An overview of the Graham's rearrangement conjecture

Stefano Della Fiore

Università degli studi di Brescia Dipartimento di Ingegneria dell'Informazione

YoungPeople4Math, SemMat, Brescia, 2025

Let A be a finite subset of an abelian group.

An ordering $a_1, a_2, \ldots, a_{|A|}$ of A is *valid* if the partial sums

$$a_1, a_1 + a_2, \ldots, a_1 + a_2 + \ldots + a_{|A|}$$

are all distinct. Moreover, this ordering is called a *sequencing* if it is valid and $a_i + \ldots + a_j \neq 0$ for any $(i, j) \neq (1, |A|)$.

Conjecture (Graham (1971); Erdős and Graham (1980))

Let p be a prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}$ has a valid ordering.

Let A be a finite subset of an abelian group.

An ordering $a_1, a_2, \ldots, a_{|A|}$ of A is *valid* if the partial sums

 $a_1, a_1 + a_2, \ldots, a_1 + a_2 + \ldots + a_{|A|}$

are all distinct. Moreover, this ordering is called a *sequencing* if it is valid and $a_i + \ldots + a_j \neq 0$ for any $(i, j) \neq (1, |A|)$.

Conjecture (Graham (1971); Erdős and Graham (1980))

Let p be a prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}$ has a valid ordering.

Example

Let p = 5 and $A = \{1, 2, 3, 4\} \subset \mathbb{Z}_5$. The ordering 1, 2, 3, 4 is not valid since 1 = 1 + 2 + 3 while the ordering 1, 3, 4, 2 is valid since the partial sums are 1, 4, 3, 0.

The only valid orderings of A beginning with 1 are 1, 3, 4, 2 and 1, 2, 4, 3 (with partial sums 1, 3, 2, 0).

Conjecture (Alspach (~ 2001))

Let G be an abelian group. Then every finite subset $A \subseteq G \setminus \{0\}$ has a valid ordering.

Example

Let p = 5 and $A = \{1, 2, 3, 4\} \subset \mathbb{Z}_5$. The ordering 1, 2, 3, 4 is not valid since 1 = 1 + 2 + 3 while the ordering 1, 3, 4, 2 is valid since the partial sums are 1, 4, 3, 0.

The only valid orderings of A beginning with 1 are 1, 3, 4, 2 and 1, 2, 4, 3 (with partial sums 1, 3, 2, 0).

Conjecture (Alspach (~ 2001))

Let G be an abelian group. Then every finite subset $A \subseteq G \setminus \{0\}$ has a valid ordering.

Example

Let p = 5 and $A = \{1, 2, 3, 4\} \subset \mathbb{Z}_5$. The ordering 1, 2, 3, 4 is not valid since 1 = 1 + 2 + 3 while the ordering 1, 3, 4, 2 is valid since the partial sums are 1, 4, 3, 0.

The only valid orderings of A beginning with 1 are 1, 3, 4, 2 and 1, 2, 4, 3 (with partial sums 1, 3, 2, 0).

Conjecture (Alspach (~ 2001))

Let G be an abelian group. Then every finite subset $A \subseteq G \setminus \{0\}$ has a valid ordering.

This problem has connections to:

- Heffter arrays
- Non-zero sum Heffter arrays
- Graph decomposition
- Graceful labelings

• . . .

Old and new results over \mathbb{Z}_p

Progress before 2024:

- Many authors (2005–2020): The conjecture holds for $|A| \leq 12$.
- Müyesser and Pokrovskiy (2022): The conjecture holds for $|A| \ge p p^{1/1000}$. Earlier authors proved it for $|A| \ge p 3$.

Theorem (N. Kravitz (July 2024) – W. Sawin (2015))

Let p be a prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}$ of size $|A| \leq \log p/2 \log \log p$ has a valid ordering.

Theorem (B. Bedert and N. Kravitz (Sept. 2024))

Let p be a large prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}$ of size $|A| \leq e^{c(\log p)^{1/4}}$ has a valid ordering.

