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Università degli studi di Brescia – DICATAM
Università degli studi di Brescia – DII

October 23, 2025



Overview

1 Formulation of the original problem by Erdős
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Formulation of the original problem

Let {a1, ..., an} be a set of positive integers with a1 < . . . < an
such that all 2n subset sums are distinct.

Conjecture.

A famous conjecture by Erdős states that an > c · 2n for some
constant c.

Theorem.
The best results known to date are of the form an > c · 2n/

√
n

for some constant c.

Improving the factor
√
n is a very hard task and so only the

constant c has been improved in the past 70 years.



Known bounds from literature

Lower bounds on an

• Trivial one → an ≥ 1
n2

n

• Erdős and Moser (1955) → an ≥ 1
4 · 2n√

n

• Alon and Spencer (1981) → an ≥ (1 + o(1)) 2
3
√
3
· 2n√

n

• Elkies (1986) → an ≥ (1 + o(1)) 1√
π
· 2n√

n

• Guy (1981) → an ≥ (1 + o(1)) 1√
3
· 2n√

n

• Dubroff, Fox and Xu (2020) → an ≥ (1 + o(1))
√

2
π · 2n√

n

Upper bounds on an

• Trivial one → an ≤ 2n−1 (take each ai = 2i−1)

• Bohman (1998) → an ≤ 0.22002 · 2n



Trivial bound - Pigeonhole principle

The maximum possible sum we can get is

n∑
i=1

ai ≤ an +

an−1︷ ︸︸ ︷
(an − 1)+

an−2︷ ︸︸ ︷
(an − 2)+ . . .+

a1︷ ︸︸ ︷
(an − n+ 1)

= nan − n(n− 1)

2
.

Since in the interval [1,
∑

i ai] there must be at least 2n − 1
integers, by the Pigeonhole principle we have that

an ≥ 2n

n
.



Second moment method - Alon and Spencer

Let us fix a set {a1, a2, . . . , an} with distinct partial sums.

Let ϵ1, ϵ2, . . . , ϵn be i.i.d random variables distributed as

Pr(ϵi = 1) = Pr(ϵi = −1) = 1/2 for all i ∈ [1, n] .

Set X =
∑n

i=1 ϵiai. Clearly X is symmetric around 0 and
uniformly distributed over its support of size 2n → E[X] = 0.

Let us bound

Var[X] = E

(∑
i

ϵiai

)2
 =

∑
i

E
[
ϵ2i
]
a2i + 2

∑
i<j

E[ϵiϵj ]aiaj

=
∑
i

a2i ≤ na2n .



Second moment method - Alon and Spencer - 2

By Chebyschev’s inequality for any λ > 1 we have that

Pr(|X| < λ
√
nan) > 1− 1

λ2

But X is a discrete random variable with probabilities equal to
2−n or zero in an interval and each possible outcome has the
same parity. Therefore

Pr(|X| < λ
√
nan) ≤ (λ

√
nan + 1)2−n

Thus

an ≥ 2n(1− λ−2)− 1

λ
√
n

Optimizing for λ > 1 we get λ =
√
3. Hence an ≥ (1+ o(1)) 2n

3
√
3
√
n



Second moment method - Guy

As before, let X =
∑n

i=1 ϵiai, where ϵi is the same random
variable defined before.

We have that E[X] = 0 and Var[X] ≤ na2n, then we can lower
bound Var[X] as follows:

Var[X] ≥ 1

2n
(
12 + (−1)2 + 32 + (−3)2 + . . .+ (2n − 1)2 + (1− 2n)2

)
=

2

2n

2n−1∑
i=1

(2i− 1)2 =
4n − 1

3
.

Hence

an ≥ (1 + o(1))
1√
3

2n√
n
.



Elkies’s method

Let us consider the following generating function

G(z) :=

n∏
i=1

(
1 +

1

2

(
zai + z−ai

))
,

where the {a1, . . . , an} satisfy the sum distinct property.

