Graham's rearrangement for a class of semidirect products

Simone Costa, Stefano Della Fiore and Eva Engel

University of Brescia, Princeton University

10th Conference on Graph Theory, Cracow

Let A be a finite subset of an abelian group.

An ordering $a_1, a_2, \dots, a_{|A|}$ of A is valid if the partial sums

$$a_1, a_1 + a_2, \dots, a_1 + a_2 + \dots + a_{|A|}$$

are all distinct. Moreover, this ordering is called a *sequencing* if it is valid and $a_i + \ldots + a_j \neq 0$ for any $(i, j) \neq (1, |A|)$.

Conjecture (Graham (1971); Erdős and Graham (1980))

Let p be a prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}$ has a valid ordering.

Let A be a finite subset of an abelian group.

An ordering $a_1, a_2, \ldots, a_{|A|}$ of A is valid if the partial sums

$$a_1, a_1 + a_2, \dots, a_1 + a_2 + \dots + a_{|A|}$$

are all distinct. Moreover, this ordering is called a *sequencing* if it is valid and $a_i + \ldots + a_j \neq 0$ for any $(i, j) \neq (1, |A|)$.

Conjecture (Graham (1971); Erdős and Graham (1980))

Let p be a prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}$ has a valid ordering.

Example

Let p=5 and $A=\{1,2,3,4\}\subset\mathbb{Z}_5$. The ordering 1,2,3,4 is not valid since 1=1+2+3 while the ordering 1,3,4,2 is valid since the partial sums are 1,4,3,0.

The only valid orderings of A beginning with 1 are 1, 3, 4, 2 and 1, 2, 4, 3 (with partial sums 1, 3, 2, 0).

Example

Let p=5 and $A=\{1,2,3,4\}\subset\mathbb{Z}_5$. The ordering 1,2,3,4 is not valid since 1=1+2+3 while the ordering 1,3,4,2 is valid since the partial sums are 1,4,3,0.

The only valid orderings of A beginning with 1 are 1, 3, 4, 2 and 1, 2, 4, 3 (with partial sums 1, 3, 2, 0).

Some motivation

This problem has connections to:

- Heffter arrays
- Graph decomposition
- Rainbow paths

In these contexts variants of this conjecture had been proposed by several authors. We recall here the following:

Conjecture (Alspach (~ 2001)

Let G be an abelian group. Then every finite subset $A \subseteq G \setminus \{0\}$ has a valid ordering (a sequencing).

Some motivation

This problem has connections to:

- Heffter arrays
- Graph decomposition
- Rainbow paths

In these contexts variants of this conjecture had been proposed by several authors. We recall here the following:

Conjecture (Alspach (~ 2001))

Let G be an abelian group. Then every finite subset $A \subseteq G \setminus \{0\}$ has a valid ordering (a sequencing).

Old and new results over \mathbb{Z}_p

Progress before 2024:

- Many authors (2005–2020):
 - Hicks, Ollis and Schmitt (2018): every $A \subseteq \mathbb{Z}_p \setminus \{0\}$ with $|A| \leq 10$ has a valid ordering.

 - Both works use the Combinatorial Nullstellensatz.
- Bedert, Bucić, Kravitz, Montgomery, Müyesser (2025+): The conjecture holds for $|A| \ge p^{1-c}$. Previously it was proved for $|A| \ge p-3$.

Theorem (N. Kravitz (July 2024) – W. Sawin (2015))

Let p be a prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}$ of size $|A| \le \log p/2 \log \log p$ has a valid ordering (a sequencing).

Theorem (B. Bedert and N. Kravitz (Sept. 2024))

Let p be a large prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}$ of size $|A| \le e^{c(\log p)^{1/4}}$ has a valid ordering (a sequencing).

Old and new results over \mathbb{Z}_p

Progress before 2024:

- Many authors (2005–2020):
 - Hicks, Ollis and Schmitt (2018): every $A \subseteq \mathbb{Z}_p \setminus \{0\}$ with $|A| \leq 10$ has a valid ordering.

 - Both works use the Combinatorial Nullstellensatz.
- Bedert, Bucić, Kravitz, Montgomery, Müyesser (2025+): The conjecture holds for $|A| \ge p^{1-c}$. Previously it was proved for $|A| \ge p-3$.

Theorem (N. Kravitz (July 2024) – W. Sawin (2015))

Let p be a prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}$ of size $|A| \le \log p/2 \log \log p$ has a valid ordering (a sequencing).

