Upper bounds on the rate of linear q-ary k-hash codes

S. Della Fiore and M. Dalai

University of Salerno, University of Brescia

ISIT 2024, July

A q-ary code C of length n is a subset of $\{0, 1, \ldots, q-1\}^n$. Denote with $R = \frac{1}{n} \log_q |C|$ its rate.

Definition ((q, k)-hash code)

A q-ary code C is a (q, k)-hash code if for any k distinct elements of C we can find a coordinate in which they all differ.

A q-ary code C of length n is a subset of $\{0, 1, \ldots, q-1\}^n$. Denote with $R = \frac{1}{n} \log_q |C|$ its rate.

Definition ((q, k)-hash code)

A q-ary code C is a (q, k)-hash code if for any k distinct elements of C we can find a coordinate in which they all differ.

Example ((3,3)-hash code or trifferent code)

• • •	0	0	0	0	• • •
	0	1	2	1	
	0	2	1	2	
	1	0	2	2	

A q-ary code C of length n is a subset of $\{0, 1, \ldots, q-1\}^n$. Denote with $R = \frac{1}{n} \log_q |C|$ its rate.

Definition ((q, k)-hash code)

A q-ary code C is a (q, k)-hash code if for any k distinct elements of C we can find a coordinate in which they all differ.

Example ((3,3)-hash code or trifferent code)

• • •	0	0	0	0	• • •
• • •	0	1	2	1	• • •
	0	2	1	2	
	1	0	2	2	

A q-ary code C of length n is a subset of $\{0, 1, \ldots, q-1\}^n$. Denote with $R = \frac{1}{n} \log_q |C|$ its rate.

Definition ((q, k)-hash code)

A q-ary code C is a (q, k)-hash code if for any k distinct elements of C we can find a coordinate in which they all differ.

Example ((3,3)-hash code or trifferent code)

A q-ary code C of length n is a subset of $\{0, 1, \ldots, q-1\}^n$. Denote with $R = \frac{1}{n} \log_q |C|$ its rate.

Definition ((q, k)-hash code)

A q-ary code C is a (q, k)-hash code if for any k distinct elements of C we can find a coordinate in which they all differ.

Example ((3,3)-hash code or trifferent code)

•••	0	0	0	0	• • •
• • •	0	1	2	1	• • •
• • •	0	2	1	2	
	1	0	2	2	

A q-ary code C of length n is a subset of $\{0, 1, \ldots, q-1\}^n$. Denote with $R = \frac{1}{n} \log_q |C|$ its rate.

Definition ((q, k)-hash code)

A q-ary code C is a (q, k)-hash code if for any k distinct elements of C we can find a coordinate in which they all differ.

Example ((3,3)-hash code or trifferent code)

• • •	0	0	0	0	• • •
• • •	0	1	2	1	• • •
	0	2	1	2	
	1	0	2	2	

Some bounds from the literature

Let R be the largest asymptotic rate of $(\boldsymbol{q},\boldsymbol{k})\text{-hash}$ codes.

Theorem (Körner and Marton 1988) $R \leq \min_{0 \leq j \leq k-2} \frac{q^{j+1}}{q^{j+1}} \log_q \left(\frac{q-j}{k-j-1}\right) + o(1).$

For q sufficiently larger than k one can obtain a better bound.

Theorem (Mehlhorn, Blackburn and Wild (1984, 1998))

 $R \leq \frac{1}{k-1} + o(1) \,.$

Della Fiore, Dalai

Bounds on linear q-ary k-hash codes

¹J. Körner and K. Marton, "New bounds for perfect hashing via information theory," European Journal of Combinatorics, vol. 9, pp. 523–530, 1988

²S. R. Blackburn and P. R. Wild, "Optimal linear perfect hash families," Journal of Combinatorial Theory, Series A, vol. 83, no. 2, pp. 233–250, 1998.

Some bounds from the literature

Let R be the largest asymptotic rate of $(\boldsymbol{q},\boldsymbol{k})\text{-hash}$ codes.

Theorem (Körner and Marton 1988)

$$R \le \min_{0 \le j \le k-2} \frac{q^{j+1}}{q^{j+1}} \log_q \left(\frac{q-j}{k-j-1} \right) + o(1) \,.$$

For q sufficiently larger than k one can obtain a better bound.

Theorem (Mehlhorn, Blackburn and Wild (1984, 1998))

$$R \le \frac{1}{k-1} + o(1) \,.$$

Della Fiore, Dalai

Bounds on linear q-ary k-hash codes

¹J. Körner and K. Marton, "New bounds for perfect hashing via information theory," European Journal of Combinatorics, vol. 9, pp. 523–530, 1988

²S. R. Blackburn and P. R. Wild, "Optimal linear perfect hash families," Journal of Combinatorial Theory, Series A, vol. 83, no. 2, pp. 233–250, 1998.

