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Formulation of the original problem

Let {aq,...,an} be a set of positive integers with a; < ... < a,
such that all 2" subset sums are distinct.

Conjecture.

A famous conjecture by Erdés states that a, > ¢ - 2" for some
constant c.

Theorem.
The best results known to date are of the form a, > ¢-2"/y/n
for some constant c.

Improving the factor y/n is a very hard task and so only the
constant ¢ has been improved in the past 70 years.



Known bounds from literature

Lower bounds on a,
® Trivial one — a, > %2”
¢ Erdés and Moser (1955) — a,, > % .22

B
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e Alon and Spencer (1981) — a, > (14 o(1))

V3 Vn
* Elkies (1986) — a, > (1+0(1)) % - 2
® Guy (1981) = a, > (1 + 0(1))% . %

e Dubroff, Fox and Xu (2020) — a,, > (1 + 0(1))\/%

Upper bounds on a,

B

e Trivial one — a, < 2"~ ! (take each a; = 271)
¢ Bohman (1998) — a, < 0.22002 - 2"



Trivial bound - Pigeonhole principle

The maximum possible sum we can get is

A A
n 1 2 al

Zai§an+(an—1)—|—(an—2)—i—...+(an—n+1)
i=1

n(n —1) .
2

= na, —

Since in the interval [1,) ", a;] there must be at least 2" — 1
integers, by the Pigeonhole principle we have that

Ay, > — .
n



Second moment method - Alon and Spencer

Let us fix a set {ay,ag,...,a,} with distinct partial sums.

Let €1,€9,...,€, be ii.d random variables distributed as
Pr(e; =1) =Pr(e; = —1) =1/2 for all i € [1,n].

Set X = 3" | €a;. Clearly X is symmetric around 0 and
uniformly distributed over its support of size 2" — E[X] = 0.

Let us bound

Var[X] = E (Z%) ZE ] af +2) Eleiejlaia;

i 1<j

= E aggnai.
i



Second moment method - Alon and Spencer - 2

By Chebyschev’s inequality for any A > 1 we have that

1
Pr(|X| < \Wna,) >1— v
But X is a discrete random variable with probabilities equal to
27" or zero in an interval and each possible outcome has the

same parity. Therefore
Pr(|X| < \Wna,) < (A\Wna, +1)27"

Thus
2"(1—-A"2) -1
W

Optimizing for A > 1 we get A = /3. Hence a,, > (1+ o(l))ngnﬁ

Qp =




Second moment method - Guy

As before, let X = 2?21 €;a;, where ¢; is the same random
variable defined before.

We have that E[X] = 0 and Var[X] < na2, then we can lower
bound Var[X] as follows:

Hence



Elkies’s method

Let us consider the following generating function

n

G(2)=]] <1 + % (2% + z““)) ,

=1

where the {a1,...,a,} satisfy the sum distinct property.



Elkies’s method

Let us consider the following generating function

n

G(2)=]] <1 + % (2% + z“”)) ,

i=1
where the {a1,...,a,} satisfy the sum distinct property.

By the sum distinct property the constant term in the power
series expansion (Laurent expansion) of G(z) around 0 must be
equal to 1. Therefore using the Cauchy’s integral formula we
have that 1 g

— Nt =1.
o _WG(e )



Elkies’s method - 2

ﬁ(1+cos (a;t ] / HcosZ(ait/2)dt

™
27r:/
T L=t Ti=1

since 1 + cos(2t) = 2 cos(t)




Elkies’s method - 2

n

2 = /7r [H (1+ cos(ait))] dt = 2" ! ﬁcosz(ait/Q)dt

i=1 =1
w/an M Tfan T
> 2"/ HCOSQ(ait/Q)dt > 2”/ HCOS2(CLnt/2)dt
—m/an 21 —m/an =1

since cos(a;t/2) > cos(ant/2) for t € [—1, 1] and i € [1,n — 1]

an Gn



Elkies’s method - 2

27 = /7r [ﬁ (1+ cos(ait))] dt = 2" i ﬁCOSQ(ait/Q)dt

- Li=1 =1
w/an M an ™
> 2”/ HCOSQ(CLit/Q)dt > 2”/ HCOS2(ant/2)dt
—7/an i=1 —7/an i=1

m/an 9 /2 )
= 2"/ cos®(ant/2)dt = 2" — cos“" (u)du
—/an an J—7/2

_ 2+l o-2n(20)
G nj)

Hence

an > (1+0(1))

Sl

1
N



Isoperimetric method - Dubroff, Fox and Xu

Let F be a family of subsets of [1,n], and define the vertex
boundary as

OF = {A e 2"\ F:|AAB| =1 for some B € F}

Theorem (Harper vertex-isoperimetric)
If F is a family of subsets of [1,n] and |F| = 2", then

n

[n/2]

22"

|af!2< 2

) = o)



Isoperimetric method - Dubroff, Fox and Xu - 2

Let a = (a1, as,...,a,) be a sum-distinct sequence
a; < ... < ap, and note that a - € # 0 for all e € {—1/2,1/2}".

Let F be the set of all 27! points € such that a - € < 0.
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Then, n € OF iff n — e; € F for some basis vector e;. In
addition, each n € OF satisfies 0 < a -1 < ay,.
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Isoperimetric method - Dubroff, Fox and Xu - 2

Let a = (a1, as,...,a,) be a sum-distinct sequence
a; < ... < ap, and note that a - € # 0 for all e € {—1/2,1/2}".