Theorem (B. Bedert and N. Kravitz (Sept. 2024))

Let p be a large prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}$ of size $|A| \le e^{c(\log p)^{1/4}}$ has a valid ordering (a sequencing).

Old and new results over \mathbb{Z}_p

Progress before 2024:

- Many authors (2005–2020):
 - Hicks, Ollis and Schmitt (2018): every $A \subseteq \mathbb{Z}_p \setminus \{0\}$ with $|A| \leq 10$ has a valid ordering.

 - Both works use the Combinatorial Nullstellensatz.
- Bedert, Bucić, Kravitz, Montgomery, Müyesser (2025+): The conjecture holds for $|A| \ge p^{1-c}$. Previously it was proved for $|A| \ge p-3$.

Theorem (N. Kravitz (July 2024) – W. Sawin (2015))

Let p be a prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}$ of size $|A| \le \log p/2 \log \log p$ has a valid ordering (a sequencing).

Theorem (B. Bedert and N. Kravitz (Sept. 2024))

Let p be a large prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}$ of size $|A| \le e^{c(\log p)^{1/4}}$ has a valid ordering (a sequencing).

Sets of size tending to infinity

Theorem (N. Kravitz (July 2024) – W. Sawin (2015))

Let p be a prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}$ of size $|A| \le \log p/2 \log \log p$ has a valid ordering (a sequencing).

Proof sketch.

Rectification step: The Pigeonhole Principle provides a $\lambda \in \mathbb{Z}_p \setminus \{0\}$ such that $\lambda \cdot A$ is contained in (-p/4|A|, p/4|A|). Since the subset sums in $\lambda \cdot A$ have no "wrap-around" we can work in \mathbb{Z} .

By induction on |A|, one can prove that every finite subset $A \subseteq \mathbb{Z} \setminus \{0\}$ has a valid ordering.

Sets of size tending to infinity

Theorem (N. Kravitz (July 2024) – W. Sawin (2015))

Let p be a prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}$ of size $|A| \le \log p/2 \log \log p$ has a valid ordering (a sequencing).

Proof sketch.

Rectification step: The Pigeonhole Principle provides a $\lambda \in \mathbb{Z}_p \setminus \{0\}$ such that $\lambda \cdot A$ is contained in (-p/4|A|, p/4|A|). Since the subset sums in $\lambda \cdot A$ have no "wrap-around" we can work in \mathbb{Z} .

By induction on |A|, one can prove that every finite subset $A \subseteq \mathbb{Z} \setminus \{0\}$ has a valid ordering.

Sets of size quasi-polynomial

Theorem (B. Bedert and N. Kravitz (Sept. 2024))

Let p be a large prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}$ of size $|A| \le e^{c(\log p)^{1/4}}$ has a valid ordering (a sequencing).

New Idea.

A set A to be not rectificable has to contain a large "dissociated set". A dissociated set D, |D| = r, is a set in which all the 2^r subset sums are distinct.

The dimension dim(B) of a set B is the maximum size of a dissociated subset of B.

Theorem

Let $A \subseteq \mathbb{Z}_p$. Then $A = \bigcup_{j=1}^s D_j \cup E$ where each $|D_j|$ has size $\Theta(R)$ and E is rectifiable (i.e. $\dim(E) < R$).

Sets of size quasi-polynomial

Theorem (B. Bedert and N. Kravitz (Sept. 2024))

Let p be a large prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}$ of size $|A| \le e^{c(\log p)^{1/4}}$ has a valid ordering (a sequencing).

New Idea.

A set A to be not rectificable has to contain a large "dissociated set". A dissociated set D, |D| = r, is a set in which all the 2^r subset sums are distinct.

The dimension dim(B) of a set B is the maximum size of a dissociated subset of B.

Theorem

Let $A \subseteq \mathbb{Z}_p$. Then $A = \bigcup_{j=1}^s D_j \cup E$ where each $|D_j|$ has size $\Theta(R)$ and E is rectifiable (i.e. $\dim(E) < R$).

Sets of size quasi-polynomial

Theorem (B. Bedert and N. Kravitz (Sept. 2024))

Let p be a large prime. Then every subset $A \subseteq \mathbb{Z}_p \setminus \{0\}$ of size $|A| \le e^{c(\log p)^{1/4}}$ has a valid ordering (a sequencing).

New Idea.

A set A to be not rectificable has to contain a large "dissociated set". A dissociated set D, |D| = r, is a set in which all the 2^r subset sums are distinct.

