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Chapter 0: Basics

0.1 Sets

Throughout these lecture notes, a set will be an unordered collection of ob-
jects, without repetitions. The objects contained in a set are called elements.
Elements of a set will be enclosed between curly brackets.

Example 0.1.1. {1, 2,♡, w} is the set whose elements are 1, 2,♡ and w.
This is the same as {2, 1, w,♡}, because sets are unordered collections of
objects, and it is the same as {1, 2, 2, w, w, w,♡}, because repetitions do
not matter.

There is a special set, called empty set, that is a collection of zero objects.
This is denoted by ∅.

Elements of a set can be listed one by one, as in the example above, or
they can be described by a property that characterizes them.

Example 0.1.2. The set of natural numbers will be denoted by N, and it
is the set {0, 1, 2, . . .}. The set of integers will be denoted by Z, and it
is the set {0, 1,−1, 2,−2, 3,−3, . . .}. The set of rational numbers will be
denoted by Q, and it can be described as {a/b : a, b ∈ Z and b ̸= 0}. The
colons in the description of Q shall be read as ”such as”.

If s is an element of a set S, we write s ∈ S, and we say that s belongs to
S. If this is not the case, namely if s is not an element of S, we write s /∈ S.

The following symbols are fundamental standard notation in mathematics.

• The symbol ∀ means ”for all”;

• The symbol ∃ means ”there exists”.

• The symbol ∃! means ”there exists a unique”.

• The symbol ∄ means ”it does not exist”.

• The symbol ⇐⇒ means ”if and only if”. If P,Q are propositions, we
write P ⇐⇒ Q to say that if P holds true, then so does Q and if Q
holds true, then so does P .
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Example 0.1.3. The following propositions hold true.

• ∀x ∈ Z, ∃ y ∈ Z such that x+ y > 0.

• ∀x ∈ Z, ∃! y ∈ Z such that x+ y = 0.

• ∄x ∈ N such that x2 = 2.

• ∀x ∈ Z, x2 ≤ 4 ⇐⇒ −2 ≤ x ≤ 2

If S, T are sets, we say that S is a subset of T , and we write S ⊆ T , if
every element of S is an element of T as well. For instance, N ⊆ Z. If, on the
other hand, there exists an element of S that does not belong to T , we write
S ̸⊆ T . For instance, Q ̸⊆ Z.

Remark 0.1.4. Every set S has at least two subsets: the empty set and S
itself.

Definition 0.1.5. Two sets S, T are equal if S ⊆ T and T ⊆ S. If this is
the case, we write S = T .

For S, T sets, the following operations are allowed and produce a new set.

• The intersection of S, T is the set:

S ∩ T := {s : s ∈ S and s ∈ T}.

If S ∩ T = ∅, we say that S and T are disjoint.

• The union of S and T is the set:

S ∪ T := {s : s ∈ S or s ∈ T}.

• The difference of S and T is the set:

S \ T := {s : s ∈ S and s /∈ T}.

Remark 0.1.6. Intersection and union are commutative operations, that
is, S ∩T = T ∩S and S ∪T = T ∪S. On the other hand, the difference is
not commutative. For example, you can try to show that Q \Z and Z \Q
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are not equal.

Lemma 0.1.7. If S, T, U are sets, the following hold true.

1. S ∩ S = S ∪ S = S;

2. S ∩ ∅ = ∅;

3. S ∪ ∅ = S;

4. (S ∩ T ) ∩ U = S ∩ (T ∩ U);

5. (S ∪ T ) ∪ U = S ∪ (T ∪ U);

6. S ⊆ T ⇐⇒ S ∩ T = S ⇐⇒ S ∪ T = T ;

7. S ∩ (T ∪ U) = (S ∩ T ) ∪ (S ∩ U);

8. S ∪ (T ∩ U) = (S ∪ T ) ∩ (S ∪ U).

Definition 0.1.8. Given two sets S, T , the cartesian product of S and T
is the set S × T formed by all ordered pairs (s, t) such that s ∈ S and
t ∈ T . In symbols,

S × T := {(s, t) : s ∈ S, t ∈ T}.

Example 0.1.9. If S = {a, b} and T = {1, 2, 3} then

S × T = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}.

If S, T, U are sets, the following properties hold true.

• S × ∅ = ∅ × S = ∅;

• If S and T are both nonempty, S × T = T × S ⇐⇒ S = T ;

• S × (T ∪ U) = (S × T ) ∪ (S × U);

• S × (T ∩ U) = (S × T ) ∩ (S × U).

It is possible to construct the cartesian product of more than two sets.
Namely, if n ≥ 1 is any natural number and S1, . . . , Sn are sets, we let:

S1 × S2 × . . .× Sn := {(s1, s2, . . . , sn) : si ∈ Si ∀i ∈ {1, 2, . . . , n}}.

3
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If the n sets S1, S2, . . . , Sn are all equal to a set S, we write Sn for the cartesian
product S1 × . . .× Sn.

0.2 Functions

Let S, T be sets.

Definition 0.2.1. A correspondence between S and T is a subset of S×T .
A function (or map) between S and T is a correspondence f between S
and T such that for every s ∈ S there exists a unique t ∈ T such that
(s, t) ∈ f .

Example 0.2.2. If S = {0, 1} and T = {a,♠,
√
7}, the following are

correspondences between S and T :

1. S × T ;

2. ∅;

3. {(0,♠), (1,♠)};

4. {(0,♠), (1,
√
7), (1, a)}.

However, only 3. is a function between S and T .

If f ∈ S × T is a function, we know that for every s ∈ S there is a unique
t ∈ T with (s, t) ∈ f . Since such t only depends on s, we can write t = f(s).
Hence the function f coincides with the set {(s, f(s)) : s ∈ S}. With this
picture in mind, we will write

f : S → T

to denote that f is a function between S and T . In layman’s terms, f is a
”rule” that assigns to every s in S a unique element t ∈ T . Such element is
referred to as the image of s via f , and we denote it by f(s).

Note:-

In order to define a function between two sets S, T it is enough, by the
above considerations, to describe the image of every element S ∈ s. This
will be done by using the notation s 7→ f(s). For example, writing:

f : Z → N

4
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x 7→ x2

means that f is the function between Z and N that associates to every
integer x then natural number x2.

Definition 0.2.3. Let f : S → T be a function.

1. The set S is called domain of f , while the set T is called codomain.

2. f is called injective if for every s1, s2 ∈ S with s1 ̸= s2 we have
f(s1) ̸= f(s2).

3. f is called surjective if for every t ∈ T there exists s ∈ S with
f(s) = t.

4. f is called bijective if it is both injective and surjective.

5. If S ′ ⊆ S, the image of S ′ is the set f(S ′) := {f(s) : s ∈ S ′}.

6. If T ′ ⊆ T , the preimage of T ′ is the set f−1(T ′) = {s ∈ S : f(s) ∈
T ′}.

Example 0.2.4.

• The function f : Z → Z that sends x 7→ x2 is neither injective nor
surjective.

• The function f : Z → Z that sends x 7→ x3 is injective but not
surjective.

• The function f : Q → Q that sends x 7→ x/2 is bijective.

If S is a set, a sequence of element of S is a function a : N → S. Images of
elements in the domain, instead of being denoted by a(0), a(1), a(2), . . . are
often denoted by a0, a1, a2, . . ..

A set is infinite if there exists an injective sequence f : N → S. If this is
not the case, then S is finite.

Definition 0.2.5. If S is a set and n ∈ N, an n-tuple of elements of S is
a function a : {1, 2, . . . , n} → S.

5
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Once again if a is an n-tuple of elements of S, images of the elements in the
domain are denoted by a1, a2, . . . , an. Conversely, writing down n elements
of S, say (b1, . . . , bn) automatically defines an n-tuple, that is the function
b : {1, . . . , n} → S that maps i 7→ bi. From now on, n-tuples of elements of a
set S will be denoted by (a1, . . . , an). Notice that order matters. For example,
if S = N the triple (12, 27, 32) differs from the triple (27, 12, 32), because the
first one is a function {1, 2, 3} → N that maps 1 to 12, while the second one
is a function {1, 2, 3} → N that maps 1 to 27.

If S is finite and nonempty, then there exists a natural number n ≥ 1 and
a bijective function f : {1, 2, . . . , n} → S. The number n is called cardinality
of the set S, and we write |S| = n.

Proposition 0.2.6 (Inclusion-exclusion principle). Let S1, S2, . . . , Sn be fi-
nite sets. Then :

|S1 ∪ S2 ∪ . . . ∪ Sn| =
n∑

k=1

(−1)k+1

( ∑
1≤i1<i2<...<ik≤n

|Si1 ∩ Si2 ∩ . . . ∩ Sik |

)

Note:-

What Proposition 0.2.6 says is that in order to compute the cardinality of
a union of finite sets, you must sum the cardinality of each single set, then
subtract the cardinality of all intersections of two of them, then add the
cardinality of all intersections of three of them, and so on. For example, if
n = 2 then:

|S1 ∪ S2| = |S1|+ |S2| − |S1 ∩ S2|,

and if n = 3 then
|S1 ∪ S2 ∪ S3| =

= |S1|+ |S2|+ |S3| − |S1 ∩ S2| − |S1 ∩ S3| − |S2 ∩ S3|+ |S1 ∩ S2 ∩ S3|.

If S1, . . . , Sn are pairwise disjoint, then |S1∪. . .∪Sn| = |S1|+|S2|+. . .+|Sn|.

Given two functions f : S → T and g : T → U , one can create a third
function, called composition of f and g. This is denoted by g ◦ f and it is
defined as

g ◦ f : S → U

s 7→ g(f(s))

6
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Proposition 0.2.7. Let f : S → T , g : T → U and h : U → W be functions.
Then:

h ◦ (g ◦ f) = (h ◦ g) ◦ f,

that is, composition of functions is associative.

If S is a set, there always exists a function from S to itself, called identity
function. This is defined by

idS : S → S

s 7→ s

We say that a function f : S → T is invertible if there exists a function g : T →
S such that g ◦ f = idS and f ◦ g = idT . We call g an inverse function for
f .

Proposition 0.2.8. A function is invertible if and only if it is bijective.
Moreover, the inverse function is unique.

We denote the inverse of a function f by f−1.

0.3 The induction principle

The induction principle is a tool that can be used to prove propositions in-
volving natural numbers. This works as follows. Suppose we want to prove a
proposition P (n) on the n-th natural number. If we can prove the following
two facts:

1. P (0) holds true;

2. if P (k) holds true for a natural number k, then P (k + 1) holds true,

then it follows that P (n) is true for every natural number n. We will now
illustrate this principle with three very classical examples.

