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Introduction & Motivation

The Problem

• Traditional image compression

aims to reconstruct images for

human perception.

• However, compression artifacts

(blurring, loss of detail) can

severely impact machine vision

tasks like OCR.

OCR
high transmission cost

(a) Uncompressed

(b) Regular compression

"mislabelling" ✓

Fail ✗
OCR

Learned Image

Compression

(c) Ours

OCR
"mislabelling" ✓

TFIC

Comparison of frameworks:

(a) No compression, (b) Conventional

compression for humans, and (c) Our

proposed TFIC for machines.

The Goal: Coding for Machines

• Compress images not for humans, but to preserve information for a

specific machine task.

• Our focus: An image compression system designed to retain

text-specific features for subsequent OCR.
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Background: Neural Image Compression

• Deep learning has driven interest in end-to-end learned

compression frameworks, often outperforming traditional

standards.

• These systems typically consist of two main parts:

• Main Autoencoder: An encoder (ga) compresses an image x

into a latent representation y , and a decoder (gs) reconstructs

it as x̂ .

• Hyperprior Autoencoder: A second autoencoder (ha, hs)

models the latent distribution to create a more efficient

bitstream.

• The entire system is jointly optimized for both bitrate (rate)

and image quality (distortion).
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Background: OCR Systems

Optical Character Recognition (OCR) is a technology that

automatically extracts printed or handwritten text from images

into a machine-readable format.

A modern OCR system generally has four modules:

1. Detection: Localizes text regions within an image, often

using bounding boxes.

2. Transformation: Corrects distortions like skew or rotation to

normalize the text region.

3. Feature Extraction: A CNN (e.g., ResNet) converts the

image patch into a rich feature map.

4. Sequence Modeling & Prediction: A recurrent (BiLSTM)

or attention-based model decodes the features into the final

text output.
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Proposed Method: TFIC Architecture
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High-level architectural framework of TFIC.

• The core is a standard Transformer-based image codec.

• An OCR module with frozen parameters is placed after the

decoder.

• During training, text T (x̂) is extracted from the reconstructed

image x̂ .

• The OCR loss is backpropagated through the decoder and encoder,

guiding the codec to preserve text-relevant information.
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Proposed Method: Loss & Training

The total training loss is a weighted sum of three components:

Ltotal = λ · Ldist(x , x̂) + Lrate(ŷ , ẑ) + γ · LOCR(G (x),T (x̂))

where x is the original image, x̂ the reconstructed one, ŷ is the quantized

latent representation and ẑ is the side-information.

• Ldist: Distortion loss (MSE) for pixel fidelity.

• Lrate: Rate loss to estimate the final bitrate.

• LOCR: OCR loss (cross-entropy) between the ground truth text

G (x) and the predicted text T (x̂).

Two-Stage Training Procedure:

1. Pre-training: The model is first trained with only distortion and

rate losses (γ = 0).

2. Fine-tuning: The model is then fine-tuned with only the OCR and

rate losses (λ = 0) to specialize it for the text extraction task. 6
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Experimental Setup

• Dataset: A synthetic dataset was generated with ∼20k

training and 600 test images, covering a diverse range of

fonts, layouts, and backgrounds.

• Comparison: The proposed TFIC is compared against a

baseline codec trained exclusively for MSE on the same

dataset.

• Metrics:

• Bitrate: Measured in bits-per-pixel (bpp).

• OCR Accuracy: Calculated based on the Levenshtein edit

distance between the ground truth and predicted text:

Accuracy = 1− lev(G (x),T (x̂))

max {|G (x)|, |T (x̂)|}

7
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Results: OCR Performance

0.004 0.008 0.012 0.016 0.02
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0.68
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0.95

• The baseline codec (red) shows a sharp drop in OCR accuracy at

lower bitrates.

• Our proposed TFIC (blue) maintains higher accuracy, preserving

text information much more effectively.

• Key Finding: At low bitrates, TFIC even surpasses the OCR

performance on uncompressed images, suggesting it also acts as

a beneficial pre-processing step.
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Results: Visual Comparison

Original Image Baseline (0.0082 bpp) TFIC (0.0080 bpp)

• The baseline codec preserves more global detail, but the text

is often blurred and illegible for the OCR system.

• TFIC focuses bitrate on preserving sharp, clear text, even if

it means sacrificing the quality of non-essential background

areas.
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Results: PSNR & Runtime Analysis

PSNR Performance
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The base codec achieves higher

PSNR, as it was optimized for

pixel-wise fidelity. This highlights

the trade-off in task-specific

compression.

Runtime Analysis

Encoding OCR module

Time (ms) 12.9± 1.8 24.1± 3.3

Average time per image.

• The encoding process requires

only about half the time

needed to perform OCR.

• This is ideal for devices with

limited computational capacity:

perform fast on-device

compression and defer the

heavier OCR task to a server.
10



Conclusion & Future Work

Summary

• We proposed TFIC, an end-to-end image compression system designed

specifically for OCR-based ”Coding for Machines” applications .

• By integrating an OCR-specific loss, our model prioritizes preserving

textual information over complete visual fidelity, leading to superior text

extraction at low bitrates.

• The fast encoding time makes it highly suitable for resource-constrained

devices.

Limitations & Future Work

• Performance is tied to the specific OCR module used.

• Hyperparameters (λ, γ) require careful tuning for different applications.

• Future work could explore integrating more advanced OCR models and

extending the framework to other machine vision tasks.

11



Conclusion & Future Work

Summary

• We proposed TFIC, an end-to-end image compression system designed

specifically for OCR-based ”Coding for Machines” applications .

• By integrating an OCR-specific loss, our model prioritizes preserving

textual information over complete visual fidelity, leading to superior text

extraction at low bitrates.

• The fast encoding time makes it highly suitable for resource-constrained

devices.

Limitations & Future Work

• Performance is tied to the specific OCR module used.

• Hyperparameters (λ, γ) require careful tuning for different applications.

• Future work could explore integrating more advanced OCR models and

extending the framework to other machine vision tasks.

11