The dimension dim(B) of a set B is the maximum size of a dissociated subset of B.

Theorem

Let $A \subseteq \mathbb{Z}_p$. Then $A = \bigcup_{j=1}^s D_j \cup E$ where each $|D_j|$ has size $\Theta(R)$ and E is rectifiable (i.e. $\dim(E) < R$).

Finding the orderings - Probabilistic method

Goal: Find a valid ordering consisting of the positive elements of E, then the elements of the dissociated sets D_j 's and then the negative elements of E.

- Randomly split the dissociated sets and then permute the newly splitted sets
- \bullet Inductively order the set E
- Randomly order each dissociated set

Finding the orderings - Probabilistic method

Goal: Find a valid ordering consisting of the positive elements of E, then the elements of the dissociated sets D_j 's and then the negative elements of E.

- Randomly split the dissociated sets and then permute the newly splitted sets
- \bullet Inductively order the set E
- Randomly order each dissociated set

Our result

We denote by Dih_p the dihedral group

$$Dih_p = \mathbb{Z}_p \rtimes_{\varphi} \mathbb{Z}_2$$

with group operation

$$(x_1, a_1) \cdot (x_2, a_2) = (x_1 + \varphi_{a_1} x_2, a_1 + a_2),$$

where $\varphi_0 = 1$ and $\varphi_1 = -1$.

Inspired by the procedure of Bedert and Kravitz we get

Theorem (Costa, D. F., and Engel (2025+))

Let p be a large enough prime and c > 0. Then every subset $A \subseteq Dih_p \setminus \{id\}$ admits a valid ordering (a sequencing) provided that

$$A| \le e^{c(\log p)^{1/4}}$$

Our result

We denote by Dih_p the dihedral group

$$Dih_p = \mathbb{Z}_p \rtimes_{\varphi} \mathbb{Z}_2$$

with group operation

$$(x_1, a_1) \cdot (x_2, a_2) = (x_1 + \varphi_{a_1} x_2, a_1 + a_2),$$

where $\varphi_0 = 1$ and $\varphi_1 = -1$.

Inspired by the procedure of Bedert and Kravitz we get

Theorem (Costa, D. F., and Engel (2025+))

Let p be a large enough prime and c > 0. Then every subset $A \subseteq Dih_p \setminus \{id\}$ admits a valid ordering (a sequencing) provided that

$$|A| \le e^{c(\log p)^{1/4}}$$

- **Q** Rectification: If $\dim(B) < R$, there exists an automorphism $\phi \in \operatorname{Aut}(Dih_p)$ such that the projection $\pi_1(\phi(B))$ lies in a short interval of \mathbb{Z}_p (i.e we can work in $Dih(\mathbb{Z})$).

$$A = E \, \cup \, \bigcup_{j=1}^{s} D_j,$$

where E is **rectifiable** $(\pi_1(E))$ can be placed inside a short interval) and each D_i is a dissociated set of size $\Theta(R)$.

Q Key property of D_j : All elements of a given D_j share the same \mathbb{Z}_2 -projection. The total product of D_j is invariant under reorderings with respect to the positions parity.

This allows us to define

$$\delta = \prod_{j=1}^{s} \prod_{d \in D_j} d$$

independently of such reorderings.

- Rectification: If $\dim(B) < R$, there exists an automorphism $\phi \in \operatorname{Aut}(Dih_p)$ such that the projection $\pi_1(\phi(B))$ lies in a short interval of \mathbb{Z}_p (i.e we can work in $Dih(\mathbb{Z})$).
- **2 Structure Theorem:** Every subset A can be decomposed as

$$A = E \, \cup \, \bigcup_{j=1}^{s} D_j,$$

where E is **rectifiable** $(\pi_1(E))$ can be placed inside a short interval) and each D_i is a dissociated set of size $\Theta(R)$.

Q Key property of D_j : All elements of a given D_j share the same \mathbb{Z}_2 -projection. The total product of D_j is invariant under reorderings with respect to the positions parity.

This allows us to define

$$\delta = \prod_{j=1}^{s} \prod_{d \in D_j} d$$

independently of such reorderings.