By the sum distinct property the constant term in the power
series expansion (Laurent expansion) of G(z) around 0 must be
equal to 1. Therefore using the Cauchy’s integral formula we
have that

1

2π

∫ π

−π
G(eit)dt = 1 .
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Elkies’s method - 2

2π =

∫ π

−π

[
n∏

i=1

(1 + cos(ait))

]
dt = 2n

∫ π

−π

n∏
i=1

cos2(ait/2)dt

since 1 + cos(2t) = 2 cos2(t)

> 2n
∫ π/an

−π/an

n∏
i=1

cos2(ait/2)dt > 2n
∫ π/an

−π/an

n∏
i=1

cos2(ant/2)dt

= 2n
∫ π/an

−π/an

cos2n(ant/2)dt = 2n
2

an

∫ π/2

−π/2
cos2n(u)du

=
2n+1

an
2−2n

(
2n

n

)
π .

Hence

an ≥ (1 + o(1))
1√
π

2n√
n
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Isoperimetric method - Dubroff, Fox and Xu

Let F be a family of subsets of [1, n], and define the vertex
boundary as

∂F = {A ∈ 2[1,n] \ F : |A∆B| = 1 for some B ∈ F}

Theorem (Harper vertex-isoperimetric)

If F is a family of subsets of [1, n] and |F| = 2n−1, then

|∂F| ≥
(

n

⌊n/2⌋

)
= (1 + o(1))

√
2

π

2n√
n



Isoperimetric method - Dubroff, Fox and Xu - 2

Let a = (a1, a2, . . . , an) be a sum-distinct sequence
a1 < . . . < an, and note that a · ϵ ̸= 0 for all ϵ ∈ {−1/2, 1/2}n.

Let F be the set of all 2n−1 points ϵ such that a · ϵ < 0.

Then, η ∈ ∂F iff η − ei ∈ F for some basis vector ei. In
addition, each η ∈ ∂F satisfies 0 < a · η < an.

By Harper we have |∂F| ≥
(

n
⌊n/2⌋

)
. Therefore there exists

distinct η1, η2 ∈ ∂F such that |a · (η1 − η2)| ≤ an
/(

n
⌊n/2⌋

)
.

By the sum distinct property we have |a · (η1 − η2)| ≥ 1 and

hence an ≥
(

n
⌊n/2⌋

)
= (1 + o(1))

√
2
π

2n√
n
.
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Variations on the original problem

First variation.
The distinct-sums condition is weakened by only requiring that
the sums of up to λn elements of the set be distinct with
0 < λ < 1.

Second variation.
The elements ai ∈ Zk for some k ≥ 1.



More formally...

Problem.
Let Fλ,n be the family of all subsets of {1, . . . , n} whose size is
smaller than or equal to λn. We are interested in the minimum
M such that there exists a sequence Σ = (a1, . . . , an) in Zk,
ai ∈ [0,M ]k ∀i, such that for all distinct A1, A2 ∈ Fλ,n,
S(A1) ̸= S(A2), where

S(A) =
∑
i∈A

ai .

Remark.
For λ = 1 and k = 1 we obtain the same problem as the original
one.



Information Theory Interpretation

Signaling over a multiple access channel. Let {a1, ..., an}
be a set, where ai ∈ Zk for some k ≥ 1, such that the sums of
up to λn elements of the set be distinct with 0 < λ < 1. We
have n trasmitters.

...

{0, a1}

{0, a2}

{0, an}

Σi∈J :|J |≤λnai

Each one can send a signal of amplitude ai to the base station
saying that it wants to start a communication session.



Trivial Lower Bounds on M

Proposition.

Let Σ = (a1, . . . , an) be an Fλ,n-sum distinct sequence in Zk

that is M -bounded. Then

M ≥ 1

⌈λn⌉
· |Fλ,n|1/k.

