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Graham’s rearrangement conjecture

Let A be a finite subset of an abelian group.

An ordering ay,az, ..., a4 of A is valid if the partial sums
a1,01 +a2,...,01 +az+ ...+ a4

are all distinct. Moreover, this ordering is called a sequencing if it is
valid and a; + ...+ a; # 0 for any (i, j) # (1, |A]).
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Graham’s rearrangement conjecture

Let A be a finite subset of an abelian group.

An ordering ay,az, ..., a4 of A is valid if the partial sums
a1,01 +a2,...,01 +az+ ...+ a4

are all distinct. Moreover, this ordering is called a sequencing if it is
valid and a; + ...+ a; # 0 for any (i, j) # (1, |A]).

Conjecture (Graham (1971); Erdés and Graham (1980))

Let p be a prime. Then every subset A C Z, \ {0} has a valid ordering.
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Graham’s rearrangement conjecture

Example

Let p=5and A ={1,2,3,4} C Zs . The ordering 1,2, 3,4 is not valid
since 1 = 1+ 2 4 3 while the ordering 1, 3,4, 2 is valid since the partial
sums are 1,4, 3,0.
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Graham’s rearrangement conjecture

Example

Let p=5and A ={1,2,3,4} C Zs . The ordering 1,2, 3,4 is not valid
since 1 = 1+ 2 4 3 while the ordering 1, 3,4, 2 is valid since the partial
sums are 1,4, 3,0.

The only valid orderings of A beginning with 1 are 1, 3,4,2 and
1,2,4,3 (with partial sums 1,3,2,0).
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Some motivation

This problem has connections to:
o Heffter arrays
o Graph decomposition

@ Rainbow paths
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Some motivation

This problem has connections to:
o Heffter arrays
o Graph decomposition
@ Rainbow paths

In these contexts variants of this conjecture had been proposed by
several authors. We recall here the following:

Conjecture (Alspach (~2001))

Let G be an abelian group. Then every finite subset A C G\ {0} has a
valid ordering (a sequencing).
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Old and new results over Z,

Progress before 2024:
e Many authors (2005-2020):
o Hicks, Ollis and Schmitt (2018): every A C Z, \ {0} with |A]| < 10
has a valid ordering.
e Costa, D. F., Ollis and R—Frydman (2022): |A| = 11, 12 also
works.
e Both works use the Combinatorial Nullstellensatz.

o Bedert, Bucié¢, Kravitz, Montgomery, Miiyesser (2025+): The
conjecture holds for |A] > p'~¢. Previously it was proved for
|A| > p-3.
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Old and new results over Z,

Progress before 2024:
e Many authors (2005-2020):
o Hicks, Ollis and Schmitt (2018): every A C Z, \ {0} with |A]| < 10
has a valid ordering.
e Costa, D. F., Ollis and R—Frydman (2022): |A| = 11, 12 also
works.
e Both works use the Combinatorial Nullstellensatz.
o Bedert, Bucié¢, Kravitz, Montgomery, Miiyesser (2025+): The
conjecture holds for |A] > p'~¢. Previously it was proved for
|A| > p-3.

Theorem (N. Kravitz (July 2024) — W. Sawin (2015))

Let p be a prime. Then every subset A C Z, \ {0} of size
|A| <logp/2loglogp has a valid ordering (a sequencing).
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Old and new results over Z,

Progress before 2024:
e Many authors (2005-2020):
o Hicks, Ollis and Schmitt (2018): every A C Z, \ {0} with |A]| < 10
has a valid ordering.
e Costa, D. F., Ollis and R—Frydman (2022): |A| = 11, 12 also
works.
e Both works use the Combinatorial Nullstellensatz.
o Bedert, Bucié¢, Kravitz, Montgomery, Miiyesser (2025+): The
conjecture holds for |A] > p'~¢. Previously it was proved for
|A| > p-3.