- Rectification: If $\dim(B) < R$, there exists an automorphism $\phi \in \operatorname{Aut}(Dih_p)$ such that the projection $\pi_1(\phi(B))$ lies in a short interval of \mathbb{Z}_p (i.e we can work in $Dih(\mathbb{Z})$).
- **2 Structure Theorem:** Every subset A can be decomposed as

$$A = E \cup \bigcup_{j=1}^{s} D_j,$$

where E is **rectifiable** $(\pi_1(E))$ can be placed inside a short interval) and each D_i is a dissociated set of size $\Theta(R)$.

3 Key property of D_j : All elements of a given D_j share the same \mathbb{Z}_2 -projection. The total product of D_j is invariant under reorderings with respect to the positions parity. This allows us to define

$$\delta = \prod_{j=1}^{s} \prod_{d \in D_j} d,$$

independently of such reorderings.

Idea for ordering $E \cup \{\delta\}$:

- By rectification, we may view $E \cup \{\delta\}$ as a subset of $Dih(\mathbb{Z})$.
- Decompose $E \cup \{\delta\}$ into three sets:

$$P = \{x \in E \cup \{\delta\} : \pi_2(x) = 0, \ \pi_1(x) > 0\},\$$

$$N = \{x \in E \cup \{\delta\} : \pi_2(x) = 0, \ \pi_1(x) < 0\},\$$

$$S = \{x \in E \cup \{\delta\} : \pi_2(x) = 1\}.$$

• Split S into S_e and S_o so that:

$$|S_e| = \lceil |S|/2 \rceil, \quad |S_o| = ||S|/2 |,$$

and the first components of S_e are all larger than those of S_o

Idea for ordering $E \cup \{\delta\}$:

- By rectification, we may view $E \cup \{\delta\}$ as a subset of $Dih(\mathbb{Z})$.
- Decompose $E \cup \{\delta\}$ into three sets:

$$P = \{x \in E \cup \{\delta\} : \pi_2(x) = 0, \ \pi_1(x) > 0\},$$

$$N = \{x \in E \cup \{\delta\} : \pi_2(x) = 0, \ \pi_1(x) < 0\},$$

$$S = \{x \in E \cup \{\delta\} : \pi_2(x) = 1\}.$$

• Split S into S_e and S_o so that:

$$|S_e| = \lceil |S|/2 \rceil, \quad |S_o| = ||S|/2 |,$$

and the first components of S_e are all larger than those of S_o

Idea for ordering $E \cup \{\delta\}$:

- By rectification, we may view $E \cup \{\delta\}$ as a subset of $Dih(\mathbb{Z})$.
- Decompose $E \cup \{\delta\}$ into three sets:

$$P = \{x \in E \cup \{\delta\} : \pi_2(x) = 0, \ \pi_1(x) > 0\},\$$

$$N = \{x \in E \cup \{\delta\} : \pi_2(x) = 0, \ \pi_1(x) < 0\},\$$

$$S = \{x \in E \cup \{\delta\} : \pi_2(x) = 1\}.$$

• Split S into S_e and S_o so that:

$$|S_e| = \lceil |S|/2 \rceil, \quad |S_o| = ||S|/2 |,$$

and the first components of S_e are all larger than those of S_o .

Valid ordering for $E \cup \{\delta\}$:

- Choose $s_0 \in S_e$.
- Any ordering of the form

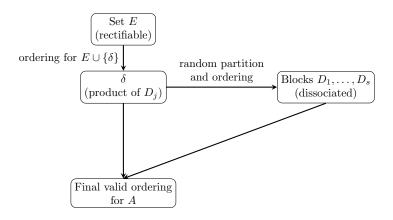
$\mathbf{p} \ s_0 \ \mathbf{n} \ \mathbf{s}$

is a valid ordering for $E \cup \{\delta\}$, where:

- \mathbf{p} is an ordering of P,
- \mathbf{n} is an ordering of N,
- **s** is an ordering of $(S_e \cup S_o) \setminus \{s_0\}$ alternating elements of S_e and S_o .

This ensures all partial products are distinct and yields a valid ordering for $E \cup \{\delta\}$.

Proof sketch: Flow Diagram



Semidirect products

Theorem (Costa, D. F., and Engel (2025+))

Let H be a finite abelian group and each subset of H can be ordered such that all of its partial sums are distinct. There exists a c > 0 such that every subset $A \subseteq \mathbb{Z}_p \rtimes_{\varphi} H \setminus \{id\}$, where $\varphi : H \to Aut(\mathbb{Z}_p)$ satisfies $\varphi(h) \in \{id, -id\}$ for each $h \in H$, of size

$$|A| \le e^{c(\log p)^{1/4}},$$

has a sequencing.

Thank you.