The case q = k = 3

Let C be a (3,3)-hash code (trifferent code) of maximum size

Theorem (Körner and Marton 1988)

$$\left(\frac{9}{5}\right)^{n/4+o(1)} \le |C| \le 2\left(\frac{3}{2}\right)^n$$

Improvements on the upper bound multiplicative constant

Theorem (Kurz 2024)

$$C| \leq 0.6937 \cdot \left(\frac{3}{2}\right)^n \text{ for } n \geq 10$$

Improvements on the upper bound polynomial factor

Theorem (Bhandhari and Keta 2024)

$$C| \leq c \cdot n^{-2/5} \cdot \left(\frac{3}{2}\right)^n$$
 for some constant c

Della Fiore, Dalai

The case q = k = 3

Let C be a (3,3)-hash code (trifferent code) of maximum size

Theorem (Körner and Marton 1988)

$$\left(\frac{9}{5}\right)^{n/4+o(1)} \le |C| \le 2\left(\frac{3}{2}\right)^n$$

Improvements on the upper bound multiplicative constant

Theorem (Kurz 2024)

$$C| \leq 0.6937 \cdot \left(rac{3}{2}
ight)^n \ \ \mbox{for} \ n \geq 10$$

Improvements on the upper bound polynomial factor

Theorem (Bhandhari and Keta 2024)

Della Fiore, Dalai

The case q = k = 3

Let C be a (3,3)-hash code (trifferent code) of maximum size

Theorem (Körner and Marton 1988)

$$\left(\frac{9}{5}\right)^{n/4+o(1)} \le |C| \le 2\left(\frac{3}{2}\right)^n$$

Improvements on the upper bound multiplicative constant

Theorem (Kurz 2024)

$$|C| \leq 0.6937 \cdot \left(rac{3}{2}
ight)^n$$
 for $n \geq 10$

Improvements on the upper bound polynomial factor

Theorem (Bhandhari and Keta 2024)

$$|C| \leq c \cdot n^{-2/5} \cdot \left(rac{3}{2}
ight)^n$$
 for some constant c

Della Fiore, Dalai

ISIT 2024, July

Linear trifferent codes

Let C be a linear trifferent code in \mathbb{F}_3^n . Using connections between minimal codes and blocking sets we have the following results.

```
Theorem (Pohata and Zakharov 2022)
For some \epsilon > 0
```

 $|C| \le 3^{(1/4-\epsilon)n} \approx 1.3161^n$

Theorem (Bishnoi et al. 2024)

 $(9/5)^{n/4+o(1)} \le |C| \le 3^{n/4.5516+o(n)} \approx 1.2731^n$

Della Fiore, Dalai

 $^{^3\}text{C}.$ Pohoata and D. Zakharov, "On the trifference problem for linear codes," IEEE Transactions on Information Theory, vol. 68, no. 11, pp. 7096–7099, 2022.

⁴A. Bishnoi, J. D'haeseleer, D. Gijswijt and A. Potukuchi, "Blocking sets, minimal codes and trifferent codes," Journal of the London Mathematical Society, 109(6), 2024.

Linear trifferent codes

Let C be a linear trifferent code in \mathbb{F}_3^n . Using connections between minimal codes and blocking sets we have the following results.

Theorem (Pohata and Zakharov 2022)

For some $\epsilon > 0$

$$|C| \le 3^{(1/4-\epsilon)n} \approx 1.3161^n$$

Theorem (Bishnoi et al. 2024)

 $(9/5)^{n/4+o(1)} \le |C| \le 3^{n/4.5516+o(n)} \approx 1.2731^n$

Della Fiore, Dalai

 $^{^3\}text{C}.$ Pohoata and D. Zakharov, "On the trifference problem for linear codes," IEEE Transactions on Information Theory, vol. 68, no. 11, pp. 7096–7099, 2022.

⁴A. Bishnoi, J. D'haeseleer, D. Gijswijt and A. Potukuchi, "Blocking sets, minimal codes and trifferent codes," Journal of the London Mathematical Society, 109(6), 2024.

- $\bullet\,$ Rederivation of the best upper bounds for q=k=3
- Generalization to the case $q \ge k \ge 3$

Remark

When q is small compared to k > 3 no linear k-hash codes of dimension 2 exist. Blackburn and Wild proved that this holds for $q \le 2k - 4$.

- $\bullet\,$ Rederivation of the best upper bounds for q=k=3
- \bullet Generalization to the case $q \geq k \geq 3$

Remark

When q is small compared to k > 3 no linear k-hash codes of dimension 2 exist. Blackburn and Wild proved that this holds for $q \le 2k - 4$.

The main tool that we used is the Jamison's bound.

