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Background

A q-ary code C of length n is a subset of {0, 1, . . . , q − 1}n. Denote with
R = 1

n logq |C| its rate.

Definition ((q, k)-hash code)

A q-ary code C is a (q, k)-hash code if for any k distinct elements of C we
can find a coordinate in which they all differ.

Example ((3, 3)-hash code or trifferent code)

· · · 0 0 0 0 · · ·
· · · 0 1 2 1 · · ·
· · · 0 2 1 2 · · ·
· · · 1 0 2 2 · · ·
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Some bounds from the literature

Let R be the largest asymptotic rate of (q, k)-hash codes.

Theorem (Körner and Marton 1988)

R ≤ min
0≤j≤k−2

qj+1

qj+1
logq

(
q − j

k − j − 1

)
+ o(1) .

For q sufficiently larger than k one can obtain a better bound.

Theorem (Mehlhorn, Blackburn and Wild (1984, 1998))

R ≤ 1

k − 1
+ o(1) .

1J. Körner and K. Marton, “New bounds for perfect hashing via information theory,”
European Journal of Combinatorics, vol. 9, pp. 523–530, 1988

2S. R. Blackburn and P. R. Wild, “Optimal linear perfect hash families,” Journal of
Combinatorial Theory, Series A, vol. 83, no. 2, pp. 233–250, 1998.
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The case q = k = 3

Let C be a (3, 3)-hash code (trifferent code) of maximum size

Theorem (Körner and Marton 1988)(
9

5

)n/4+o(1)

≤ |C| ≤ 2

(
3

2

)n

Improvements on the upper bound multiplicative constant

Theorem (Kurz 2024)

|C| ≤ 0.6937 ·
(
3

2

)n

for n ≥ 10

Improvements on the upper bound polynomial factor

Theorem (Bhandhari and Keta 2024)

|C| ≤ c · n−2/5 ·
(
3

2

)n

for some constant c
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Linear trifferent codes

Let C be a linear trifferent code in Fn
3 . Using connections between

minimal codes and blocking sets we have the following results.

Theorem (Pohata and Zakharov 2022)

For some ϵ > 0
|C| ≤ 3(1/4−ϵ)n ≈ 1.3161n

Theorem (Bishnoi et al. 2024)

(9/5)n/4+o(1) ≤ |C| ≤ 3n/4.5516+o(n) ≈ 1.2731n

3C. Pohoata and D. Zakharov, “On the trifference problem for linear codes,” IEEE
Transactions on Information Theory, vol. 68, no. 11, pp. 7096–7099, 2022.

4A. Bishnoi, J. D’haeseleer, D. Gijswijt and A. Potukuchi, ”Blocking sets, minimal codes and
trifferent codes,” Journal of the London Mathematical Society, 109(6), 2024.
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Our contribution

Rederivation of the best upper bounds for q = k = 3

Generalization to the case q ≥ k ≥ 3

Remark

When q is small compared to k > 3 no linear k-hash codes of dimension 2
exist. Blackburn and Wild proved that this holds for q ≤ 2k − 4.
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Our contribution for q = k = 3

The main tool that we used is the Jamison’s bound.

Theorem (Jamison 1977)

Let q ≥ 3 be a prime power, and let H be a set of hyperplanes in Fm
q

whose union is Fm
q \ {0}. Then |H| ≥ (q − 1)m.

Let C be a linear trifferent code in Fn
3

Let G be its generator m× n matrix

Let d be the minimum hamming distance of C

0

x 1 0

...
...

...

d n− d

where x = uG is a codeword of weight d. WLOG we can assume it has 1
in the first d coordinates and 0 in the others (reordering and rescaling).
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Our contribution for q = k = 3

Since C is trifferent, any codeword different from 0 and x must have at
least a 2 in the first d coordinates.

Let gi be the i-th column of G. Then the following d affine subspaces
(hyperplanes) in Fm

q

Hi = {v ∈ Fm
q | v · gi = 2} for i = 1, . . . , d

cover all the points in Fm
q except for 0 and u.

Adding another hyperplane Hd+1 = {v ∈ Fm
q | v · g1 = 1} we cover also u.
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Our contribution for q = k = 3

Hence by Jamison’s bound we have d+1 ≥ 2m, that in terms of rates and
relative minimum distance δ = d/n

R ≤ δ/2 + o(1)

Using the Plotkin bound δ ≤ 2/3(1−R) + o(1), one obtains:

R ≤ 1/4 + o(1)

Since the Plotkin bound is not tight at positive rates, one could use the
linear programming bound for 3-ary codes to get

R ≤ 1/4.5516 + o(1)

Note: this procedure can be seen as an application of a method presented
by Calderbank et al. in 1993.

5A. Calderbank et al., “The sperner capacity of linear and nonlinear codes for the cyclic
triangle,” Journal of Algebraic Combinatorics: An International Journal, 1993
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General case q ≥ k ≥ 3

The idea is to iterate the procedure for q = k = 3.

