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Overview

1 Asymptotic growth of codes
(b, k)-hash codes
Codes for multimedia fingerprinting

2 Related combinatorial problems
Erdős Sum-Distinct problem
Sequenceability of abelian groups
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q-ary codes

Definition

A q-ary code C of size M and length n is a subset of {0, 1, . . . , q − 1}n.
The elements of C = {x1, x2, . . . , xM} are called the codewords of C.

Example (4-ary code)

x1

x2

x3

· · · 0 2 0 2 3 1 0 2 0 2 · · ·

· · · 2 3 1 0 1 1 2 3 1 0 · · ·

· · · 2 3 3 2 1 2 2 3 3 2 · · ·

...

xM · · · 1 0 3 2 3 0 0 2 1 1 · · ·
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Codes having some combinatorial properties

We are going to see codes (or related structures) where groups of
codewords have some combinatorial properties.

Codes where the symbols in at least one coordinate have some properties.

Example (trifferent code)

· · · 0 1 0 1 0 1 0 1 0 1 · · ·

· · · 1 1 1 1 0 1 1 1 1 1 · · ·

.

.

.

Codewords

· · · 2 1 0 1 2 1 1 1 0 1 · · ·

· · · 0 1 2 1 1 1 2 1 0 1 · · ·

x1

x2

x3

x4
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Codes having some combinatorial properties

We are going to see codes (or related structures) where groups of
codewords have some combinatorial properties.

Codes where the sums between pairs of codewords have some properties.

Example (binary 2-separable code)

· · · 0 1 0 0 1 1 1 0 0 1 · · ·

· · · 1 0 0 1 1 1 1 0 0 1 · · ·

· · · 0 0 0 0 0 0 1 0 1 0 · · ·

Codewords

.

.

.

x1

x2

x3

· · · 1 1 0 1 2 2 2 0 0 2 · · ·

Sum x1 + x2

· · · 0 1 0 0 1 1 2 0 1 1 · · ·

Sum x1 + x3

The sums are performed over the integers.
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Codes having some combinatorial properties

We are going to see codes (or related structures) where groups of
codewords have some combinatorial properties.

Sequences (codes of length 1) where all the subset sums have some
properties.

Example (sum-distinct sequence)

(x1, x2, x3) = (1, 2, 4) ,

where
x1 = 1, x2 = 2, x3 = 4,

x1 + x2 = 3, x1 + x3 = 5, x2 + x3 = 6

x1 + x2 + x3 = 7

The sums are performed over the integers.
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Codes having some combinatorial properties

We are going to see codes (or related structures) where groups of
codewords have some combinatorial properties.

Sequences (codes of length 1) where the partial sums over a finite abelian
group have some properties.

Example (sequence with distinct partial sums over Z5)

(x1, x2, x3) = (1, 3, 4) ,

where

x1 = 1, x1 + x2 = 1 + 3 = 4, x1 + x2 + x3 = 1 + 3 + 4 = 3

The sums are performed over Z5.
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(b, k)-hash codes

Definition ((b, k)-hash code)

A b-ary code C is a (b, k)-hash code if for every k codewords there exists a
coordinate in which all the symbols differ.

If b = k = 3 they are known as trifferent codes.

Example ((3, 3)-hash code / trifferent code)

· · · 0 1 0 1 0 1 0 1 0 1 · · ·

· · · 1 1 1 1 0 1 1 1 1 1 · · ·

.

.

.

Codewords

· · · 2 1 0 1 2 1 1 1 0 1 · · ·

· · · 0 1 2 1 1 1 2 1 0 1 · · ·

x1

x2

x3

x4
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A very challenging problem

Fredman and Komlós in 1985 posed the following question.

(b, k)-hashing problem

What is the asymptotic behaviour of the size of the largest (b, k)-hash
code with length n as n goes to infinity?

Definition (Rate of a code)

Given a code C of length n

R =
log2 |C|

n

We are interested in the asymptotic rate of (b, k)-hash codes of maximum
cardinality, i.e.