Theorem (Jamison 1977)

Let $q \geq 3$ be a prime power, and let \mathcal{H} be a set of hyperplanes in \mathbb{F}_q^m whose union is $\mathbb{F}_q^m \setminus \{0\}$. Then $|\mathcal{H}| \geq (q-1)m$.

- Let C be a linear trifferent code in \mathbb{F}_3^n
- Let G be its generator $m \times n$ matrix
- Let d be the minimum hamming distance of C

where x = uG is a codeword of weight d. WLOG we can assume it has 1 in the first d coordinates and 0 in the others (reordering and rescaling).

Della Fiore, Dalai

Bounds on linear q-ary k-hash codes

The main tool that we used is the Jamison's bound.

Theorem (Jamison 1977)

Let $q \geq 3$ be a prime power, and let \mathcal{H} be a set of hyperplanes in \mathbb{F}_q^m whose union is $\mathbb{F}_q^m \setminus \{0\}$. Then $|\mathcal{H}| \geq (q-1)m$.

- Let C be a linear trifferent code in \mathbb{F}_3^n
- Let G be its generator $m \times n$ matrix
- Let d be the minimum hamming distance of C

where x = uG is a codeword of weight d. WLOG we can assume it has 1 in the first d coordinates and 0 in the others (reordering and rescaling).

Since C is trifferent, any codeword different from $0 \mbox{ and } x \mbox{ must have at least a } 2 \mbox{ in the first } d \mbox{ coordinates.}$

Let g_i be the *i*-th column of G. Then the following d affine subspaces (hyperplanes) in \mathbb{F}_q^m

$$H_i = \{v \in \mathbb{F}_q^m \mid v \cdot g_i = 2\}$$
 for $i = 1, \dots, d$

cover all the points in \mathbb{F}_q^m except for 0 and u.

Adding another hyperplane $H_{d+1} = \{v \in \mathbb{F}_q^m \mid v \cdot g_1 = 1\}$ we cover also u.

Since C is trifferent, any codeword different from 0 and x must have at least a 2 in the first d coordinates.

Let g_i be the *i*-th column of G. Then the following d affine subspaces (hyperplanes) in \mathbb{F}_q^m

$$H_i = \{v \in \mathbb{F}_q^m \mid v \cdot g_i = 2\}$$
 for $i = 1, \dots, d$

cover all the points in \mathbb{F}_q^m except for 0 and u.

Adding another hyperplane $H_{d+1} = \{v \in \mathbb{F}_q^m \mid v \cdot g_1 = 1\}$ we cover also u.

Since C is trifferent, any codeword different from 0 and x must have at least a 2 in the first d coordinates.

Let g_i be the *i*-th column of G. Then the following d affine subspaces (hyperplanes) in \mathbb{F}_q^m

$$H_i = \{v \in \mathbb{F}_q^m \mid v \cdot g_i = 2\}$$
 for $i = 1, \dots, d$

cover all the points in \mathbb{F}_q^m except for 0 and u.

Adding another hyperplane $H_{d+1} = \{v \in \mathbb{F}_q^m \mid v \cdot g_1 = 1\}$ we cover also u.

Hence by Jamison's bound we have $d+1\geq 2m,$ that in terms of rates and relative minimum distance $\delta=d/n$

 $R \leq \delta/2 + o(1)$

Using the Plotkin bound $\delta \leq 2/3(1-R) + o(1)$, one obtains:

 $R \le 1/4 + o(1)$

Since the Plotkin bound is not tight at positive rates, one could use the linear programming bound for 3-ary codes to get

 $R \le 1/4.5516 + o(1)$

Note: this procedure can be seen as an application of a method presented by Calderbank et al. in 1993.

⁵A. Calderbank et al., "The sperner capacity of linear and nonlinear codes for the cyclic triangle," Journal of Algebraic Combinatorics: An International Journal, 1993

Della Fiore, Dalai

Hence by Jamison's bound we have $d+1\geq 2m,$ that in terms of rates and relative minimum distance $\delta=d/n$

 $R \leq \delta/2 + o(1)$

Using the Plotkin bound $\delta \leq 2/3(1-R) + o(1),$ one obtains:

 $R \le 1/4 + o(1)$

Since the Plotkin bound is not tight at positive rates, one could use the linear programming bound for 3-ary codes to get

 $R \le 1/4.5516 + o(1)$

Note: this procedure can be seen as an application of a method presented by Calderbank et al. in 1993.

⁵A. Calderbank et al., "The sperner capacity of linear and nonlinear codes for the cyclic triangle," Journal of Algebraic Combinatorics: An International Journal, 1993

Della Fiore, Dalai

Hence by Jamison's bound we have $d+1\geq 2m,$ that in terms of rates and relative minimum distance $\delta=d/n$

 $R \le \delta/2 + o(1)$

Using the Plotkin bound $\delta \leq 2/3(1-R) + o(1)$, one obtains:

 $R \le 1/4 + o(1)$

Since the Plotkin bound is not tight at positive rates, one could use the linear programming bound for 3-ary codes to get

$$R \le 1/4.5516 + o(1)$$

Note: this procedure can be seen as an application of a method presented by Calderbank et al. in 1993.