Old and new results over \mathbb{Z}_p

Progress before 2024:

- Many authors (2005–2020): The conjecture holds for $|A| \le 12$.
- Müyesser and Pokrovskiy (2022): The conjecture holds for $|A| \ge p p^{1/1000}$. Earlier authors proved it for $|A| \ge p 3$.

Theorem (N. Kravitz (July 2024) – W. Sawin (2015))

Let p be a prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}$ of size $|A| \leq \log p/2 \log \log p$ has a valid ordering.

Theorem (B. Bedert and N. Kravitz (Sept. 2024))

Let p be a large prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}$ of size $|A| \leq e^{c(\log p)^{1/4}}$ has a valid ordering.

Old and new results over \mathbb{Z}_p

Progress before 2024:

- Many authors (2005–2020): The conjecture holds for $|A| \le 12$.
- Müyesser and Pokrovskiy (2022): The conjecture holds for $|A| \ge p p^{1/1000}$. Earlier authors proved it for $|A| \ge p 3$.

Theorem (N. Kravitz (July 2024) – W. Sawin (2015))

Let p be a prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}$ of size $|A| \leq \log p/2 \log \log p$ has a valid ordering.

Theorem (B. Bedert and N. Kravitz (Sept. 2024))

Let p be a large prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}$ of size $|A| \leq e^{c(\log p)^{1/4}}$ has a valid ordering.

The Polynomial Method – ACN

Theorem (Well-known)

Let $f \in \mathbb{F}[x]$ be a polynomial of degree t. If $S \subseteq \mathbb{F}$ satisfies $|S| \ge t+1$, then there exists an $s \in S$ such that $f(s) \neq 0$.

Generalization to multivariate polynomials.

Theorem (N. Alon (1999))

Let $f \in \mathbb{F}[x_1, \ldots, x_n]$ be a polynomial of degree $t_1 + \ldots + t_n$. Given S_1, \ldots, S_n non-empty subset of \mathbb{F} such that $|S_i| \ge t_i + 1$, there exists $s_1 \in S_1, \ldots, s_n \in S_n$ for which

$$f(s_1,\ldots,s_n)\neq 0\,,$$

as long as the coefficient of $x_1^{t_1} \cdots x_n^{t_n}$ is non-zero.

Let p be prime and take $A \subseteq \mathbb{Z}_p \setminus \{0\}$. To use the ACN, we take each $S_i \subseteq A$ and we need a polynomial f that is nonzero exactly when $x_1, \ldots, x_{|A|}$ is a sequencing of A.

The Polynomial Method – ACN

Theorem (Well-known)

Let $f \in \mathbb{F}[x]$ be a polynomial of degree t. If $S \subseteq \mathbb{F}$ satisfies $|S| \ge t+1$, then there exists an $s \in S$ such that $f(s) \neq 0$.

Generalization to multivariate polynomials.

Theorem (N. Alon (1999))

Let $f \in \mathbb{F}[x_1, \ldots, x_n]$ be a polynomial of degree $t_1 + \ldots + t_n$. Given S_1, \ldots, S_n non-empty subset of \mathbb{F} such that $|S_i| \ge t_i + 1$, there exists $s_1 \in S_1, \ldots, s_n \in S_n$ for which

 $f(s_1,\ldots,s_n)\neq 0\,,$

as long as the coefficient of $x_1^{t_1} \cdots x_n^{t_n}$ is non-zero.

Let p be prime and take $A \subseteq \mathbb{Z}_p \setminus \{0\}$. To use the ACN, we take each $S_i \subseteq A$ and we need a polynomial f that is nonzero exactly when $x_1, \ldots, x_{|A|}$ is a sequencing of A.

The Polynomial Method – ACN

Theorem (Well-known)

Let $f \in \mathbb{F}[x]$ be a polynomial of degree t. If $S \subseteq \mathbb{F}$ satisfies $|S| \ge t+1$, then there exists an $s \in S$ such that $f(s) \neq 0$.