R(b,k) = lim supR ,

where the limsup is over all (b, k)-hash codes as n goes to infinity.
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Information Theory and Computer Science interpretation
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Discrete channels

A discrete channel is typically characterized by a bipartite graph
W = (X ,Y, E) where X are the channel inputs, Y are the channel outputs
and E is a subset of paris (x, y) ∈ X ×Y that represents the channel links.

Example (Z-channel)

X

1

1− α

α

Y

0

1

0

1

We note that (x, y) ∈ E if and only if y can be received at the channel
output when x is transmitted over the channel.
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Zero-Error Codes under List Decoding

Channel Decoder
List of L
messages

Codewords

Message

ω ∈ {1, 2, . . . , |C|}

· · · 2 1 4 2 1 3 4 1 1 2 · · ·

· · · 3 4 3 1 1 2 3 2 3 4 · · ·

· · · 1 1 2 3 2 1 3 1 2 3 · · ·
.
.
.

· · · 3 3 2 4 4 1 1 2 1 3 · · ·

1 The decoder outputs a list of L messages
2 There is an error if the original message is not in the list
3 Zero-error code: the correct message is always in the list ⇐⇒ No
L+ 1 codewords are compatible with any output sequence

Definition (Zero-error capacity)

The largest asymptotic rate that zero-error codes with list L can achieve
for a specific channel is known as the zero-error capacity with list of size L.
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Zero-Error Capacity for L = 1

Shannon introduced this concept in 1956. Given a discrete channel
W = (X ,Y, E). We can associate to W a confusability graph G.

Example (5/2-channel)

0

1

2

3

4

0

1

2

3

4

X Y 0

1

2

34

C5

The zero-error capacity C(G) with L = 1 only depends on G.

Shannon in 1956 proved that C(C5) ≥ log2

√
5. Then Lovász in 1979

showed that C(C5) ≤ log2

√
5. For C7, the value C(C7) is still unknown.
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Zero-Error Capacity for L > 1

Elias introduced this concept in 1988. Given the following channel W :

Example (3/2 channel)

0

1

2

0

1

2

X Y

1

0 2

C3

It can be seen that C(C3) = 0. A code that achieves zero-error with list of
size 2 for this channel is known as 3-hash code or trifferent code.

1

4
log2

9

5
≤ C0(2) ≤ log2

3

2
,

where C0(2) is the zero-error capacity with list of size 2 of W .

12 / 29



b/(k − 1) Channels

Definition

A b/(k− 1) channel is a channel where any k− 1 of the b inputs share one
output but no k inputs do.

Example (4/2-channel)

1 2 3 4

Output

Input

A (4, 3)-hash code achieves zero-error with L = 2 for the 4/2-channel.

x

y

z

· · · 0 2 0 2 3 1 · · ·

· · · 2 3 1 0 1 1 · · ·

· · · 2 3 3 2 1 2 · · ·

Zero-error capacity for L < k − 1 is 0 while for L = k − 1 is positive.
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Known upper bounds from Literature

The quantity R(b,k) represents the zero-error capacity with list of size
k − 1 of the b/(k − 1) channel.

Using a graph theoretical lemma (Hansel’s lemma) and a probabilistic
argument.

Theorem (Fredman-Komlós (1985))

R(b,k) ≤
bk−1

bk−1
log2(b− k + 2)

Generalizing the procedure of F-K (Hansel’s for hypergraphs)

Theorem (Körner-Marton (1988))

R(b,k) ≤ min
0≤j≤k−2

bj+1

bj+1
log2

b− j
k − j − 1

14 / 29



Known upper bounds from Literature

The quantity R(b,k) represents the zero-error capacity with list of size
k − 1 of the b/(k − 1) channel.

Using a coding theoretic argument

Theorem (Arikan (1994))

R(4,4) ≤ 0.3512

Mixing the ideas of Arikan and F-K

Theorem (Dalai, Guruswami, Radhakrishnan (2017))

R(4,4) ≤ 6/19 ≈ 0.3158
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Known upper bounds from Literature

The quantity R(b,k) represents the zero-error capacity with list of size
k − 1 of the b/(k − 1) channel.