Proposition 0.3.1. Let n be a natural number. Then
∑n

i=0 i =
n(n+1)

2
.

Proof. The proposition P (n) that we want to prove is:

P (n) :
n∑

i=0

i =
n(n+ 1)

2
.

7



Andrea Ferraguti Chapter 0: Basics

We therefore need to prove two facts. The first one is that P (0) holds
true, i.e. we need to show that

0∑
i=0

i =
0(0 + 1)

2
.

This is clearly true.
Next, we need to prove that if

∑k
i=0 i =

k(k+1)
2

for some integer k then∑k+1
i=0 i =

(k+1)(k+2)
2

. That is, our hypothesis is
∑k

i=0 i =
k(k+1)

2
(we call

this inductive hypothesis) and our thesis is
∑k+1

i=0 i =
(k+1)(k+2)

2
.

So let us assume the inductive hypothesis and let us look at
∑k+1

i=0 i.

We can split this sum in two pieces, writing
∑k+1

i=0 i =
∑k

i=0 i+ k+1. But
now we can use our inductive hypothesis, and get

k+1∑
i=0

i =
k∑

i=0

i+ k + 1 =
k(k + 1)

2
+ k + 1 =

(k + 1)(k + 2)

2
,

which is exactly what we needed to prove.

Proposition 0.3.2. Let n be a natural number. Then 22n − 1 is divisible
by 3.

Proof. The proposition we want to prove is: P (n) : 22n − 1 is divisible by
3.

Once again, we need to prove two things. The first one is that 22·0 − 1
is divisible by 3. This is obviously true. The second one is that if 22k − 1
is divisible by 3 for some integer k (inductive hypothesis), then 22(k+1)− 1
is also divisible by 3. So let us assume the inductive hypothesis and look
at 22(k+1) − 1. We have:

22(k+1) − 1 = 4 · 22k − 1 = 4 · (22k − 1 + 1)− 1 = 4 · (22k − 1) + 3.

Now the inductive hypothesis implies that 4 · (22k − 1) is a multiple of 3,
and therefore also 4 · (22k − 1) + 3 is a multiple of 3. This is exactly what
we needed to prove.

Proposition 0.3.3. Let S be a finite set with |S| = n. Then S has exactly
2n subsets.

8
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Proof. When n = 0, S is a set with 0 elements, and hence it is the empty
set ∅. The only subset of ∅ is ∅ itself, so S has 1 = 20 subsetes.

Now we need to show that if a set of cardinality k has 2k subsets
(inductive hypothesis), then a set of cardinality k + 1 has 2k+1 subsets.
Let S be a set with |S| = k + 1, and let P(S) be the set of all subsets of
S. Now fix an element s ∈ S (notice that this exists since S is not empty,
since its cardinality is at least 1). Elements of P(S) are of two types:
either they contain s or they do not. So we can write P(S) = T ∪ T ′,
where

T = {U ⊆ S : s ∈ U}

and
T ′ = {U ⊆ S : s /∈ U}.

The elements of T ′ are precisely the subsets of S \{s}. Since |S \{s}| = k,
we can use our inductive hypothesis: there are exactly 2k subsets of |S \
{s}| = k, so |T ′| = 2k. On the other hand, there exists a bijection T ′ → T ,
that is the map sending U 7→ U∪{s}. It follows that |T | = |T ′| = 2k. Now
since T ∩ T ′ = ∅, by Proposition 0.2.6 we get that |P(S)| = |T | + |T ′| =
2k+1.

0.4 Real and complex numbers

The set of real numbers, denoted by R, is the set of all numbers of the form
a0, a1a2a3 . . ., where a0 ∈ Z and ai ∈ {0, . . . , 9} for every i ≥ 1. We refer to
this form as decimal expansion. The set R can be defined in a formal way
starting from Q, but we are not interested in such construction in these notes.

Clearly R contains Z; integers are real numbers of the form a0, a1a2 . . . with
ai = 0 for every i ≥ 1. Moreover, R contains Q. Rational numbers are exactly
those with an eventually periodic decimal expansion, namely they are exactly
the ones whose decimal expansion has the form a0, a1 . . . anan+1 . . . an+t for
some n ≥ 0, t ≥ 1. This means that the block of digits an+1 . . . an+t keeps
repeating itself, i.e. for every m > n we have am = am+t.

Note:-

Although every real number has a decimal expansion, the representation
of a real number as a0, a1a2a3 . . . is not unique. In fact, for example, the
two expressions 0, 9 and 1, 0 are different, but they represent the same real
number.

The set of complex numbers, denoted by C, is the set {a + bi : a, b ∈ R},

9
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where i is a symbol such that i2 = −1. Of course C contains R; the latter is
simply the subset {a+ 0i : a ∈ R}.

Note:-

The representation of a complex number as a + bi for some reals a, b is
unique. That is, a+ bi = c+ di if and only if a = c and b = d.

Complex numbers can be added and multiplied according to the following
rules:

• (a+ bi) + (c+ di) = (a+ c) + (b+ d)i.

• (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i.

One can verify that addition and multiplication are commutative and associa-
tive.

There is a bijective map, called conjugation, defined as follows:

· : C → C

a+ bi 7→ a+ bi := a− bi

Conjugation has the property that x+ y = x + y and xy = x · y for every
x, y ∈ C. Moreover,

R = {x ∈ C : x = x}. (1)

0.5 Polynomials

Let K be a field (for the definition of field, see Definition 1.1.13). If you are
not familiar yet with the concept of field, just think of K as to one among
Q,R or C. A polynomial with coefficients in K is an expression of the form

p(x) = a0 + a1x+ a2x
2 + . . .+ anx

n,

where ai ∈ K for every i ∈ {0, . . . , n}.
The degree of p(x), denoted by deg p(x), is the largest index i such that

ai ̸= 0. If there is no such index, then p(x) = 0, and we set by convention
deg p(x) = −∞.

Note:-

Polynomials of degree 0 are non-zero constants, i.e. they are simply elements
of K different from 0.

The set of all polynomials with coefficients in K will be denoted by K[x].

10
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Polynomials can be added and multiplied. Let p(x) =
∑n

i=0 aix
i and q(x) =∑m

j=0 bjx
j be two polynomials with coefficients in K. Now suppose that n > m

(the case m > n is symmetric); then you can write q(x) =
∑n

j=0 bjx
j, where

bj = 0 if j ∈ {m+ 1, . . . , n}. Then:

p(x) + q(x) =
n∑

i=0

(ai + bi)x
i

and

p(x)q(x) =
2n∑
k=0

( ∑
i,j : i+j=k

aibj

)
xk.

When we add up two polynomials, the degree of the sum is at most the largest
degree between the two, namely

deg(p(x) + q(x)) ≤ max{deg p(x), deg q(x)},

and equality holds if deg p(x) ̸= deg q(x). When we multiply two polyomials,
their degrees add up:

deg(p(x)q(x)) = deg p(x) + deg q(x).

If p(x) is a polynomial with coefficients in K and z ∈ K, we can evaluate
p(x) at x = z. This simply means computing

p(z) := a0 + a1z + a2z
2 + . . .+ anz

n,

that is an element of K. Notice that if p(x), q(x) ∈ K[x] and z ∈ K then:

(p(x) + q(x))(z) = p(z) + q(z) and (p(x)q(x))(z) = p(z)q(z).

We say that z is a root of p(x) if p(z) = 0. Polynomials of degree 0 have
no roots.

Theorem 0.5.1. Let p(x) ∈ K[x] have degree n ≥ 1. If z ∈ K is a root
of p(x), then there exists a unique integer k ≥ 1 and a unique polynomial
q(x) of degree n− k such that q(z) ̸= 0 and p(x) = (x− z)kq(x).

The positive integer k whose existence is granted by Theorem 0.5.1 is called
multiplicity of the root z.

11
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Corollary 0.5.2. If deg p(x) = n ≥ 1 and z1, . . . , zr ∈ K are roots of p(x),
with multiplicities k1, . . . , kr, respectively, then k1 + . . . + kr ≤ n. In
particular, r ≤ n.

In other words, a polynomial of degree n has at most n roots in K, even
when each root is counted with its multiplicity.

Theorem 0.5.3 (Fundamental theorem of algebra). Let p(x) ∈ C[x] be
a polynomial of degree n. Then there exists unique complex numbers
z1, . . . , zr and unique positive integers k1, . . . , kr such that

p(x) = (x− z1)
k1 . . . (x− zr)

kr .

In other words, a polynomial with complex coefficients of degree n has exactly
n roots, when each is counted with its multiplicity.

Notice that since Q ⊆ R ⊆ C, then every degree n polynomial with coef-
ficients in Q or in R has exactly n complex roots, when each is counted with
its multiplicty.

Lemma 0.5.4. Let p(x) ∈ R[x] be a polynomial. If λ ∈ C is a root of p,
then λ is a root of p as well.

0.6 Matrices

Let K be a field (for the definition of field, see Definition 1.1.13). If you are
not familiar yet with the concept of field, just think of K as to one among
Q,R or C. Let m,n ≥ 1 be integers.

Definition 0.6.1. An m× n matrix with coefficients in K is a function

A : {1, . . . ,m} × {1, . . . , n} → K.

The image of a pair (i, j) ∈ {1, . . . ,m} × {1, . . . , n} will be denoted by
aij.

For practical purposes, we identify a matrix with its image, and we arrange
the values of the function defining the matrix in a rectangular table with m
rows and n columns. That is, an m × n matrix A is a table of the following

12
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form:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .

am1 am2 . . . amn

 .

To ease the notation, we sometimes will write A = (aij) i=1,...,m
j=1,...,n

to say that A

is an m× n matrix whose entry in row i and column j is aij.
The set of allm×nmatrices with coefficients inK is denoted byMm×n(K).

If m = n, we shorten the notation by just writing Mn(K). Matrices belonging
to Mn(K) are called square matrices of size n.

Any two elements of Mm×n(K) can be added, as follows. Given

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .

am1 am2 . . . amn

 and B =


b11 b12 . . . b1n

b21 b22 . . . b2n

. . . . . . . . . . . .

bm1 bm2 . . . bmn


we let

A+B :=


a11 + b11 a12 + b12 . . . a1n + b1n

a21 + b21 a22 + b22 . . . a2n + b2n

. . . . . . . . . . . .

am1 + bm1 am2 + bm2 . . . amn + bmn

 .