Generalization to multivariate polynomials.

Theorem (N. Alon (1999))

Let $f \in \mathbb{F}[x_1, \ldots, x_n]$ be a polynomial of degree $t_1 + \ldots + t_n$. Given S_1, \ldots, S_n non-empty subset of \mathbb{F} such that $|S_i| \ge t_i + 1$, there exists $s_1 \in S_1, \ldots, s_n \in S_n$ for which

$$f(s_1,\ldots,s_n)\neq 0\,,$$

as long as the coefficient of $x_1^{t_1} \cdots x_n^{t_n}$ is non-zero.

Let p be prime and take $A \subseteq \mathbb{Z}_p \setminus \{0\}$. To use the ACN, we take each $S_i \subseteq A$ and we need a polynomial f that is nonzero exactly when $x_1, \ldots, x_{|A|}$ is a sequencing of A.

Let $A \subseteq \mathbb{Z}_p \setminus \{0\}$ of size k. Hicks, Ollis and Schmitt introduced the following homogeneous polynomial

$$f(x_1, \dots, x_k) = \prod_{1 \le i < j \le k} (x_j - x_i) \prod_{\substack{1 \le i < j \le k \\ (i,j) \ne (1,k)}} (x_i + \dots + x_j)$$

To apply the ACN we need a nonzero coefficient on a monomial in f that divides $x_1^{k-1} \cdots x_k^{k-1}$ which has clearly degree k(k-1). Since $\deg(f) = k(k-1) - 1$ there are k monomials that could work.

Let $A \subseteq \mathbb{Z}_p \setminus \{0\}$ of size k. Hicks, Ollis and Schmitt introduced the following homogeneous polynomial

$$f(x_1, \dots, x_k) = \prod_{1 \le i < j \le k} (x_j - x_i) \prod_{\substack{1 \le i < j \le k \\ (i,j) \ne (1,k)}} (x_i + \dots + x_j)$$

To apply the ACN we need a nonzero coefficient on a monomial in f that divides $x_1^{k-1} \cdots x_k^{k-1}$ which has clearly degree k(k-1). Since $\deg(f) = k(k-1) - 1$ there are k monomials that could work.

Let $A \subseteq \mathbb{Z}_p \setminus \{0\}$ of size k. Hicks, Ollis and Schmitt introduced the following homogeneous polynomial

$$f(x_1, \dots, x_k) = \prod_{1 \le i < j \le k} (x_j - x_i) \prod_{\substack{1 \le i < j \le k \\ (i,j) \ne (1,k)}} (x_i + \dots + x_j)$$

To apply the ACN we need a nonzero coefficient on a monomial in f that divides $x_1^{k-1} \cdots x_k^{k-1}$ which has clearly degree k(k-1). Since $\deg(f) = k(k-1) - 1$ there are k monomials that could work.

Theorem (J. Hicks, M. A. Ollis and J. R. Schmitt (2018))

Let p be a prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}, |A| \leq 10$, has a valid ordering.

Theorem (S. Costa, S. D. F., M. A. Ollis and S. R-Frydman (2022))

Let p be a prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}$, |A| = 11, 12, has a valid ordering.

For $A \subseteq \mathbb{Z}_p \setminus \{0\}, |A| = 12$ we have

monomial	coefficient
	$2^4 \cdot 3 \cdot 29 \cdot 12953077208391719881$
	$2^3 \cdot 3 \cdot 277 \cdot 1901 \cdot 786640832519761$

Theorem (J. Hicks, M. A. Ollis and J. R. Schmitt (2018))

Let p be a prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}, |A| \leq 10$, has a valid ordering.

Theorem (S. Costa, S. D. F., M. A. Ollis and S. R-Frydman (2022))

Let p be a prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}$, |A| = 11, 12, has a valid ordering.