Theorem (Guruswami, Riazanov (2018))

The Fredman-Komlós bound is not tight for every b and k.

Theorem (Costa, Dalai (2020))

R(5,5) ≤ 0.1697, R(6,6) ≤ 0.0875
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Our method

Following the work of Costa and Dalai (2020). We obtained the following
upper bound on R(b,k)

R(b,k) ≤ (1 + o(1))
1

2
log2(b− k + 2)

∑
i

∑
ω,µ∈Ω

λωλµΨ(fi|ω, fi|µ) ,

where Ω is a family of subcodes,
∑

ω∈Ω λω = 1 and λω ≥ 0 ∀ω ∈ Ω.

Definition (Ψ function)

Given two probability vectors p = (p1, p2, . . . , pb) and q = (q1, q2, . . . , qb)

Ψ(p; q) =
1

(b− k + 1)!∑
σ∈Sb

pσ(1)pσ(2) · · · pσ(k−2)qσ(k−1) + qσ(1)qσ(2) · · · qσ(k−2)pσ(k−1)
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New upper bounds for different (b, k)-cases

Analyzing carefully the quadratic form we obtain the following bounds on R(b,k)

Theorem (Della Fiore, Costa, Dalai (2022))

(b, k) Ours (1) (2) (3) (4)
(5, 5) 0.16894 0.16964 0.25050 0.23560 0.19079
(6, 5) 0.34512 0.34597 0.45728 0.44149 0.43207
(6, 6) 0.08475 0.08760 0.21170 0.15484 0.09228
(7, 7) 0.04090 0.04379 0.18417 0.09747 0.04279
(8, 8) 0.01889 0.02077 0.16323 0.05769 0.01922
(9, 8) 0.05616 0.05686 0.30348 0.12874 0.06001
(10, 9) 0.02773 0.02889 0.27417 0.07668 0.02874
(11, 10) 0.01321 0.01407 0.25018 0.04289 0.01342

Table: Upper bounds on R(b,k). All numbers are rounded upwards.

(1,2) → S. Costa, M. Dalai, 2020; M. Dalai, V. Guruswami, and J. Radhakrishnan, 2017;

(3,4) → E. Arikan, 1994; V. Guruswami, A. Riazanov, 2019.

All the bounds have been computed symbolically with Mathematica, R(6,6) ≤ 5/59.

S. Della Fiore, S. Costa and M. Dalai, Improved Bounds for (b, k)-hashing, IEEE
Transactions on Information Theory 68 (2022)
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Outline

1 Asymptotic growth of codes
(b, k)-hash codes
Codes for multimedia fingerprinting

2 Related combinatorial problems
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Multimedia fingerprinting

A distributor wants to sell M copies of a digital product. Each copy has
its own fingerprint.

Distributor
Copy 1

.

.

.

.

.

.

Copy 2

Copy M

Fingerprint 1

Fingerprint 2

Fingerprint M

A coalition of malicious users (x and y) can compare their copies

CompareCopy x

Copy y

Copy z
x and y

to produce a new feasible copy z (x, y, z are all distinct). 18 / 29
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Frameproof and Separable codes

Frameproof codes were introduced due to their applications of protecting
innocent authorized users against collusion attacks in digital fingerprinting.

Suppose that C is a 4-ary code of length 5 and x, y, z ∈ C are distinct
codewords.

Coalition Innocent User

x y z

0 2 1 1 0 0 1 3 3 1 0 2 2 3 0

A = {0} × {2, 1} × {1, 3} × {1, 3} × {0, 1}

If z 6∈ A then C is a 4-ary 2-frameproof code. This property has to hold
for any distinct x, y, z ∈ C.
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New randomized algorithms for frameproof codes

Question

We ask for efficient algorithms to construct frameproof codes of fixed size
M with length n as small as possible.

Theorem (Dalai, Della Fiore, Rescigno, Vaccaro (2023))

There exists a randomized algorithm to construct frameproof codes of a
fixed size M and length n of complexity O(nM2) where n = O(logM).