Proof.
Since the maximum possible sum is at most ⌈λn⌉M in each
component, by the pigeonhole principle, we have that

Mk ≥ 1

⌈λn⌉k
· |Fλ,n| .



Harper Isoperimetric Inequality

Following the idea of Dubroff, Fox and Xu the previous bounds
for k = 1 and λ ≥ 1/2 can be improved as follow

Theorem
Let Σ = (a1, . . . , an) be an Fλ,n-sum distinct sequence in Z that
is M -bounded. Then

M ≥ (1 + o(1)) ·


1√
2πn

· 2n if λ = 1/2;√
2
πn · 2n if λ ∈]1/2, 1].



Lower bound - Variance method for k > 1

Using the variance method, it is possible, to improve the
previous bounds for k > 1.

Theorem
Let λ ∈ [0, 1] and let Σ = (a1, . . . , an) be an Fλ,n-sum distinct
sequence in Zk that is M -bounded. Then

M ≥ (1 + o(1)) ·

√
4

πn(k + 2)
· Γ(k/2 + 1)1/k · |Fλ,n|1/k

where Γ is the gamma function.



Variance method

The key step.

Consider a random variable X =
∑n

i=1 ϵiai where the random
vectors (ϵ1, ϵ2, . . . , ϵn) are uniformly distributed over the set
Fλ,n with ϵi ∈ {−1/2, 1/2}. It can be proved that for λ ≥ 1/2

E[ϵiϵj ] ≤ 0

for each i ̸= j. While for λ < 1/2 we have that

E[ϵiϵj ] = O(1/n) .



Upper bound - Polynomial method

Using the polynomial method (Alon’s combinatorial
nullstellensatz) we get the following theorem.

Theorem
For any λ < 1/3, there exists a sequence Σ = (a1, . . . , an) that is
M -bounded positive integers and Fλ,n-sum distinct with

M ≥ λ3n22f(λ)n ,

where
f(λ) = H(λ, λ, 1− 2λ) = −2λ log2 λ− (1− 2λ) log2(1− 2λ).

Remark.
The previous bound is non-trivial for λ < 3/25.



Upper bound - Probabilistic method

Using the probabilistic method we get an improvement on the
trivial bound (i.e., c · 2n/k) for k > 1 and λ < 3/25.

Theorem
Let

Cλ,n = k

√
λ2n2

2τλ
2f(λ)τλ and τλ =

⌈
1

loge 2 · f(λ)

⌉
,

where f(λ) = −2λ log2 λ− (1− 2λ) log2(1− 2λ).

Then there exists a sequence Σ = (a1, . . . , an) of(
Cλ,n · 2f(λ)n/k

)
-bounded elements of Zk that is Fλ,n-sum

distinct.



Improvements for k = 1 and λ ∈]3/25, 1/4]

Using the Lunnon’s construction it can be shown that if λ < 1/4
and n large enough, there exists a sequence Σ = (a1, . . . , an) of
M -bounded integers that is Fλ,n-sum distinct with

M =
0, 22096

2
· 2n ,

while for λ < 1/8 we get

M =
0, 22096

4
· 2n .

Remark.
For λ < 1/4 we can insert an additional ai to the sequence
found by Lunnon while for λ < 1/8 two elements can be added
without violating the sum-distinct property.



Overall results

Figure: Exponent of the upper bounds for k = 1 and for k > 1.
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The problem over symmetric polynomials

Problem
For every positive integer n, find the least positive M = M(n)
such that there exists a sequence Σ = (a1, . . . , an) of integers
with ai ∈ [0,M ] for every i such that for all distinct
A1, A2 ⊆ [1, n] of size at least m we have that:

emΣ (A1) ̸= emΣ (A2),

where
emΣ (A) =

∑
{i1,...,im}⊆A
i1<...<im

ai1 · · · aim ,

and we adopt the convention that emΣ (A) = 0 if |A| < m.
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