Theorem (Bruen 1997)

Let H be a multiset of hyperplanes in Fm
q . If no hyperplane in H contains

0 and each point in Fm
q \ {0} is covered by at least t hyperplanes in H,

then
|H| ≥ (m+ t− 1)(q − 1) .

Note: for t = 1 we get the classical Jamison’s bound
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General case q ≥ k ≥ 3 – Sketch of the proof

Let C be a linear k-hash code in Fn
q

Let x1 be a codeword of minimum weight d = δ1n

0

x1
Fq \ {0}

...
...

...

δ1n

Any set of k codewords that contains 0 and x1 cannot be k-hashed in the
last n− d coordinates.

We consider the punctured code C[d], that is clearly linear and by the
k-hash property we have |C[d]| = |C| (injectivity).

Della Fiore, Dalai Bounds on linear q-ary k-hash codes ISIT 2024, July 11 / 16



General case q ≥ k ≥ 3 – Sketch of the proof

Let C be a linear k-hash code in Fn
q

Let x1 be a codeword of minimum weight d = δ1n

0

x1
Fq \ {0}

...
...

...

δ1n

Any set of k codewords that contains 0 and x1 cannot be k-hashed in the
last n− d coordinates.

We consider the punctured code C[d], that is clearly linear and by the
k-hash property we have |C[d]| = |C| (injectivity).

Della Fiore, Dalai Bounds on linear q-ary k-hash codes ISIT 2024, July 11 / 16



General case q ≥ k ≥ 3 – Sketch of the proof

Choose δ2 ∈ [0, 1] such that R > q−2
q−1δ1 − δ2 + o(1)

By Bruen theorem, there exists x2 that is linearly independent of x1
such that {0, x1, x2} is 3-hashed in at most δ2n coordinates

0

x1

...
...

...

δ1n

δ2n
x2

Fq \ {0, x1,i}

Fq \ {0}
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General case q ≥ k ≥ 3 – Sketch of the proof

Then we can iterate the procedure. At iteration j we have j linearly
independent codewords x1, . . . , xj in C[δjn]

Choose δj+1 ∈ [0, 1] such that R > q−j−1
q−1 δj − δj+1 + o(1)

By Bruen theorem, there exists xj+1 that is lin. ind. of x1, . . . , xj
s. t. {0, x1, . . . , xj+1} is (j + 1)-hashed in at most δj+1n coordinates

0

x1

...
...

...

δjn

x2
Fq \ {0, x1,i}

Fq \ {0}

δj+1n
xj+1

Fq \ {0, x1,i, . . . , xj,i}

...
...

...
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General case q ≥ k ≥ 3 – Sketch of the proof

After k − 3 iterations

if R > q−k+1
q−1 δk−2 + o(1) we find one last lin. ind. codeword xk−1

0

x1

...
...

...

δk−2n

x2
Fq \ {0, x1,i}

Fq \ {0}

xk−2
Fq \ {0, x1,i, . . . , xk−3,i}

...
...

...

xk−1
xk−1,i ∈ {0, x1,i, . . . , xk−2,i}

Hence the set {0, x1, . . . , xk−1} is not k-hashed.
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General case q ≥ k ≥ 3 – Sketch of the proof

Then we have a recursive sequence of conditions on R that with
initialization δ1 = δ take us to formulate the following theorem.

Theorem

Let C be a linear k-hash code in Fn
q of rate R and relative distance δ.

Then

R ≤ δ∑k−2
i=1

(q−1)i

(q−2)i

+ o(1)

where (q − 2)i = (q − 2)(q − 3) · · · (q − i− 1).

Note: it can be seen that using the singleton bound δ ≤ 1−R we already
improve the bound 1/(k − 1) due to Mehlhorn for every q ≥ k.
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Some numerical results

As done for the case q = k = 3, we can obtain bounds that depend only on
q and k by using well-known bounds on the relative distance δ of a code.

q Plotkin LP Körner and Marton

3 1/4 = 0.25 0.2198 0.3691
4 1/3 = 0.3 0.3000 1/2 = 0.5
5 3/8 = 0.375 0.3441 0.5694
7 5/12 = 0.416 0.3928 0.6438
8 3/7 = 0.428571 0.4080 2/3 = 0.6
9 7/16 = 0.4375 0.4200 0.6846
11 9/20 = 0.45 0.4373 0.7110
13 11/24 = 0.4583 0.4497 0.7298
16 7/15 = 0.46 0.4628 3/4 = 0.75
· · · · · · · · · · · ·
64 31/63 = 0.492063 0.5119 5/6 = 0.83

Table: Upper bounds on the rate of linear 3-hash codes in Fn
q for a prime power

q ∈ [3, 64]. All numbers are rounded upwards.
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