It can be shown that the length n in the Theorem in near the theoretical
optimal length of frameproof codes.

M. Dalai, S. Della Fiore, A. A. Rescigno and U. Vaccaro, Bounds and Algorithms for
Frameproof Codes and Related Combinatorial Structures, IEEE ITW (2023)
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Binary 2-separable codes / B2 codes

Definition (binary 2-separable code / B2 code)

We say that a binary code is 2-separable if all sums xi + xj over Z, where
xi and xj are two codewords, are different.

Example (A binary 2-separable code)

x1

Codewords

· · · 0 1 0 0 1 1 1 0 0 1 · · ·
x2 · · · 1 0 0 1 1 1 1 0 0 1 · · ·
x3 · · · 0 0 0 0 0 0 1 0 1 0 · · ·

.

.

.
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New upper bounds for q-ary 2-separable codes

Theorem (Della Fiore, Dalai (2022))

Let C be a q-ary 2-separable code of length n for q ≥ 2. Then

|C| ≤ q
2q−1
3q−1

n(1+o(1))

� � � �� �� �� �� �� ��
�

����

����

����

����

����

�� �� ���

����

Improves the best known bounds for every q ≥ 13.

S. Della Fiore and M. Dalai, A note on 2-separable codes and B2 codes, Discrete
Mathematics 345 (2022)

22 / 29



Outline

1 Asymptotic growth of codes
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2 Related combinatorial problems
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Erdős Sum Distinct Problem

Let {a1, ..., an} be a set of positive integers with a1 < . . . < an such that
all 2n subset sums are distinct.

Conjecture

A famous conjecture by Erdős states that an > c · 2n for some constant c.

The best results known to date are of the form an > c · 2n/
√
n for some

constant c.

Improving the factor
√
n is a very hard task and so only the constant c has

been improved in the past 65 years.

24 / 29



Variations on the original problem

First variation.
The distinct-sums condition is weakened by only requiring that the sums of
up to λn elements of the set be distinct with 0 < λ < 1.

Second variation.
The elements ai ∈ Zk for some k ≥ 1.

Question

If ai ∈ [0,M ]k ∀i. What is the minimum M for the existence of a sequence
(a1, . . . , an) where all the sums of up to λn elements are distinct?

Our results.
We proved upper and lower bounds on M using probabilistic and
polynomial arguments.

S. Costa, M. Dalai and S. Della Fiore, Variations on the Erdős distinct-sums problem,
Discrete Applied Mathematics 325 (2023)
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Outline

1 Asymptotic growth of codes
(b, k)-hash codes
Codes for multimedia fingerprinting

2 Related combinatorial problems
Erdős Sum-Distinct problem
Sequenceability of abelian groups
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Sequenceability of abelian groups

Let S be a subset of a finite abelian group G.

Definition

We say that S is sequenceable if there exists an ordering of its elements
such that the partial sums are distinct and not-null (exc.

∑
S = 0).

Example

Let S = {1, 4, 2} ⊂ Z5 and σ = (1, 2, 4) be an ordering of S. Then the
partials sums (1, 1 + 2, 1 + 2 + 4) = (1, 3, 2) are all distinct and not-null.

Conjecture

Every subset S ⊆ G \ {0} is sequenceable.
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Sequenceability of abelian groups - Our results

Let S be a subset of a finite abelian group G. Then using the polynomial
method we proved the following theorems.

Theorem (Costa, Della Fiore, Ollis and R-Frydman (2022))

For G = Zp with p an odd prime and |S| = 11, 12, S is sequenceable.

Theorem (Costa, Della Fiore, Ollis and R-Frydman (2022))

Let p > 3 be a prime and let G = Zp × Zt ∼= Zpt, S ⊆ G \ {(0, 0)},
|S| = 11, 12 and t = 2, 3, 4. Then S is sequenceable.

S. Costa, S. Della Fiore, M. A. Ollis and S. Z. Rovner-Frydman, On Sequences in Cyclic
Groups with Distinct Partial Sums, The E. J. of Combinatorics 3 (2022)
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