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Introduction & Motivation

The Problem

e Traditional image compression
aims to reconstruct images for
human perception.

e However, compression artifacts
(blurring, loss of detail) can
severely impact machine vision
tasks like OCR.
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The Goal: Coding for Machines
e Compress images not for humans, but to preserve information for a
specific machine task.

e Our focus: An image compression system designed to retain
text-specific features for subsequent OCR.
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e Main Autoencoder: An encoder (g,) compresses an image x
into a latent representation y, and a decoder (gs) reconstructs
it as X.

e Hyperprior Autoencoder: A second autoencoder (h,, hs)
models the latent distribution to create a more efficient
bitstream.

e The entire system is jointly optimized for both bitrate (rate)
and image quality (distortion).
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Background: OCR Systems

Optical Character Recognition (OCR) is a technology that
automatically extracts printed or handwritten text from images

into a machine-readable format.
A modern OCR system generally has four modules:

1. Detection: Localizes text regions within an image, often
using bounding boxes.

2. Transformation: Corrects distortions like skew or rotation to
normalize the text region.

3. Feature Extraction: A CNN (e.g., ResNet) converts the
image patch into a rich feature map.

4. Sequence Modeling & Prediction: A recurrent (BiLSTM)
or attention-based model decodes the features into the final

text output.



Proposed Method: TFIC Architecture
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High-level architectural framework of TFIC.

e The core is a standard Transformer-based image codec.
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High-level architectural framework of TFIC.

e The core is a standard Transformer-based image codec.

e An OCR module with frozen parameters is placed after the
decoder.

e During training, text T(X) is extracted from the reconstructed
image X.

e The OCR loss is backpropagated through the decoder and encoder,
guiding the codec to preserve text-relevant information.
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Proposed Method: Loss & Training

The total training loss is a weighted sum of three components:

Liotal = A - [«dist(Xa )%) + Erate(}l}a 2) + - EOCR(G(X)a T()%))
where x is the original image, X the reconstructed one, y is the quantized
latent representation and Z is the side-information.

e Lgist: Distortion loss (MSE) for pixel fidelity.
e L..te: Rate loss to estimate the final bitrate.
e Locr: OCR loss (cross-entropy) between the ground truth text
G(x) and the predicted text T(X).
Two-Stage Training Procedure:
1. Pre-training: The model is first trained with only distortion and
rate losses (y = 0).

2. Fine-tuning: The model is then fine-tuned with only the OCR and
rate losses (A = 0) to specialize it for the text extraction task. 6
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Experimental Setup

e Dataset: A synthetic dataset was generated with ~20k
training and 600 test images, covering a diverse range of
fonts, layouts, and backgrounds.

e Comparison: The proposed TFIC is compared against a
baseline codec trained exclusively for MSE on the same
dataset.

e Metrics:

e Bitrate: Measured in bits-per-pixel (bpp).
e OCR Accuracy: Calculated based on the Levenshtein edit
distance between the ground truth and predicted text:

lev(G(x), T(X))
max {|G(x)[, | T(X)

Accuracy =1 —

}



Results: OCR Performance
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e The baseline codec (red) shows a sharp drop in OCR accuracy at
lower bitrates.

e Our proposed TFIC (blue) maintains higher accuracy, preserving
text information much more effectively.

e Key Finding: At low bitrates, TFIC even surpasses the OCR
performance on uncompressed images, suggesting it also acts as
a beneficial pre-processing step. .



Results: Visual Comparison

Original Image Baseline (0.0082 bpp) TFIC (0.0080 bpp)

e The baseline codec preserves more global detail, but the text
is often blurred and illegible for the OCR system.
e TFIC focuses bitrate on preserving sharp, clear text, even if

it means sacrificing the quality of non-essential background
areas.



Results: PSNR & Runtime Analysis
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The base codec achieves hlgher e This is ideal for devices with

PSNR, as it was optimized for limited computational capacity:

pixel-wise fidelity. This highlights perform fast on-device

the trade-off in task-specific compression and defer the

compression. heavier OCR task to a server.
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Conclusion & Future Work

Summary
e We proposed TFIC, an end-to-end image compression system designed
specifically for OCR-based " Coding for Machines” applications .

e By integrating an OCR-specific loss, our model prioritizes preserving
textual information over complete visual fidelity, leading to superior text
extraction at low bitrates.

e The fast encoding time makes it highly suitable for resource-constrained
devices.
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Limitations & Future Work

e Performance is tied to the specific OCR module used.
e Hyperparameters (), ) require careful tuning for different applications.

e Future work could explore integrating more advanced OCR models and
extending the framework to other machine vision tasks.
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