For $A \subseteq \mathbb{Z}_p \setminus \{0\}, |A| = 12$ we have

monomial	coefficient
	$2^4 \cdot 3 \cdot 29 \cdot 12953077208391719881$
	$2^3 \cdot 3 \cdot 277 \cdot 1901 \cdot 786640832519761$

Theorem (J. Hicks, M. A. Ollis and J. R. Schmitt (2018))

Let p be a prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}, |A| \leq 10$, has a valid ordering.

Theorem (S. Costa, S. D. F., M. A. Ollis and S. R-Frydman (2022))

Let p be a prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}$, |A| = 11, 12, has a valid ordering.

For $A \subseteq \mathbb{Z}_p \setminus \{0\}, |A| = 12$ we have

monomial	coefficient
$x_1^{10}x_2^{11}x_3^{11}\cdots x_{12}^{11}$	$2^4 \cdot 3 \cdot 29 \cdot 12953077208391719881$
$x_1^{11}x_2^{10}x_3^{11}\cdots x_{12}^{11}$	$2^3 \cdot 3 \cdot 277 \cdot 1901 \cdot 786640832519761$

Theorem (N. Kravitz (July 2024) – W. Sawin (2015))

Let p be a prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}$ of size $|A| \leq \log p/2 \log \log p$ has a valid ordering.

$Proof\ sketch.$

Rectification step: The Pigeonhole Principle provides a $\lambda \in \mathbb{Z}_p \setminus \{0\}$ such that $\lambda \cdot A$ is contained in (-p/4|A|, p/4|A|). Since the subset sums in $\lambda \cdot A$ have no "wrap-around" we can work in \mathbb{Z} .

By induction on |A|, one can prove that every finite subset $A \subseteq \mathbb{Z} \setminus \{0\}$ has a valid ordering.

Theorem (N. Kravitz (July 2024) – W. Sawin (2015))

Let p be a prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}$ of size $|A| \leq \log p/2 \log \log p$ has a valid ordering.

$Proof\ sketch.$

Rectification step: The Pigeonhole Principle provides a $\lambda \in \mathbb{Z}_p \setminus \{0\}$ such that $\lambda \cdot A$ is contained in (-p/4|A|, p/4|A|). Since the subset sums in $\lambda \cdot A$ have no "wrap-around" we can work in \mathbb{Z} .

By induction on |A|, one can prove that every finite subset $A \subseteq \mathbb{Z} \setminus \{0\}$ has a valid ordering.

Sets of size quasi-polynomial

Theorem (B. Bedert and N. Kravitz (Sept. 2024))

Let p be a large prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}$ of size $|A| \leq e^{c(\log p)^{1/4}}$ has a valid ordering.

New Idea.

A set A to be not rectificable has to contain a large "dissociated set". A dissociated set D, |D| = r, is a set in which all the 2^r subset sums are distinct.

The dimension dim(B) of a set B is the maximum size of a dissociated subset of B.

Γ heorem

Let $A \subseteq \mathbb{Z}_p$, $|A| \leq e^{c(\log p)^{1/4}}$. Then for some $\lambda \in \mathbb{Z}_p \setminus \{0\}$, $\lambda \cdot A = \bigcup_{j=1}^s D_j \cup E$ where each $|D_j|$ has size at least $c'(\log p)^{3/4}$ and E is rectifiable.

Sets of size quasi-polynomial

Theorem (B. Bedert and N. Kravitz (Sept. 2024))

Let p be a large prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}$ of size $|A| \leq e^{c(\log p)^{1/4}}$ has a valid ordering.

New Idea.

A set A to be not rectificable has to contain a large "dissociated set". A dissociated set D, |D| = r, is a set in which all the 2^r subset sums are distinct.

The dimension dim(B) of a set B is the maximum size of a dissociated subset of B.

Theorem

Let $A \subseteq \mathbb{Z}_p$, $|A| \leq e^{c(\log p)^{1/4}}$. Then for some $\lambda \in \mathbb{Z}_p \setminus \{0\}$, $\lambda \cdot A = \bigcup_{j=1}^s D_j \cup E$ where each $|D_j|$ has size at least $c'(\log p)^{3/4}$ and E is rectifiable.