Matrices could, in principle, be multiplied entry-by-entry, similarly to the way
we add them. However, this multiplication will not be used anywhere in these
lecture notes. On the other hand, we will now define a matrix multiplication
that can be performed only between an m × n and an n × p matrix, where
m,n and p are positive integers. If A = (aij) i=1,...,m

j=1,...,n
∈ Mm×n(K) and B =

(bij) i=1,...,n
j=1,...,p

∈ Mn×p(K), the matrix AB is the matrix (cij) i=1,...,m
j=1,...,p

∈ Mm×p(K)

where for every i ∈ {1, . . . ,m} and every j ∈ {1, . . . , p}:

cij =
n∑

k=1

aikbkj.

In other words, to find the entry in row i and column j of the matrix AB, we
need to take the i-th row of A (that has n entries) and the n-th column of B

13
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(that also has n entries), multiply the corresponding entries (the entry in the
i-th row and k-th column of A must be multiplied with the entry in the k-th
row and j-th column of B), and add up all the results.

Note:-

Given matrices A and B, the product AB makes sense only when the num-
ber of columns of A equals the number of rows of B.

Example 0.6.2.

• Let A :=

 2 3 1

−1 0 1

 ∈ M2×3(R) and B :=


1

2

2

 ∈ M3×1(R).

Then AB =

10

1

 ∈M2×1(R).

• Let A :=

2 2

0 0

 ∈ M2(Q) and B :=

1 1 −1

0 0 3

 ∈ M2×3(Q).

Then AB =

2 2 4

0 0 0

 ∈M2×3(Q).

• The matrices A :=

2 2

0 0

 ∈ M2(C) and B :=


1

2

2

 ∈ M3×1(C)

cannot be multiplied, since A has two columns and B has 3 rows.

Remark 0.6.3. If A,B ∈ Mn(K), then both products AB and BA make
sense. However, in general, the two results are different from each other.
That is, multiplication of matrices is not commutative.

We close this section with a few definitions that will be used later on.

14
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Definition 0.6.4. Let K be a field and n ≥ 1 an integer.

1. The identity matrix is the matrix In = (aij)i,j ∈Mn(K) defined by
aij = 1 if i = j and 0 otherwise.

2. A = (aij) ∈Mn(K) is a diagonal matrix if aij = 0 whenever i ̸= j.

3. A = (aij) ∈Mn(K) is upper triangular if aij = 0 whenever i > j.

4. A = (aij) ∈Mn(K) is lower triangular if aij = 0 whenever i < j.

Example 0.6.5.

• The identity matrix I3 ∈M3(K) is:

I3 =


1 0 0

0 1 0

0 0 1

 .

• The matrix 
2 0 0 0

0 3 0 0

0 0 −1 0

0 0 0 −
√
2


is diagonal.

• The matrix

A


1 2 3

0 4 5

0 0 −1


is upper triangular.

15
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• The matrix 
2 0 0 0

−7 3 0 0

0 1 −1 0

π 0 22 0


is lower triangular.

Remark 0.6.6. If A ∈Mn(K), then AIn = InA = A.

Definition 0.6.7. Let K be a field.

1. Let A = (aij) i=1,...,m
j=1,...,n

∈ Mm×n(K). The transpose matrix is the

matrix tA = (bji) j=1,...,n
i=1,...,m

∈ Mn×m(K) defined by bji = aij for every

i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.

2. LetA ∈Mn(K) be a square matrix. A is called symmetric ifA = tA,
and is called antisymmetric if A = −tA.

Example 0.6.8.

• Let

A :=

1 2 −3

0 1 7

 .

Then

tA =


1 0

2 1

−3 7

 .

• Let
A :=

(
1 2 3 4

)
.

16
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Then

tA =


1

2

3

4

 .

• Let

A :=


1 2 0

5 6 7

π 8
√
6

 .

Then

tA =


1 5 π

2 6 8

0 7
√
6

 .

• The matrix 
1 0 −2

0 2 −3

−2 −3 0


is symmetric.

Remark 0.6.9.

1. If A ∈Mm×n(K), then t(tA) = A.

2. If A,B ∈Mm×n(K), then t(A+B) = tA+ tB.

3. if A ∈Mm×n(K) and B ∈Mn×p(K), then t(AB) = tBtA.

17
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Chapter 1: Vector spaces

In this chapter we will introduce the fundamental objects of linear algebra,
namely vector spaces.

1.1 Groups and fields

Let S be a set.

Definition 1.1.1. An operation on S is a function ⋆ : S × S → S. An
operation ⋆ on S is called:

1. associative if for every a, b, c ∈ S we have (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c);

2. commutative if for every a, b ∈ S we have a ⋆ b = b ⋆ a.

Example 1.1.2.

• Addition is an associative and commutative operation on N. Sub-
traction is not an operation on N, because the difference of two
natural numbers is not always a natural number.

• Subtraction is an operation on Z, but it is not associative (for ex-
ample, 1 − (2 − 2) ̸= (1 − 2) − 2) nor commutative (for example,
1− 2 ̸= 2− 1).

Definition 1.1.3. Let S be a set and ⋆ be an operation on S. An element
e ∈ S is called a neutral element for ⋆ if a ⋆ e = e ⋆ a = a for every a ∈ S.

Example 1.1.4. 0 is a neutral element for the operation + on Q. 1 is a
neutral element for the operation · on R.

Lemma 1.1.5. Let S be a set and ⋆ an operation on S. A neutral element
for ⋆, if it exists, is unique.

Proof. Let e, e′ be neutral elements for ⋆. Then e ⋆ e′ = e since e′ is
neutral, but also e ⋆ e′ = e′ since e is neutral. Hence e = e′.
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Definition 1.1.6. Let S be a set and ⋆ be an operation on S with neutral
element e. Let a ∈ S. We say that an element b ∈ S is an inverse of a if
a ⋆ b = b ⋆ a = e.

Lemma 1.1.7. Let S be a set and ⋆ be an associative operation on S with
neutral element e. Let a ∈ S. If there exists an inverse of a, then it is
unique.

Proof. Let b, b′ ∈ S be such that a ⋆ b = e = a ⋆ b′. Multiplying both
sides of this equality by b we get that b ⋆ (a ⋆ b) = b ⋆ (a ⋆ b′). Since ⋆ is
associative, it follows that (b ⋆ a) ⋆ b = (b ⋆ a) ⋆ b′. Since b is an inverse
of a, we have b ⋆ a = e and hence e ⋆ b = e ⋆ b′. Since e is neutral, b = b′

follows.

Example 1.1.8. Addition is an associative and commutative operation
on C. The neutral element is 0, and every element a+ bi has the unique
inverse −a− bi.

Definition 1.1.9. A group is a pair (G, ⋆) where G is a nonempty set and
⋆ is an operation on G that satisfies the following properties:

1. ⋆ is associative;

2. there exists a neutral element e;

3. every element in G has an inverse.

If, in addition, ⋆ is commutative we say that the group (G, ⋆) is abelian.
If ⋆ is not commutative, we say that (G, ⋆) is non-abelian.

Example 1.1.10.

• The pair (Q,+) is an abelian group. The set (Q, ·) is not an abelian
group, because 0 does not possess an inverse.

• The pair (C \ {0}, ·) is an abelian group. In fact, every non-zero
complex number a+ bi has the multiplicative inverse a−bi

a2+b2
.
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• If S is a finite set, the set

{f : S → S s.t. f is bijective}

is a non-abelian group, when endowed with the operation ”compo-
sition of functions”. In fact, the composition of two bijective func-
tions is bijective, composition is associative by Proposition 0.2.7,
the identity function is the neutral element, and every element is
invertible by Proposition 0.2.8.

Remark 1.1.11. The fact that an operation ⋆ on G is associative implies
that we can omit brackets when we apply it several times in a row. Namely,
the writing

g1 ⋆ g2 ⋆ . . . ⋆ gn

makes sense because we can compute the operations in the order we prefer,
and the result does not change. For example,

g1 ⋆ (g2 ⋆ (g3 ⋆ g4))) = (g1 ⋆ g2) ⋆ (g3 ⋆ g4).

Lemma 1.1.12. Let (G, ⋆) be a group and let a, b, c ∈ G. If a ⋆ b = a ⋆ c,
then b = c.

Proof. Let a′ be the inverse of a. Since a ⋆ b = a ⋆ c, it follows that
a′ ⋆(a⋆b) = a′ ⋆(a⋆c). Since ⋆ is associative, we get (a′ ⋆a)⋆b = (a′ ⋆a)⋆c,
and since a′ ⋆ a is the neutral element, it follows b = c.

From now on, we will denote by + or · operations on groups, where + will
only be used in abelian groups while · can be used in both settings. When the
operation is denoted by +, we denote by 0 the neutral element and by −a the
inverse of a. When the operation is denoted by · we denote by 1 the neutral
element and by a−1 the inverse of a.

Definition 1.1.13. A field is a triple (K,+, ·), where K is a nonempty set
and +, · are two operations on K that satisfy the following properties:

1. (K,+) is an abelian group;

2. (K \ {0}, ·) is an abelian group;
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3. for every a, b, c ∈ K we have a · (b+ c) = a · b+ a · c.

Example 1.1.14. Q,R,C are all fields with the usual operations of sum
and multiplication. Z is not a field with respect to the usual sum and
multiplication because elements different from ±1 do not have a multi-
plicative inverse.

The set F2 := {0, 1} is a field when endowed with the following two
operations:

+ 0 1

0 0 1

1 1 0

· 0 1

0 0 0

1 0 1

Remark 1.1.15. If (K,+, ·) is a field, then K must contain at least the
neutral element for the operation +, that we denote by 0, and the neutral
element for the operation ·, that we denote by 1. These two elements
cannot coincide, because the definition of field requires (K \ {0}, ·) to be
an abelian group, and groups are nonempty sets. Therefore, a field always
contains at least two distinct elements, 0 and 1. The field F2 described in
the above example is therefore the smallest possible example of a field.

From now on, we will denote fields just by the letter K, tacitly implying
that the operations on K are + and ·. Moreover, we will frequently drop the
multiplication sign in fields. That is, if a, b ∈ K we will write ab instead of
a · b.

Note:-

When K is a field, we denote by 0 the neutral element with respect to the
operation + and by 1 the neutral element with respect to the operation ·.

Definition 1.1.16. Let K be a field. A vector space over K or a K-vector
space is an abelian group (V,+) endowed with a map

∗ : K × V → V

that satisfies the following properties:
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1. for every α ∈ K and every v, w ∈ V , α ∗ (v + w) = α ∗ v + α ∗ w;

2. for every α, β ∈ K and every v ∈ V , (αβ) ∗ v = α ∗ (β ∗ v).

3. for every α, β ∈ K and every v ∈ V , (α + β) ∗ v = α ∗ v + β ∗ v;

4. for every v ∈ V , 1 ∗ v = v.