Let F be the set of all 27! points € such that a - € < 0.

Then, n € OF ift n —e; € F for some basis vector e;. In
addition, each n € OF satisfies 0 < a -1 < ay,.

By Harper we have |0F| > (LJ/LQ J). Therefore there exists
distinct n1,m2 € OF such that |a- (1 — n2)| < a”/(tn72J)'

By the sum distinct property we have |a - (1 — n2)| > 1 and

hence an > (|,)5)) = (1 + 0(1))\/227%



Variations on the original problem

First variation.

The distinct-sums condition is weakened by only requiring that
the sums of up to An elements of the set be distinct with

0< A<,

Second variation.
The elements a; € Z* for some k > 1.



More formally...

Problem.

Let F),, be the family of all subsets of {1,...,n} whose size is
smaller than or equal to An. We are interested in the minimum
M such that there exists a sequence ¥ = (a1,...,a,) in ZF,

a; € [0, M]¥ Vi, such that for all distinct A, Ay € Fy p,

S(Ay) # S(Az), where

S(A) = a;.

i€A

Remark.
For A =1 and k£ = 1 we obtain the same problem as the original
one.



Information Theory Interpretation

Signaling over a multiple access channel. Let {a1,...,a,}
be a set, where a; € ZF for some k > 1, such that the sums of
up to An elements of the set be distinct with 0 < A < 1. We

have n trasmitters.

{07(1'1}

fm
5{/

Each one can send a signal of amplitude a; to the base station
saying that it wants to start a communication session.

Yie J:|J|<ni



Trivial Lower Bounds on M

Proposition.

Let ¥ = (a1,...,a,) be an Fy ,-sum distinct sequence in Z*
that is M-bounded. Then

1
M> . 1k,
~ [An] [l

Proof.
Since the maximum possible sum is at most [An]M in each
component, by the pigeonhole principle, we have that

1
k
M= gl




Harper Isoperimetric Inequality

Following the idea of Dubroff, Fox and Xu the previous bounds
for k =1 and A > 1/2 can be improved as follow

Theorem
Let ¥ = (a1,...,an) be an Fy,-sum distinct sequence in Z that
is M -bounded. Then

L_.on ifx=1/2;
0 : Vamn
M > (1+o0(1)) \/z-gn if A €]1/2,1].

™



Lower bound - Variance method for £ > 1

Using the variance method, it is possible, to improve the
previous bounds for k£ > 1.

Theorem

Let A € [0,1] and let ¥ = (a1,...,an) be an Fy,-sum distinct
sequence in ZF that is M-bounded. Then

4

M>(14o0(1))- )

T(k/2+ D)YE | Fyn|

where I' is the gamma function.



Variance method

The key step.

Consider a random variable X = >"" | ¢;a; where the random
vectors (€1, €2, ..., €,) are uniformly distributed over the set
Fn with €, € {=1/2,1/2}. It can be proved that for A > 1/2

Eleie;] <0
for each i # j. While for A < 1/2 we have that

Eleiej] = O(1/n).



Upper bound - Polynomial method

Using the polynomial method (Alon’s combinatorial
nullstellensatz) we get the following theorem.

Theorem
For any \ < 1/3, there exists a sequence ¥ = (ay,...,ay) that is
M -bounded positive integers and Fy n-sum distinct with

where

FO) =H(MA1T—2)) = —2Xlogy A — (1 — 2X) logy(1 — 2)).

Remark.
The previous bound is non-trivial for A\ < 3/25.



Upper bound - Probabilistic method

Using the probabilistic method we get an improvement on the
trivial bound (i.e., ¢ - 2"/%) for k > 1 and X\ < 3/25.

Theorem
Let
A2n2 1
n = r 2f(>‘)7—k d = |—
O 27, PEXNT N log 2 f(N |
where f(A) = —2Alogy A — (1 — 2X) logy (1 — 2).
Then there exists a sequence ¥ = (a1, ...,ay) of

(C)\,n . 2f(>‘)”/k)—b0unded elements of ZF that is Fxn-sum
distinct.



Improvements for k = 1 and \ €]3/25,1/4]

Using the Lunnon’s construction it can be shown that if A < 1/4
and n large enough, there exists a sequence ¥ = (ay,...,ay) of
M-bounded integers that is F) ,-sum distinct with

ar_ 022096
2
while for A < 1/8 we get
0, 22096
_ 522U on
4

Remark.

For A < 1/4 we can insert an additional a; to the sequence
found by Lunnon while for A < 1/8 two elements can be added
without violating the sum-distinct property.



=

Overall results

Figure: Exponent of the upper bounds for k = 1 and for k& > 1.
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— Direct construction
— Trivial bound
— Nullstellensatz bound

— Probabilistic bound

— Direct construction
Trivial bound
Nullstellensatz bound

— Probabilistic bound




The problem over symmetric polynomials

Problem
For every positive integer n, find the least positive M = M (n)
such that there exists a sequence ¥ = (ay,...,a,) of integers

with a; € [0, M] for every i such that for all distinct
A1, As C [1,n] of size at least m we have that:

es’ (A1) # e5'(A2),

where

m
B(A) = > aa,,
{7;17---7im}g14
11 <. <,

and we adopt the convention that ef}(A) = 0 if |A| < m.
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