Sets of size quasi-polynomial

Theorem (B. Bedert and N. Kravitz (Sept. 2024))

Let p be a large prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}$ of size $|A| \leq e^{c(\log p)^{1/4}}$ has a valid ordering.

New Idea.

A set A to be not rectificable has to contain a large "dissociated set". A dissociated set D, |D| = r, is a set in which all the 2^r subset sums are distinct.

The dimension dim(B) of a set B is the maximum size of a dissociated subset of B.

Theorem

Let $A \subseteq \mathbb{Z}_p$, $|A| \leq e^{c(\log p)^{1/4}}$. Then for some $\lambda \in \mathbb{Z}_p \setminus \{0\}$, $\lambda \cdot A = \bigcup_{j=1}^s D_j \cup E$ where each $|D_j|$ has size at least $c'(\log p)^{3/4}$ and E is rectifiable.

Finding the orderings - Probabilistic method

Goal: Find a valid ordering consisting of the positive elements of E, then the elements of the dissociated sets D_j 's and then the negative elements of E.

Recall that the subset sums of a dissociated set are all distinct. In a random ordering of a R-element dissociated set, the length-k prefix sum assumes each of $\binom{R}{k}$ possible values with equal probability. This probability is very small as long as k is not too close to 0 or R.

- Inductively order the set ${\cal E}$
- Randomly split the dissociated sets and then permute the newly splitted sets
- Randomly order each dissociated set

Goal: Find a valid ordering consisting of the positive elements of E, then the elements of the dissociated sets D_j 's and then the negative elements of E.

Recall that the subset sums of a dissociated set are all distinct. In a random ordering of a *R*-element dissociated set, the length-*k* prefix sum assumes each of $\binom{R}{k}$ possible values with equal probability. This probability is very small as long as *k* is not too close to 0 or *R*.

• Inductively order the set E

- Randomly split the dissociated sets and then permute the newly splitted sets
- Randomly order each dissociated set

Goal: Find a valid ordering consisting of the positive elements of E, then the elements of the dissociated sets D_j 's and then the negative elements of E.

Recall that the subset sums of a dissociated set are all distinct. In a random ordering of a *R*-element dissociated set, the length-*k* prefix sum assumes each of $\binom{R}{k}$ possible values with equal probability. This probability is very small as long as *k* is not too close to 0 or *R*.

- Inductively order the set E
- Randomly split the dissociated sets and then permute the newly splitted sets
- Randomly order each dissociated set

Our results

Generalizing the procedure of Bedert and Kravitz we get

Theorem (S. Costa, S. D. F. and E. Engel (2025+))

There exists a c > 0 such that every subset $A \subseteq \mathbb{Z}_p \rtimes_{\varphi} H \setminus \{id\}$ where $\varphi : H \to Aut(\mathbb{Z}_p)$ satisfies $\varphi(h) \in \{id, -id\}$ for each $h \in H$, where H is abelian and and all of its subsets have a sequencing, and where

$$|A| \leqslant e^{c(\log p)^{1/4}},$$

A has a sequencing.

A question

• Can we do better than $e^{c(\log p)^{1/4}}$ (quasi-polynomial)?

Our results

Generalizing the procedure of Bedert and Kravitz we get

Theorem (S. Costa, S. D. F. and E. Engel (2025+))

There exists a c > 0 such that every subset $A \subseteq \mathbb{Z}_p \rtimes_{\varphi} H \setminus \{id\}$ where $\varphi : H \to Aut(\mathbb{Z}_p)$ satisfies $\varphi(h) \in \{id, -id\}$ for each $h \in H$, where H is abelian and and all of its subsets have a sequencing, and where

$$|A| \leqslant e^{c(\log p)^{1/4}},$$

A has a sequencing.

A question

• Can we do better than $e^{c(\log p)^{1/4}}$ (quasi-polynomial)?

Thank you.