Theorem (N. Kravitz (July 2024) — W. Sawin (2015))

Let p be a prime. Then every subset A C Z, \ {0} of size
|A| <logp/2loglogp has a valid ordering (a sequencing).

Theorem (B. Bedert and N. Kravitz (Sept. 2024))

Let p be a large prime. Then every subset A C Z;, \ {0} of size
|A| < ec10sP)'" has g valid ordering (a sequencing).
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Sets of size tending to infinity

Theorem (N. Kravitz (July 2024) — W. Sawin (2015))

Let p be a prime. Then every subset A C Z, \ {0} of size
|A| < logp/2loglogp has a valid ordering (a sequencing).

Proof sketch.

Rectification step: The Pigeonhole Principle provides a A € Z, \ {0}
such that A - A is contained in (—p/4|A|,p/4|A|). Since the subset
sums in A - A have no “wrap-around” we can work in Z.
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Sets of size tending to infinity

Theorem (N. Kravitz (July 2024) — W. Sawin (2015))

Let p be a prime. Then every subset A C Z, \ {0} of size
|A| < logp/2loglogp has a valid ordering (a sequencing).
Proof sketch.

Rectification step: The Pigeonhole Principle provides a A € Z, \ {0}
such that A - A is contained in (—p/4|A|,p/4|A|). Since the subset
sums in A - A have no “wrap-around” we can work in Z.

By induction on |A|, one can prove that every finite subset
A C Z\ {0} has a valid ordering.
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Sets of size quasi-polynomial

Theorem (B. Bedert and N. Kravitz (Sept. 2024))

Let p be a large prime. Then every subset A C Z, \ {0} of size

|A] < ec1ogP)'"" has g valid ordering (a sequencing).

New Idea.

A set A to be not rectificable has to contain a large “dissociated set”.
A dissociated set D, |D| =r, is a set in which all the 2" subset sums
are distinct.

Simone Costa, Stefano Della Fiore and Eva Engel Graham’s rearrangement for semidirect products



Sets of size quasi-polynomial

Theorem (B. Bedert and N. Kravitz (Sept. 2024))

Let p be a large prime. Then every subset A C Z, \ {0} of size

|A] < ec1ogP)'"" has g valid ordering (a sequencing).

New Idea.

A set A to be not rectificable has to contain a large “dissociated set”.
A dissociated set D, |D| =r, is a set in which all the 2" subset sums
are distinct.

The dimension dim(B) of a set B is the maximum size of a
dissociated subset of B.
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Sets of size quasi-polynomial

Theorem (B. Bedert and N. Kravitz (Sept. 2024))

Let p be a large prime. Then every subset A C Z, \ {0} of size
|A] < ec1ogP)'"" has g valid ordering (a sequencing).

New Idea.

A set A to be not rectificable has to contain a large “dissociated set”.
A dissociated set D, |D| =r, is a set in which all the 2" subset sums
are distinct.

The dimension dim(B) of a set B is the maximum size of a
dissociated subset of B.

Theorem

Let A C Zy. Then A= U5_;D;UE where each |Dj| has size ©(R)
and E is rectifiable (i.e. dim(E) < R).
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Finding the orderings - Probabilistic method

Goal: Find a valid ordering consisting of the positive elements of F,
then the elements of the dissociated sets D;’s and then the negative
elements of E.
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Finding the orderings - Probabilistic method

Goal: Find a valid ordering consisting of the positive elements of F,
then the elements of the dissociated sets D;’s and then the negative
elements of E.

o Randomly split the dissociated sets and then permute the newly
splitted sets

o Inductively order the set E

o Randomly order each dissociated set
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Our result

We denote by Dih,, the dihedral group
Dihy, = Zy X, Zo
with group operation
(z1,a1) - (x2,a2) = (¥1 + Pa, T2, a1 + az),

where ¢g =1 and p; = —1.
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Our result