Elements of V are called vectors, and will be denoted by underlined letters,
such as v, w, u. In particular, the neutral element of (V,+) is denoted by
0 and is called zero vector. Elements of K are called scalars.

Note:-

Addition inK and addition in V are both denoted by +. However, beware of
the fact that these are different operations, since one is a function K×K →
K and the other one is a function V × V → V . Therefore, an expression of
the form α + v, where α ∈ K and v ∈ V , does not make any sense.

Note:-

While 0 denotes the zero vector, namely the neutral element of the group
(V,+), we denote by 0 the neutral element of the group (K,+). Hence these
are two very different objects, do not confuse them!

Example 1.1.17. Let V = {0} be the abelian group that possesses only
one element, the neutral element with respect to the operation + on V .
This is a K-vector space over any field K, the operation ∗ being defined
by α ∗ 0 = 0 for every α ∈ K. This is the simplest possible vector space,
although not a very interesting one.

There are several important examples of vector spaces, but for the sake of
these lecture notes the most important is by far the following one.

Example 1.1.18. We let K be any field, n be a positive integer and V :=
Kn, that is, V is the set of all n-tuples of elements of K. V is an abelian
group with respect to the following operation:

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn)
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Now we define the following operation:

∗ : K × V → V

(α, (a1, . . . , an)) 7→ (αa1, . . . , αan)

Let us check that, for example, property 1. of the definition of a vector
space is indeed satisfied. In order to do that, we need to take an arbitrary
α ∈ K and two vectors v = (v1, . . . , vn) and w = (w1, . . . , wn) in V and
prove that α ∗ (v + w) = α ∗ v + α ∗ w. Now

v + w = (v1 + w1, v2 + w2, . . . , vn + wn)

and hence

α ∗ (v + w) = (α(v1 + w1), α(v2 + w2), . . . , α(vn + wn)) =

= (αv1 + αw1, αv2 + αw2, . . . , αvn + αwn).

On the other hand,

α ∗ v = (αv1, αv2, . . . , αvn) and α ∗ w = (αw1, αw2, . . . , αwn).

Hence

αv + αw = (αv1 + αw1, αv2 + αw2, . . . , αvn + αwn) = α ∗ (v + w),

as desired. It is a very useful exercise for the reader to verify that prop-
erties 2., 3. and 4. are satisfied as well.

Notice that when n = 1 we have V = K. When this happens, opera-
tion ∗ coincides with multiplication in K. Therefore, every field K, seen
as an abelian group with respect to the sum, is a vector space over K.

Example 1.1.19. Let n ≥ 1 be an integer and K be a field. Let

K[x]≤n = {p(x) ∈ K[x] : deg p(x) ≤ n}.

This is the set of all polynomials with coefficients in K of degree at most
n. The set K[x]≤n is an abelian group with respect to addition of poly-
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nomials, and it is a vector space over K with respect to the operation

∗ : K ×K[x]≤n → K[x]≤n(
α,

n∑
i=0

aix
i

)
7→

n∑
i=0

(αai)x
i

Example 1.1.20. Let n ≥ 1 be an integer and K be a field. The set
Mn(K) of all n × n matrices with coefficients in K is an abelian group
with respect to the sum of matrices. The group (Mn(K),+) can be given
a structure of vector space over K via the following operation:

∗ : K ×Mn(K) →Mn(K)

(α, (aij)i,j=1,...,n) 7→ (αaij)i,j=1,...,n.

Theorem 1.1.21. Let V be a vector space over a field K. Let α ∈ K and
v ∈ V . Then α ∗ v = 0 if and only if v = 0 or α = 0.

Proof. First, we show that if α = 0 or v = 0 then α ∗ v = 0. Let us start
by assuming that α = 0. Since 0+0 = 0 (because 0 is the neutral element
with respect to the sum in K), we have that

0 ∗ v = (0 + 0) ∗ v = 0 ∗ v + 0 ∗ v,

using property 3. of Definition 1.1.16.
Now 0 ∗ v = 0 ∗ v+ 0, and therefore we can rewrite the above equality

as:
0 ∗ v + 0 = 0 ∗ v + 0 ∗ v.

Now we can apply Lemma 1.1.12 in the group (V,+) and conclude that
0 ∗ v = 0.

Next, suppose that v = 0. Since 0 + 0 = 0 (because 0 is the neutral
element with respect to the sum in V ), we have that

α ∗ 0 = α ∗ (0 + 0) = α ∗ 0 + α ∗ 0,

using property 1. of Definition 1.1.16.
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Since α ∗ 0 = α ∗ 0 + 0, the above equality becomes

α ∗ 0 + 0 = α ∗ 0 + α ∗ 0,

and we can apply Lemma 1.1.12 and conclude that α ∗ 0 = 0.
Conversely, we must show that if α ∗ v = 0 then α = 0 or v = 0. So

suppose that α ̸= 0; we will show that v = 0. In fact, since α ̸= 0 then
there exists a multiplicative inverse α−1 of α. Starting from the equality
α ∗ v = 0, we get:

α−1 ∗ (α ∗ v) = α−1 ∗ 0.

Now on the one hand in the first part of the proof we proved that α−1∗0 =
0. On the ohter hand we can use properties of vector spaces given by
Definition 1.1.16, and get:

0 = α−1 ∗ 0 = α−1 ∗ (α ∗ v) = (α−1α) ∗ v = 1 ∗ v = v,

that is, v = 0.

Corollary 1.1.22. If K is a field and a, b ∈ K are such that ab = 0, then
a = 0 or b = 0.

Proof. As noticed in Example 1.1.18, every field is a vector space over
itself, with the operation ∗ coinciding with multiplication in K. Hence it
is enough to apply Theorem 1.1.21 to such setting.

Corollary 1.1.23. Let V be a K-vector space. Then for every v ∈ V we
have (−1) ∗ v = −v.

Proof. By Theorem 1.1.21 and the properties of vector spaces, we have
that:

0 = 0 ∗ v = (1− 1) ∗ v = 1 ∗ v + (−1) ∗ v = v + (−1) ∗ v,

that is, (−1) ∗ v = −v.

From now on, when V is a vector space over a field K with respect to some
operation ∗ : K × V → V , we will denote by · multiplication between scalars
and vectors, and we will often drop the multiplication sign. That is, if α ∈ K
and v ∈ V , we will write α · v or αv instead of α ∗ v.
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1.2 Linear combinations and subspaces

Definition 1.2.1. Let V be a vector space over a field K. Let v1, . . . , vn ∈
V and α1, . . . , αn ∈ K. The linear combination of v1, . . . , vn with coeffi-
cients α1, . . . , αn is the vector:

α1v1 + α2v2 + . . .+ αnvn ∈ V.

Example 1.2.2. Let V = R2, let v1 = (0, 1), v2 = (1,−1) and v3 = (2, 2)
be vectors. Let α1 = 1, α2 = 2, α3 = 0 be scalars. The linear combination
of v1, v2, v3 with coefficients α1, α2, α3 is the vector

1 · (0, 1) + 2 · (1,−1) + 0 · (2, 2) = (2,−1) ∈ V.

Definition 1.2.3. Let (V,+) be an abelian group.

1. Let W ⊆ V be a nonempty subset. W is called a subgroup of V if
(W,+) is an abelian group.

2. Let K be a field and let ∗ : K×V → V be an operation that makes
V into a vector space over K. A subset W ⊆ V is called a vector
subspace of V if:

(a) (W,+) is an abelian group;

(b) W is a K-vector space with respect to the operation ∗.

Example 1.2.4.

• Let (V,+) := (Z,+). The subset

2Z := {n ∈ Z : 2 divides n}

is a subgroup of Z. In fact, the sum of two multiples of 2 is a
multiple of 2, there is a neutral element, namely 0, and the inverse
of a multiple of 2 is a multiple of 2.

On the other hand, the subset 2Z+1 = {n ∈ Z : 2 does not divide n}
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is not a subgroup of Z, since + is not an operation on 2Z + 1: the
sum of two odd numbers is even.

• Let (V,+) := (K2,+), with the sum being defined coordinatewise.
As we have seen in Example 1.1.18, this is a K-vector space. The
subsetW = {(x, x) : x ∈ K} ⊆ K2 is a vector subspace of V . Let us
first verify that (W,+) is a subgroup of (V,+). If (x, x), (y, y) ∈ W ,
then (x, x) + (y, y) = (x + y, x + y), that is an element of W since
its two entries coincide. Hence + is an operation on W . Clearly
since + is associative on V it is also associative on W . The neutral
element for the sum on V is (0, 0), that belongs to W . Hence it is
the neutral element for the sum on W . Finally, the inverse of an
element (x, x) ∈ W is (−x,−x), that belongs again to W .

Next, λ(x, x) = (λx, λx) ∈ K2 for every λ ∈ K and (x, x) ∈ W .
Hence the operation K × V → V given by (λ, (x, y)) 7→ (λx, λy)
restricts to an operation onW that makes the latter into a K-vector
space.

On the other hand, the subset U = {(x, 1) : x ∈ K} ⊆ V is not a
vector subspace of V , since (U,+) is not a subgroup of (V,+): in
fact, it has no neutral element.

Lemma 1.2.5. Let (G, ·) be a group, and let H ⊆ G. Then (H, ·) is a
subgroup if and only if for every g, h ∈ H we have g · h−1 ∈ H.

Proof. First, if H is a subgroup then given g, h ∈ H, the inverse of h, that
is h−1, must also belong to H, and the product g · h−1 must belong to H
as well, since · is an operation on H.

Conversely, suppose that for every g, h ∈ H the product g ·h−1 belongs
to H. We need to prove that · is an operation on H, that the neutral
element 1 is in H and that if h ∈ H, then h−1 ∈ H. Notice that the
fact that · is associative is obvious, since it is associative on G. If g ∈
H, then the hypothesis guarantees that 1 = g · g−1 ∈ H, and therefore
H contains the neutral element. Therefore, if h ∈ H then the same
hypothesis guarantees that h−1 = 1 · h−1 ∈ H, so H contains inverses of
every element. Finally, if g, h ∈ H then we have just proved that h−1 ∈ H
and so g ·h = g ·(h−1)−1 ∈ H by the hypothesis, completing the proof.
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Theorem 1.2.6. Let V be a vector space over a field K and let W ⊆ V
be a non-empty subset. Then W is a vector subspace of V if and only if
for every v1, v2 ∈ W and every α1, α2 ∈ K we have:

α1v1 + α2v2 ∈ W.

