1, . . . , an) of
M -bounded integers that is Fλ,n-sum distinct with

M =
0, 22096

2
· 2n ,

while for λ < 1/8 we get

M =
0, 22096

4
· 2n .

Remark.
For λ < 1/4 we can insert an additional ai to the sequence
found by Bohman while for λ < 1/8 two elements can be added
without violating the sum-distinct property.



Overall results

Figure: Sub-exponential factor of the lower bounds for 1/2 ≤ λ ≤ 1.
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(a) k = 1

��� ��� ��� ����
�

�
��

�
��

�
��

��

������� �����

������������� �����

������ ������ �����

(b) k > 1

Figure: Exponent of the upper bounds for k = 1 and for k > 1.
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(b) k > 1
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