We denote by Dih,, the dihedral group
Dihy, = Zy X, Zo
with group operation
(z1,a1) - (x2,a2) = (¥1 + Pa, T2, a1 + az),

where ¢g =1 and p; = —1.
Inspired by the procedure of Bedert and Kravitz we get

Theorem (Costa, D. F., and Engel (2025+))

Let p be a large enough prime and ¢ > 0. Then every subset
A C Dih, \ {id} admits a valid ordering (a sequencing) provided that

|A| < ecllosP)'*,
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Proof sketch of our result
@ Rectification: If dim(B) < R, there exists an automorphism

¢ € Aut(Dih,) such that the projection m1(¢(B)) lies in a short
interval of Z, (i.e we can work in Dih(Z)).
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Proof sketch of our result

@ Rectification: If dim(B) < R, there exists an automorphism
¢ € Aut(Dih,) such that the projection m1(¢(B)) lies in a short
interval of Z, (i.e we can work in Dih(Z)).

© Structure Theorem: Every subset A can be decomposed as

A:EUODﬁ

j=1

where E is rectifiable (71 (FE) can be placed inside a short
interval) and each D, is a dissociated set of size O(R).

Simone Costa, Stefano Della Fiore and Eva Engel Graham’s rearrangement for semidirect products



Proof sketch of our result

@ Rectification: If dim(B) < R, there exists an automorphism
¢ € Aut(Dih,) such that the projection m1(¢(B)) lies in a short
interval of Z, (i.e we can work in Dih(Z)).

© Structure Theorem: Every subset A can be decomposed as

A=Eu Dy,
j=1
where E is rectifiable (71 (FE) can be placed inside a short
interval) and each D, is a dissociated set of size O(R).
@ Key property of D;: All elements of a given D; share the same
Zs-projection. The total product of D; is invariant under

reorderings with respect to the positions parity.
This allows us to define

=11 1] «
j=1deD;

independently of such reorderings.
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Proof sketch of our result

Idea for ordering E U {d}:
o By rectification, we may view E'U {6} as a subset of Dih(Z).
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Proof sketch of our result

Idea for ordering E U {d}:
o By rectification, we may view E'U {6} as a subset of Dih(Z).
@ Decompose E U {d} into three sets:

P={z e EU{d}:m(z)=0, m(z) > 0},

N ={x e EU{0}:m(x) =0, m(x) <0},
S={xe EU{0}:ma(x)=1}.
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Proof sketch of our result

Idea for ordering E U {d}:
o By rectification, we may view E'U {6} as a subset of Dih(Z).
e Decompose E U {4} into three sets:

P={z e EU{d}:m(z)=0, m(z) > 0},

N ={x e EU{0}:m(x) =0, m(x) <0},
S={xe EU{0}:ma(x)=1}.

e Split S into S, and S, so that:
|Sel = [1S1/2],  |Sol = [1S]/2],

and the first components of S, are all larger than those of S,.
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Proof sketch of our result

Valid ordering for E'U {4}:
@ Choose sy € S..

@ Any ordering of the form

pPSons

is a valid ordering for E U {d}, where:
e p is an ordering of P,
e n is an ordering of N,
o s is an ordering of (S. U S,) \ {so} alternating elements of Se and
So.

This ensures all partial products are distinct and yields a valid
ordering for E U {§}.
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Proof sketch: Flow Diagram

Set £
(rectifiable)

ordering for U {0} random partition

) and ordering
(product of Dj)

Blocks Dy, ..., Dy
(dissociated)

Final valid ordering
for A
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Semidirect products

Theorem (Costa, D. F.; and Engel (2025+))

Let H be a finite abelian group and each subset of H can be ordered
such that all of its partial sums are distinct. There exists a ¢ > 0 such
that every subset A C Zy, X, H \ {id}, where ¢ : H — Aut(Z,)
satisfies p(h) € {id, —id} for each h € H, of size

4] < estosn,

has a sequencing.
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Thank you.
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