Proof. First, suppose that W is a subspace of V . Let v1, v2 ∈ V and
α1, α2 ∈ K. We need to prove that α1v1 +α2v2 ∈ W . Since W is a vector
space with respect to the same operation that makes V into a K-vector
space, we have that α1v1 ∈ W and α2v2 ∈ W . On the other hand (W,+)
is a subgroup of (V,+), and therefore for every w1, w2 ∈ W we have that
w1 + w2 ∈ W . If we pick w1 = α1v1 and w2 = α2v2, we get precisely that
α1v1 + α2v2 ∈ W .

Conversely, suppose that for every v1, v2 ∈ W and every α1, α2 ∈ K
we have α1v1 + α2v2 ∈ W . We need to prove that W is a subspace of
V . This amounts to proving that (W,+) is a subgroup of (V,+) and that
multiplication by scalars of K makes W into a K-vector space. We start
by proving that (W,+) is a subgroup of (V,+). By Lemma 1.2.5, it is
enough to show that for every w1, w2 ∈ W we have w1 − w2 ∈ W . By
hypothesis, given w1, w2 ∈ W , if we let α1 = 1 and α2 = −1 we have
α1w1 + α2w2 = w1 + (−1)w2 ∈ W . By Corollary 1.1.23, it follows that
w1 − w2 ∈ W . Hence (W,+) is a subgroup of (V,+). In order to prove
that W is a vector space, we only need to prove that for every α ∈ K and
every w ∈ W the vector αw belongs to W . In fact, properties 1., . . . , 4. of
Definition 1.1.16 are automatically satisfied forW , since they are satisfied
for V by hypothesis. Now if α ∈ K and w ∈ W , the hypothesis guarantees
that αw = α · w + 0 · w ∈ W , as we needed to prove.

Corollary 1.2.7. If W is a vector subspace of a K-vector space V , then
for every n ≥ 1, every α1, . . . , αn ∈ K and every v1, . . . , vn ∈ W we have:

α1v1 + . . .+ αnvn ∈ W.

Proof. We use induction on n. For n = 1, the statement is true because
α1v1 = α1v1 + 0 · v1, and the latter belongs to W by Theorem 1.2.6. Now
suppose that the claim is true for n − 1 vectors, and let α1, . . . , αn ∈ K
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and v1, . . . , vn ∈ V . Then

α1v1 + . . .+ αnvn = (α1v1 + . . .+ αn−1vn−1) + αnvn.

Now α1v1 + . . . + αn−1vn−1 ∈ W by the inductive hypothesis, and hence
there exists w ∈ W such that α1v1 + . . .+ αn−1vn−1 = w. Hence

α1v1 + . . .+ αnvn = w + αnvn,

and w+ αnwn = 1 ·w+ αnvn belongs to W thanks to Theorem 1.2.6.

Note:-

If V is a K-vector space and W ⊆ V is a vector subspace, then 0 ∈ W . In
fact, in particular W is a subgroup of (V,+) and therefore it must contain
the neutral element for the sum on V . Hence, if W ⊆ V is a subset with
0 /∈ W , then W is not a vector subspace of V .

Example 1.2.8. Using Theorem 1.2.6 it is easy to give examples of vector
subspaces.

• Let K be a field and V := K3. Let

W = {(x, y, z) ∈ V : x+ y + z = 0}.

Then W is a vector subspace of V . In fact, if α, β ∈ K and
(x, y, z), (x′, y′, z′) ∈ W , then x + y + z = x′ + y′ + z′ = 0 and
since

α(x, y, z) + β(x′, y′, z′) = (αx+ βx′, αy + βy′, αz + βz′)

we get that

αx+ βx′ +αy+ βy′ +αz+ βz′ = α(x+ y+ z) + β(x′ + y′ + z′) = 0,

so that α(x, y, z) + β(x′, y′, z′) ∈ W . Hence W is a vector subspace
of V .

• Let K be a field, n ≥ 1 be an integer and V := K[x]≤n. The set

W = {p(x) ∈ V : p(0) = 0}
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is a vector subspace. In fact, if p(x), q(x) ∈ W and α, β ∈ K
then (αp(x) + βq(x))(0) = αp(0) + βq(0) = 0 + 0 = 0, and hence
αp(x) + βq(x) ∈ W . It follows that W is a vector subspace of V .

• Let K be a field, n ≥ 1 and Mn(K) the K-vector space of n × n
matrices with entries in K. The subset T ⊆ V of upper triangular
matrices (see Definition 0.6.4) is a vector subspace. In fact, let
M = (aij)i,j=1,...,n and M ′ = (a′ij)i,j=1,...,n be elements of T . Then
aij = a′ij = 0 for every i > j. If α, β ∈ K, the matrices αM and
βM ′ are still upper triangular, as αM = (αaij)i,j=1,...,n and βM ′ =
(βa′ij)i,j=1,...,n. On the other hand, the sum of two upper triangular
matrices is clearly upper triangular, and hence αM + βM ′ ∈ T .
Similarly, the set of lower triangular matrices and the set of diagonal
matrices are vector subspaces of Mn(K).

Definition 1.2.9. Let V be aK-vector space and letA ⊆ V be a nonempty
subset. The span of A is the set

⟨A⟩ :=

{
n∑

i=1

αivi : n ∈ N, αi ∈ K, vi ∈ A

}
.

In other words, the span of A is the set of all linear combinations of all
elements of A.

Remark 1.2.10. Clearly A ⊆ ⟨A⟩. In fact, every v ∈ A can be seen as the
linear combination 1 · v, and being a linear combination of elements of A
(in this case just one element), it belongs to ⟨A⟩.

Theorem 1.2.11. Let A ⊆ V be a nonempty subset. Then ⟨A⟩ is a vector
subspace of V .

Proof. Let
∑n

i=1 αivi and
∑m

j=1 βjwj be two elements of ⟨A⟩, so that
vi, wj ∈ A and αi, βj ∈ K for every i, j. Let λ, µ ∈ K. Then

λ

n∑
i=1

αivi+µ
m∑
j=1

βjwj = (λα1)v1+. . .+(λαn)vn+(µβ1)w1+. . .+(µβm)wm,
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that is again a linear combination of vectors of A, and therefore it is by
definition an element of ⟨A⟩. It follows by Theorem 1.2.6 that ⟨A⟩ is a
subspace of V .

Proposition 1.2.12. Let V be a K-vector space and A ⊆ V . Then

⟨A⟩ =
⋂

W⊆V subsp.
A⊆W

W.

In other words, the span of A is the intersection of all vector subspaces of
V that contain A.

Proof. In order to prove that two sets are equal, we need to prove that
each is contained in the other one.

So first, suppose that v ∈ ⟨A⟩. We need to show that if W is a
subspace that contains A, then v ∈ W . By definition, v =

∑n
i=1 αivi for

some v1, . . . , vn ∈ A and α1, . . . , αn ∈ K. If A ⊆ W , then v1, . . . , vn ∈ W
and since subspaces are closed with respect to linear combinations (see
Corollary 1.2.7), it follows that v ∈ W .

Conversely, let v be a vector belonging to every subspace of V that
contains A. Since ⟨A⟩ is a vector subspace of V by Theorem 1.2.11, and
it contains A by Remark 1.2.10, it follows that v ∈ ⟨A⟩.

What Proposition 1.2.12 says is that the span of a subset A ⊆ V is the smallest
vector subspace of V that contains A.

Proposition 1.2.13. Let V be a K-vector space and let A,B ⊆ V be
non-empty subsets.

1. If A ⊆ B, then ⟨A⟩ ⊆ ⟨B⟩.

2. A = ⟨A⟩ if and only if A is a vector subspace of V .

Proof. 1. The set ⟨B⟩ is a vector subspace of V , and therefore it is closed
under linear combinations of elements of B. Since A ⊆ B and B ⊆ ⟨B⟩,
it follows that ⟨B⟩ must contain all linear combinations of elements of A,
as well. That is, ⟨A⟩ ⊆ ⟨B⟩.

2. If A = ⟨A⟩, since the right hand side is a vector subspace by Theorem
1.2.11, then so is the left hand side.
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Conversely, if A is a vector subspace then it is closed under linear
combinations of its elements, and hence it contains ⟨A⟩.

Definition 1.2.14. Let V be a K-vector space and let W ⊆ V be a sub-
space. A subset A ⊆ W is called a system of generators forW if ⟨A⟩ = W .
The space V is said to be finitely generated (f.g. for short) if there exists
a finite system of generators for V .

In other words, A is a system of generators for W if every vector in W can be
written as a linear combination of vectors in A.

Example 1.2.15.

• The vector space Kn is finitely generated, and the set

{(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}

is a set of generators. In fact, for every v = (a1, . . . , an) ∈ Kn we
can write:

v = a1(1, 0, . . . , 0) + a2(0, 1, 0, . . . , 0) + . . .+ an(0, . . . , 0, 1),

i.e. every vector of V is a linear combination of

(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1).

• The vector space K[x]≤n of polynomials of degree ≤ n is finitely
generated. In fact, if p(x) =

∑n
i=0 aix

i then p(x) is a linear com-
bination of the n + 1 polynomials 1, x, x2, . . . , xn with coefficients
a0, . . . , an+1.

• The vector space K[x] of all polynomials with coefficients in K is
not finitely generated. In fact, suppose A = {p1(x), . . . , pn(x)} is a
set of generators. Then every polynomial of K[x] would be a linear
combination of the pi(x)’s. But the degree of a linear combination of
elements of A is at most the maximum of the degrees of the elements
of A, since deg(αp(x) + βq(x)) ≤ max{deg p(x), deg q(x)}. Hence if
f(x) ∈ K[x] is a polynomial of degree larger than max{deg pi(x)}
then f(x) cannot be a linear combination of elements of A.
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Proposition 1.2.16. Let V be a K-vector space. Let W ⊆ V be a finitely
generated vector subspace, and let {w1, . . . , wn} ⊆ W be a system of
generators for W . Let v0 ∈ V and

U := {v0 + w : w ∈ W}

be the translated of W by v0. Then ⟨U⟩ = ⟨v0, w1, . . . , wn⟩.