⁵A. Calderbank et al., "The sperner capacity of linear and nonlinear codes for the cyclic triangle," Journal of Algebraic Combinatorics: An International Journal, 1993

The idea is to iterate the procedure for q = k = 3.

Theorem (Bruen 1997)

Let \mathcal{H} be a multiset of hyperplanes in \mathbb{F}_q^m . If no hyperplane in \mathcal{H} contains 0 and each point in $\mathbb{F}_q^m \setminus \{0\}$ is covered by at least t hyperplanes in \mathcal{H} , then

$$|\mathcal{H}| \ge (m+t-1)(q-1).$$

Note: for t = 1 we get the classical Jamison's bound

- Let C be a linear k-hash code in \mathbb{F}_{q}^{n}
- Let x_1 be a codeword of minimum weight $d = \delta_1 n$

Any set of k codewords that contains 0 and x_1 cannot be k-hashed in the last n - d coordinates.

We consider the punctured code $C_{[d]}$, that is clearly linear and by the k-hash property we have $|C_{[d]}| = |C|$ (injectivity).

- Let C be a linear k-hash code in \mathbb{F}_{q}^{n}
- Let x_1 be a codeword of minimum weight $d = \delta_1 n$

Any set of k codewords that contains 0 and x_1 cannot be k-hashed in the last n - d coordinates.

We consider the punctured code $C_{[d]}$, that is clearly linear and by the k-hash property we have $|C_{[d]}| = |C|$ (injectivity).

- Choose $\delta_2 \in [0,1]$ such that $R > \frac{q-2}{q-1}\delta_1 \delta_2 + o(1)$
- By Bruen theorem, there exists x₂ that is linearly independent of x₁ such that {0, x₁, x₂} is 3-hashed in at most δ₂n coordinates

Then we can iterate the procedure. At iteration j we have j linearly independent codewords x_1, \ldots, x_j in $C_{[\delta_j n]}$

- Choose $\delta_{j+1} \in [0,1]$ such that $R > \frac{q-j-1}{q-1}\delta_j \delta_{j+1} + o(1)$
- By Bruen theorem, there exists x_{j+1} that is lin. ind. of x_1, \ldots, x_j s. t. $\{0, x_1, \ldots, x_{j+1}\}$ is (j+1)-hashed in at most $\delta_{j+1}n$ coordinates

After k-3 iterations • if $R > \frac{q-k+1}{q-1}\delta_{k-2} + o(1)$ we find one last lin. ind. codeword x_{k-1}

Hence the set $\{0, x_1, \ldots, x_{k-1}\}$ is not k-hashed.

Bounds on linear q-ary k-hash codes

Then we have a recursive sequence of conditions on R that with initialization $\delta_1 = \delta$ take us to formulate the following theorem.

Theorem

Let C be a linear k-hash code in \mathbb{F}_q^n of rate R and relative distance $\delta.$ Then

$$R \le \frac{\delta}{\sum_{i=1}^{k-2} \frac{(q-1)^i}{(q-2)^i}} + o(1)$$

where $(q-2)^{\underline{i}} = (q-2)(q-3)\cdots(q-i-1)$.

Note: it can be seen that using the singleton bound $\delta \leq 1 - R$ we already improve the bound 1/(k-1) due to Mehlhorn for every $q \geq k$.

Some numerical results

As done for the case q = k = 3, we can obtain bounds that depend only on q and k by using well-known bounds on the relative distance δ of a code.

q	Plotkin	LP	Körner and Marton
3	1/4 = 0.25	0.2198	0.3691
4	$1/3 = 0.\overline{3}$	0.3000	1/2 = 0.5
5	3/8 = 0.375	0.3441	0.5694
7	$5/12 = 0.41\overline{6}$	0.3928	0.6438
8	$3/7 = 0.\overline{428571}$	0.4080	$2/3 = 0.\overline{6}$
9	7/16 = 0.4375	0.4200	0.6846
11	9/20 = 0.45	0.4373	0.7110
13	$11/24 = 0.458\overline{3}$	0.4497	0.7298
16	$7/15 = 0.4\overline{6}$	0.4628	3/4 = 0.75
	•••		•••
64	$31/63 = 0.\overline{492063}$	0.5119	$5/6 = 0.8\overline{3}$

Table: Upper bounds on the rate of linear 3-hash codes in \mathbb{F}_q^n for a prime power $q \in [3, 64]$. All numbers are rounded upwards.