Proof. Let u ∈ ⟨U⟩. By definition of span there exist an integer m ≥
1, scalars α1, . . . , αm ∈ K and vectors u1, . . . , um ∈ U such that u =∑m

i=1 αiui. Now by definition of U , every ui has the form v0 + vi for some
vi ∈ W . Hence,

u = (α1 + . . .+ αm)v0 +
m∑
i=1

αivi. (2)

On the other hand,W is spanned by w1, . . . , wn, and therefore for every i ∈
{1, . . . ,m} there exist βi1, . . . , βin such that vi =

∑n
j=1 βijwj. Substituting

in (2), we get that:

u = (α1 + . . .+ αm)v0 +
n∑

j=1

(
m∑
i=1

αiβij

)
wj,

so that u is an element of ⟨v0, w1, . . . , wn⟩.
Conversely, let u = α0v0 +

∑n
i=1 αiwi ∈ ⟨v0, w1, . . . , wn⟩. Notice that

v0 ∈ U , because we can write v0 as v0 + 0, that is in U by definition.
Moreover, for every w ∈ W we have −w ∈ W and hence v0 − w ∈ W .
Therefore, for every w ∈ W we have that:

w = v0 − (v0 − w) ∈ ⟨U⟩,

because vector subspaces are closed under linear combinations. It fol-
lows that every wi is in ⟨U⟩, and since the latter is a vector subspace
then

∑n
i=1 αiwi ∈ ⟨U⟩ and α0v0 ∈ ⟨U⟩. This implies that u = α0v0 +∑n

i=1 αiwi ∈ ⟨U⟩.

1.3 Linear dependence and linear independence
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Definition 1.3.1. Let K be a field and V be a K-vector space. Let
v1, . . . , vn ∈ V .

1. We say that the vectors v1, . . . , vn are linearly dependent if there
exist α1, . . . , αn ∈ K with at least one αi different from 0 such that:

α1v1 + α2v2 + . . .+ αnvn = 0.

2. We say that the vectors v1, . . . , vn are linearly independent if given
α1, . . . , αn ∈ K, the equality α1v1 + α2v2 + . . . + αnvn = 0 implies
that α1 = α2 = . . . = αn = 0.

In other words, n vectors v1, . . . , vn are linearly independent if the only
linear combination of them that yields the zero vector is 0v1 + 0v2 + . . . +
0vn. They are linearly dependent if there exists a linear combination of them
that yields the zero vector with not all the coefficients equal to 0. Therefore,
v1, . . . , vn are either linearly dependent or linearly independent, they cannot
be both dependent and independent at the same time.

Example 1.3.2. Let V = R3. The vectors v1 = (1, 0, 0), v2 = (0, 1, 0)
and v3 = (1, 1, 0) are linearly dependent. In fact, the linear combination
1 · v1 +1 · v2 + (−1) · v3 equals the zero vector. The vectors v1 and v2, on
the other hand, are linearly independent. In fact, suppose that α, β ∈ K
are such that αv1 + βv2 = 0. Since αv1 = (α, 0, 0) and βv2 = (0, β, 0),
we must have that (α, β, 0) = 0 = (0, 0, 0). This implies clearly that
α = β = 0. Hence, the only linear combination of v1 and v2 that yields
the zero vector is that with both coefficients equal to 0.

Remark 1.3.3.

1. A single vector v ∈ V is linearly dependent if and only if it is the zero
vector. In fact, if v = 0 then the linear combination 1 · v equals 0,
and its coefficient is not zero, and therefore v is linearly dependent.
Conversely, if v is linearly dependent then by definition there exists
α ∈ K with α ̸= 0 such that αv = 0. By Theorem 1.1.21, it follows
that v = 0.

2. Of course the notion of linear dependence/independence does not de-
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pend on the order of the vectors. That is, if for example v1, v2, v3 are
linearly dependent then so are v2, v3, v1. Formally, if v1, . . . , vn ∈ V
and σ : {1, . . . , n} → {1, . . . , n} is a bijection, then v1, . . . , vn are lin-
early dependent if and only if vσ(1), . . . , vσ(n) are linearly dependent.

Proposition 1.3.4. Let V be a K-vector space and v1, . . . , vn ∈ V . Then
the following hold.

1. If vi = 0 for some i ∈ {1, . . . , n}, then v1, . . . , vn are linearly depen-
dent.

2. If there exist i, j ∈ {1, . . . , n} with i ̸= j and α ∈ K such that
vi = αvj, then v1, . . . , vn are linearly dependent.

3. v1, . . . , vn are linearly dependent if and only if there exists i ∈
{1, . . . , n} and α1, . . . , αi−1, αi+1, . . . , αn ∈ K such that

vi = α1v1 + α2v2 + . . .+ αi−1vi−1 + αi+1vi+1 + . . .+ αnvn.

4. If v1, . . . , vn are linearly independent and v ∈ V , then v1, . . . , vn, v
are linearly dependent if and only if there exist α1, . . . , αn ∈ K such
that

v = α1v1 + . . .+ αnvn.

5. If v1, . . . , vn are linearly dependent, then given any other m vec-
tors w1, . . . , wm ∈ V , the vectors v1, . . . , vn, w1, . . . , wm are linearly
dependent.

6. If v1, . . . , vn are linearly independent, then for every choice of indexes
i1 < i2 < . . . < im ⊆ {1, . . . , n}, the vectors vi1 , . . . , vim are linearly
independent.

Proof. 1. We have

0 · v1 + 0 · v2 + . . .+ 0 · vi−1 + 1 · vi + 0 · vi+1 + . . .+ 0 · vn = 0,

and hence there is a linear combination of the vectors that gives 0 without
all coefficients being 0.
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2. By hypothesis, we have 1 · vi + (−α)vj = 0. Therefore,

1 · vi + (−α)vj +
n∑

k=1
k ̸=i,j

0 · vk = 0

is a linear combination of the vectors yielding 0 whose coefficients are not
all 0.

3. Suppose that v1, . . . , vn are linearly dependent. This means that
there exist α1, . . . , αn ∈ K not all zero such that

∑n
j=1 αjvj = 0. Let

i ∈ {1, . . . , n} be an index such that αi ̸= 0. Then

αivi = −α1v1 − . . .− αi−1vi−1 − αi+1vi+1 − . . .− αnvn,

and multiplying both sides by α−1
i we obtain:

vi = −(α−1
i α1)v1− . . .− (α−1

i αi−1)vi−1− (α−1
i αi+1)vi+1− . . .− (α−1

i αn)vn.

Conversely, if

vi = α1v1 + α2v2 + . . .+ αi−1vi−1 + αi+1vi+1 + . . .+ αnvn

for some α1, . . . , αn ∈ K then

α1v1 + α2v2 + . . .+ αi−1vi−1 + (−1) · vi + αi+1vi+1 + . . .+ αnvn = 0

is a linear combination of the vi’s yielding the zero vector without all
coefficients being 0 (since the coefficient of vi is −1).

4. First, suppose that v1, . . . , vn, v are linearly dependent. Then we
have:

n∑
i=1

αivi + βv = 0 (3)

for some α1, . . . , αn, β ∈ K not all zero. Now if it was β = 0, then at least
one αi would be non-zero, and hence (3) would imply that v1, . . . , vn are
linearly dependent, contradicting the hypothesis. Hence, β ̸= 0. Then (3)
implies that:

v = −(β−1α1)v1 − . . .− (β−1αn)vn,

proving the claim.
Conversely, if there exist α1, . . . , αn such that v =

∑n
i=1 αivi, then by

point 3. the vectors v1, . . . , vn, v are linearly dependent.
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5. Let α1, . . . , αn ∈ K be not all zero and such that
∑n

i=1 αivi = 0.
Then

n∑
i=1

αivi + 0 · w1 + . . .+ 0 · wm = 0,

proving that v1, . . . , vn, w1, . . . , wm are linearly dependent.
6. Suppose by contradiction that there are vectors vi1 , . . . , vim , with

i1 < . . . < im that are linearly dependent. Then there exist βi1 , . . . , βim ∈
K not all zero such that

∑m
j=1 βijvij = 0. Now for every i ∈ {1, . . . , n} let

αi =

{
0 if i /∈ {i1, . . . , im}
βij if i = ij for some j ∈ {1, . . . ,m}

and consider the linear combination
∑n

i=1 αivi. This clearly yields the zero
vector, since it can be written as

∑m
j=1 βijvij +

∑
i/∈{i1,...,im} 0·vi, and its co-

efficients are not all zero, since at least one of the βij is nonzero. It follows
that v1, . . . , vn are linearly dependent, contradicting the hypothesis.

Remark 1.3.5. Point 4. of Proposition 1.3.4 implies the following: if
v1, . . . , vn are linearly independent and w /∈ ⟨v1, . . . , vn⟩, then v1, . . . , vn, w
are linearly independent as well. In fact if they were not then by 4. it would
follow w =

∑n
i=1 αivi for some α1, . . . , αn ∈ K, so that w ∈ ⟨v1, . . . , vn⟩.

1.4 Bases and dimension

Definition 1.4.1. Let V be a f.g. K-vector space. A basis of V is an
n-tuple of vectors of V that are linearly independent and generate V .

Note:-

Bases are ordered, and therefore will be wrapped in round brackets. That
is, if (v1, v2, v3) is a basis of a vector space V , then (v2, v1, v3) is still a basis,
since the concepts of linear dependence and of generation do not depend on
the order, but it is a different basis.

We will now prove that every finitely generated vector space has a basis,
and any two bases have the same cardinality. This requires some preliminary
results.
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Lemma 1.4.2. Let V be a f.g. K-vector space. Let {v1, . . . , vn} be a
system of generators for V . If vn is a linear combination of v1, . . . , vn−1,
then {v1, . . . , vn−1} is a system of generators for V .

Proof. Let α1, . . . , αn−1 ∈ K be such that

vn =
n−1∑
i=1

αivi. (4)

Now let v ∈ V . Since {v1, . . . , vn} is a system of generators for V , there
exist β1, . . . , βn ∈ K such that v =

∑n
i=1 βivi. Substituting (4) into this

relation, we obtain that:

v = β1v1 + . . .+ βn−1vn−1 + βn

(
n−1∑
i=1

αivi

)
=

= (β1 + βnα1)v1 + (β2 + βnα2)v2 + . . .+ (βn−1 + βnαn−1)vn−1,

so that v is a linear combination of v1, . . . , vn−1. This means precisely
that {v1, . . . , vn−1} is a system of generators for V .

Lemma 1.4.3. Let V be a f.g. K-vector space with V ̸= {0}. Let A =
{v1, . . . , vn} ⊆ V be a system of generators for V . Then there exists a
subset B ⊆ A that is a linearly independent system of generators for V .

Proof. By induction on n. If n = 1 then A = {v1} and it cannot be v1 = 0
because V ̸= {0}. Hence v ̸= 0, and by Remark 1.3.3, it follows that v is
linearly independent. Hence A is a linearly independent set of generators.

Now suppose that the claim is true for n− 1, and let A = {v1, . . . , vn}
be a set of generators for V . If A is linearly independent, there is nothing
to prove. Otherwise, A is linearly dependent, and therefore by Proposition
1.3.4 one of the vectors in A is a linear combination of the others. Up to
permuting the elements of A, we can assume that vn is a linear combi-
nation of v1, . . . , vn−1. By Lemma 1.4.2, the set A′ = {v1, . . . , vn−1} is a
system of generators for V . Since it has n− 1 elements, by the inductive
hypothesis it contains a linearly independent system of generators B. But
B ⊆ A, and hence we are done.
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Corollary 1.4.4. Let V be a f.g. K-vector space. Then V has a basis.

Proof. Since V is f.g., there exists a finite system of generators {v1, . . . , vn}.
By Lemma 1.4.3 this contains a linearly independent system of generators,
i.e. a basis.

Lemma 1.4.5 (Steinitz lemma). Let V be a f.g. K-vector space with
V ̸= {0} and let A = {v1, . . . , vn} be a system of generators for V . If
B = {w1, . . . , wm} ⊆ V is a set of linearly independent vectors, then
m ≤ n.

Proof. By contradiction, suppose that m > n. Since A generates V , there
exist α1, . . . , αn such that

w1 =
n∑

i=1

αivi. (5)

Since B is a set of linearly independent vectors, it cannot contain the zero
vector by Proposition 1.3.4. Therefore, the αi’s cannot be all equal to
zero. Up to permuting the vi’s, we can assume that α1 ̸= 0. Then by (5)
we get:

v1 = −α−1
1 w1 − (α−1

1 α2)v2 − . . .− (α−1
1 αn)vn.

In other words, v1 is a linear combination of the vectors w1, v2, . . . , vn.
Now since A generates V , then so does A ∪ {w1}. But then by Lemma
1.4.2 the set {w1, v2, . . . , vn} is a system of generators for V .

Since {w1, v2, . . . , vn} generates V , the vector w2 is a linear combina-
tion of w1, v2, . . . , vn. Hence there exist α1, . . . , αn such that

w2 = α1w1 + α2v2 + . . .+ αnvn.

Now if it was α2 = α3 = . . . = αn = 0 then we would have w2 = α1w1 and
by Proposition 1.3.4 the set B would be linearly dependent, yielding a con-
tradiction. Hence, at least one among α2, . . . , αn must be non-zero. Again
without loss of generality we can assume that α2 ̸= 0. Then, reasoning as
above, we get

v2 = −α−1
2 α1w1 + α−1

2 w2 − α−1
2 α3v3 + . . .+ α−1

2 αnvn,
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and it follows that {w1, w2, v3, . . . , vn} is a system of generators for V . Re-
peating this argument for w3, . . . , wn we end up proving that {w1, . . . , wn}
generates V . Since we are assuming thatm > n, the vector wn+1 is a linear
combination of w1, . . . , wn, and hence the vectors w1, . . . , wn+1 are linearly
dependent by Proposition 1.3.4, and consequently so are w1, . . . , wm. This
contradicts the hypothesis, and therefore it must be m ≤ n.

Corollary 1.4.6. Let V be a f.g. K-vector space. Let B and B′ be two
bases of V . Then |B| = |B′|.

Proof. Let B = (v1, . . . , vn) and B′ = (w1, . . . , wm). By the definition of
basis, {v1, . . . , vn} is a system of generators and w1, . . . , wm are linearly
independent. By Steinitz Lemma, it must be m ≤ n. But one can argue
symmetrically: {w1, . . . , wm} is a system of generators and the vectors
v1, . . . , vn are linearly independent. By Steinitz lemma then we have n ≤
m, and hence n = m.

Note:-

It can be proven that any vector space, not necessarily finitely generated,
has a basis, and that any two bases have the same cardinality. However, the
proof requires the axiom of choice, and is beyond the goal of these lecture
notes.

Definition 1.4.7. Let V be a f.g. K-vector space with V ̸= {0}. The
dimension of V is the cardinality of any basis of V . If V has dimension
n we write dimV = n.

Note:-

By convention, we say that the trivial vector space {0} has dimension 0.
Vector spaces different from this always have dimension ≥ 1.

Example 1.4.8.

• Let V = Kn. The sequence (e1, e2, . . . , en) is a basis of V , where
ei = (0, . . . , 0, 1, 0, . . . , 0) is the vector whose i-th entry is 1 and
whose other entries are 0. In fact, as we have seen in Example
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1.2.15 the ei’s generate V . Moreover, they are linearly independent,
because

∑n
i=1 αiei = (α1, . . . , αn), and hence if the latter is the zero

vector, then clearly αi = 0 for every i. It follows that

dimKn = n.

However, this is not the only basis of Kn; in fact if K is infinite
there are infinitely many bases. For example, when K = R and
n = 3 then the sequence (v1, v2, v3) with v1 = (1, 1, 0), v2 = (0, 1, 1),
v3 = (1, 0, 0) is a basis of R3.

• Let V = R2. The set {v1, v2, v3}, where v1 = (1, 1), v2 = (1, 0)
and v3 = (−1, 1), is a system of generators for V but it is not a
basis. In fact, since dimV = 2 a basis must have 2 elements, and by
Steinitz Lemma three vectors must be linearly dependent. A linear
dependence relation between them is, for example, v1−2v2−v3 = 0.

• Let V = K[x]≤n. As we have seen in Example 1.2.15, the set
{1, x, . . . , xn} is a system of generators for V . It is easy to see that
the sequence (1, x, . . . , xn) is in fact a basis of V , since these vectors
are linearly independent; if

∑n
i=1 αix

i = 0, we must have αi = 0 for
every i: a polynomial is 0 if and only if all of its coefficients are 0.
Hence

dimV = n+ 1.

• Let V =Mm×n(K). A basis of V is given by the sequence

(E11, E12, . . . , E1n, E21, E22, . . . , Emn),

where Eij is the matrix whose entry in row i and column j is 1 and
all other entries are 0. It follows that

dimV = mn.

Definition 1.4.9. In the vector space Kn, the canonical basis is the basis
(e1, . . . , en) introduced in Example 1.4.8.

Remark 1.4.10. The K-vector spaces Mn×1(K) and M1×n(K) of n × 1
and 1 × n matrices, respectively, naturally behave like Kn (this claim
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can be made formal, but it goes beyond the scope of these notes). In

layman’s terms, a matrix of the form


a1

. . .

an

 or
(
a1 . . . an

)
can be

seen as the element (a1, . . . , an) of K
n. This makes also evident the fact

that dimKn = dimMn×1(K) = dimM1×n(K) = n, and that a canonical
basis should also exist for the latter two spaces. We call canonical basis

of M1×n(K) the basis (e1, . . . , en) where ei =
(
0 . . . 1 . . . 0

)
is the

matrix with a 1 in position (1, i) and 0 elsewhere. We call canonical basis
of Mn×1(K) the basis constituted of the transpose of the vectors of the
canonical basis of M1×n(K).

The following theorem is of the utmost importance.

Theorem 1.4.11. Let V be a f.g. K-vector space of dimension n ≥ 1.
An n-tuple B = (v1, . . . , vn) of vectors of V is a basis if and only if for
every v ∈ V there exist a unique n-tuple (α1, . . . , αn) ∈ Kn such that
v =

∑n
i=1 αivi.

Proof. First, suppose that B is a basis. Let v ∈ V . Since B generates
V , there exist α1, . . . , αn ∈ K such that v =

∑n
i=1 αivi. We only need to

prove that the sequence (α1, . . . , αn) is unique. Suppose that there is a
second one, say (β1, . . . , βn). Since v =

∑n
i=1 βivi, we get that

n∑
i=1

αivi =
n∑

i=1

βivi,

and hence
n∑

i=1

(αi − βi)vi = 0.

But B is linearly independent, and hence a linear combination of its vectors
that gives the zero vector must have all coefficients equal to 0, i.e. αi = βi
for every i ∈ {1, . . . , n}.

Conversely, suppose that every vector of V can be written in a unique
way as a linear combination of the vi’s. To prove that B is a basis, we
need to prove that it generates V and that is linearly independent. That
it generates V is obvious by hypothesis, since every element of V is a
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linear combination of elements of B. If
∑n

i=1 αivi = 0, then observe that∑n
i=1 0vi = 0 by Theorem 1.1.21; since the representation of the vector

0 ∈ V as a linear combination of the vi’s is unique, it must be αi = 0 for
every i.

Theorem 1.4.11 allows us to give the following definition.

Definition 1.4.12. Let V be a K-vector space of dimension n ≥ 1, and
let B = {v1, . . . , vn} be a basis of V . If v ∈ V , the components of v with
respect to B are the unique a1, . . . , an ∈ K such that v =

∑n
i=1 aivi.

Corollary 1.4.13. Let V be a K-vector space of dimension n. Let B =
(v1, . . . , vn) be a basis of V . The function

ΦB : V → Kn

v =
n∑

i=1

aivi 7→ (a1, . . . , an)

is a bijection.

Proof. By Theorem 1.4.11, if ΦB(v) = ΦB(w) then it must be v = w,
because the representation of v and w with respect to the basis B is unique.
Hence ΦB is injective. Surjectivity is obvious: if (b1, . . . , bn) ∈ Kn then
(b1, . . . , bn) = ΦB (

∑n
i=1 bivi).

Note:-

The function ΦB is the unique function that associates to a vector the n-
tuple of its components with respect to the basis B.

Remark 1.4.14. The function ΦB defined above is not just bijective, it
also has the property that for every α, β ∈ K and every v, w ∈ V we have

ΦB(αv + βw) = αΦB(v) + βΦB(w).

A map with all these properties is called an isomorphism. Being isomor-
phic vector spaces is an equivalence relation; what Corollary 1.4.13 says is
that, in loose terms, all K-vector spaces of dimension n ”behave” as Kn.
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Corollary 1.4.15. Let V be a K-dimensional vector space of dimension
n ≥ 1.

1. Let v1, . . . , vm ∈ V with m > n. Then v1, . . . , vm are linearly de-
pendent.

2. Let v1, . . . , vm ∈ V with m < n. Then ⟨v1, . . . , vm⟩ ≠ V .

3. Let v1, . . . , vn ∈ V . Then the following are equivalent:

(a) ⟨v1, . . . , vn⟩ = V ;

(b) v1, . . . , vn are linearly independent;

(c) (v1, . . . , vn) is a basis of V .

4. For every m ∈ {0, . . . , n}, V has a vector subspace of dimension m.
If m = 0 or m = n such subspace is unique.

5. If W ⊆ V is a vector subspace, then W is f.g. and dimW ≤ dimV ,
with equality holding if and only if W = V .

6. Let v1, . . . , vm ∈ V . Then dim⟨v1, . . . , vm⟩ is the maximum number
of linearly independent vectors in the set {v1, . . . , vm}.

Proof. 1. Since V is generated by n vectors, by Steinitz lemma m > n
vectors must be linearly dependent.

2. If it was, by contradiction, ⟨v1, . . . , vm⟩ = V , then by Lemma 1.4.3
the set {v1, . . . , vm} would contain a set of independent generators, i.e. a
basis. But all bases have the same cardinality by Corollary 1.4.6, and this
contradicts the assumption m < n.

3. We will prove that (a) ⇒ (b), (b) ⇒ (c) and (c) ⇒ (a).
(a) ⇒ (b). If v1, . . . , vn were linearly dependent, by Lemma 1.4.3 the

set {v1, . . . , vn} would contain a basis with less than n elements, contra-
dicting Corollary 1.4.6.

(b) ⇒ (c) If it was ⟨v1, . . . , vn⟩ ̸= V , this would mean that at least a
vector w ∈ V is not a linear combination of the vi’s. But then the vec-
tors v1, . . . , vn, w are linearly independent. In fact, if

∑n
i=1 αivi + βw = 0

there are two cases: if β = 0 then all the αi’s must be 0 since v1, . . . , vn
are linearly independent. If β ̸= 0 then w =

∑n
i=1(−β−1αi)vi, contra-

dicting the fact that w is not a linear combination of the vi’s. Hence
v1, . . . , vn, w are linearly independent, but this contradicts Steinitz lemma.
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Hence ⟨v1, . . . , vn⟩ = V .
(c) ⇒ (a) Obvious by definition of basis.
4. The unique K-vector space of dimension 0 is {0} ⊆ V . Next, V

is a vector subspace of V of dimension n. Let us show that it is the
only one. If W ⊆ V is a vector subspace of dimension n, then it has a
basis B = (w1, . . . , wn). But the wi’s belong to V and they are linearly
independent since B is a basis of W . Then by point 3. they are a basis of
V , and therefore ⟨w1, . . . , wn⟩ = W = V .

Finally, if m ∈ {1, . . . , n − 1}, let (v1, . . . , vn) be a basis of V and
define Wm = ⟨v1, . . . , vm⟩. This is a subspace of dimension m because
(v1, . . . , vm) is a basis of Wm: the vectors v1, . . . , vm generate Wm by
construction and they are linearly independent because they are elements
of a basis of V .

5. Any m > n vectors in W cannot be linearly independent, by point
1. Therefore there is a maximum number r of linearly independent vectors
in W . Let v1, . . . , vr ∈ W be linearly independent. If it was ⟨v1, . . . , vr⟩ ≠
W , there would exist some w ∈ W such that w /∈ ⟨v!, . . . , vr⟩. By Remark
1.3.5, this would imply that v1, . . . , vr, w are linearly independent. But
this is impossible, since they are r+1 vectors. Therefore ⟨v1, . . . , vr⟩ = W ,
and so W is f.g.

6. Let r be the maximum number of linearly independent vectors in
the set A = {v1, . . . , vm}, and let vi1 , . . . , vir ∈ A be linearly independent.
Then, by definition of basis, B = (vi1 , . . . , vir) is a basis of ⟨vi1 , . . . , vir⟩,
which then has dimension r. Now if vj /∈ A, the set A ∪ {vj} cannot
be linearly independent, since otherwise it would contain r + 1 linearly
independent vectors, and this contradicts the fact that r is the maximum
number of linearly independent vectors among the vi’s. Hence vj must be
a linear combination of vi1 , . . . , vir , and since this holds for every vj /∈ A,
it follows that ⟨A⟩ = ⟨B⟩, so that dim⟨A⟩ = r.

We end this section with a very important result on bases.

Theorem 1.4.16. Let V be a f.g. K-vector space of dimension n, and let
B be a basis of V .

1. Let A ⊆ V . If B ⊆ ⟨A⟩, then ⟨A⟩ = V .

2. Let v1, . . . , vm ∈ V be linearly independent, with m < n. Then
there exist vm+1, . . . , vn ∈ B such that (v1, . . . , vn) is a basis of V .
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Proof. 1. By Proposition 1.2.13, since B ⊆ ⟨A⟩ then V = ⟨B⟩ ⊆ ⟨A⟩ ⊆ V .
Hence it must be ⟨A⟩ = V .

2. By Corollary 1.4.15 we must have ⟨v1, . . . , vm⟩ ≠ V . Therefore by
point 1. we cannot have B ⊆ ⟨v1, . . . , vm⟩. This means that there exists a
vector vm+1 ∈ B such that vm+1 /∈ ⟨v1, . . . , vm⟩, and therefore v1, . . . , vm+1

are linearly independent by Proposition 1.3.4. Now we repeat the same
argument on the set {v1, . . . , vm+1} until we get n linearly independent
vectors; these must form a basis by Corollary 1.4.15.

1.5 Sum and intersection of subspaces

Definition 1.5.1. Let V be a K-vector space and U,W ⊆ V be subspaces.
The sum of U and W is the set:

U +W = {u+ w : u ∈ U,w ∈ W}.

We say that the sum U +W is direct if for every v ∈ U +W there exist
unique u ∈ U and w ∈ W such that v = u + w. If the sum U +W is
direct, we write U ⊕W .

Remark 1.5.2. If U,W ⊆ V are vector subspaces, the following hold true.

1. U ∩W = U if and only if U ⊆ W , because this is true for sets in
general.

2. U,W ⊆ U +W . In fact, if u ∈ U then u = u + 0 ∈ U +W , and
similarly for vectors of W .

3. U +W = U if and only if W ⊆ U . In fact, if W ⊆ U then for every
u+w ∈ U +W we have that u+w ∈ U , since both u and w belong
to U . Hence U +W ⊆ U . On the other hand, by 2. we have that
U ⊆ U +W , and therefore U = U +W . Conversely, if U = U +W
then for every w ∈ W we have that w = 0 + w ∈ U +W = U , that
means that w ∈ U . Hence W ⊆ U .

Proposition 1.5.3. Let V be a K-vector space and U,W be subspaces of
V . The sets U ∩W and U +W are vector subspaces of V .
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Proof. First, let u,w ∈ U ∩W and α, β ∈ K. Since u,w ∈ U , that is a
vector subspace of V , then αu + βw ∈ U . But the same is true for W ,
since this is a vector subspace too. Then αu + βw ∈ W , and it follows
that αu + βw ∈ U ∩W . Hence U ∩W is a vector subspace by Theorem
1.2.6.

Next, let u1+w1, u2+w2 ∈ U +W , where u1, u2 ∈ U and w1, w2 ∈ W .
Let α1, α2 ∈ K. Then α1(u1+w1)+α2(u2+w2) = (α1u1+α2u2)+(α1w1+
α2w2), and since U and W are subspaces, we get that α1u1 + α2u2 ∈ U
and α1w1+α2w2 ∈ W . It follows that α1(u1+w1)+α2(u2+w2) ∈ U+W ,
and hence the latter is a subspace by Theorem 1.2.6.

Proposition 1.5.4. Let V be a vector space and U,W be vector subspaces
of V . The sum U +W is direct if and only if U ∩W = {0}.

Proof. First, assume that the sum is direct. We want to show that U ∩
W = {0}. Let v ∈ U ∩W . Since v ∈ U , a way of expressing v as a sum
of a vector of U and one of W is v = v + 0. On the other hand, v ∈ W
as well, and hence we can also write v = 0 + v, a sum of a vector of U ,
namely 0, and one of W . Since the sum of U and W is direct, there can
be only one way of writing v as a sum of an element of U and one of W ,
and therefore it must be v = 0. That is, U ∩W = {0}.

Conversely, assume that U ∩W = {0}. Now let v ∈ U +W , and let
u1, u2 ∈ U , w1, w2 ∈ W be such that v = u1 + w1 = u2 + w2. Then
u1 − u2 = w1 − w2. This implies that u1 − u2 is both an element of U ,
because U is a subspace, and an element of W , because it is equal to
w1 − w2 that is an element of W . Hence u1 − u2 ∈ U ∩W = {0}, so that
u1 = u2. Therefore also w1 − w2 = 0, so that there is only one way of
writing v as a sum of a vector in U and one in W .

Proposition 1.5.5. Let U,W be f.g. subspaces of a K-vector space V .

1. U ∩W is finitely generated.

2. Let B = (u1, . . . , um) be a basis of U and B′ = (w1, . . . , wn) be a
basis ofW . Then U+W is finitely generated, and B∪B′ is a system
of generators.

Proof. 1. The space U ∩W is a subspace of U , that is f.g., and hence it
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is f.g. itself (see Corollary 1.4.15).
2. Let v ∈ U + W , so that v = u + w for some u ∈ U and w ∈

W . There exist α1, . . . , αm, β1, . . . , βn ∈ K such that u =
∑m

i=1 αiui and
w =

∑n
j=1 βjwj. Then v =

∑m
i=1 αiui +

∑n
j=1 βjwj. We have just proved

that every vector of U +W is a linear combination of elements of B ∪ B′.
Therefore U +W = ⟨B ∪ B′⟩.

Definition 1.5.6. Let V be a K-vector space and let W ⊆ V be a sub-
space. A direct complement for W in V is a subspace W ′ ⊆ V such that
W ⊕W ′ = V .

Theorem 1.5.7. Let V be a f.g. K-vector space, and let W ⊆ V be a
vector subspace. Then there exists a direct complement W ′ for W .

Proof. If W = V then just take W ′ = {0}. If W = {0}, take W ′ =
V . Otherwise, let n = dimV and let B = (v1, . . . , vm) be a basis for
W , with m < n, and B′ a basis for V . By Theorem 1.4.16, there exist
vm+1, . . . , vn ∈ B′ such that (v1, . . . , vn) is a basis of V . We claim that
W ′ = ⟨vm+1, . . . , vn⟩ is a direct complement forW . We need to prove that
W +W ′ = V and that W ∩W ′ = {0}.

The fact thatW+W ′ = V follows immediately from Proposition 1.5.5.
If v ∈ W ∩W ′, then v =

∑m
i=1 αivi for some α1, . . . , αm ∈ K, since

v ∈ W , but also v =
∑n

i=m+1 βivi for some βm+1, . . . , βn ∈ K, since
v ∈ W ′. Hence

α1v1 + . . .+ αmvm − βm+1vm+1 − . . .− βnvn = 0,

and since (v1, . . . , vn) is a basis for V it follows that αi = 0 = βj for every
i, j. Hence W ∩W ′ = {0}.

Remark 1.5.8. The proof of Theorem 1.5.7 shows clearly that a subspace
does not have just one direct complement. For example, if V = R2 and
W = ⟨(1, 0)⟩, then W has infinitely many direct complements. In fact, if
v ∈ V \W then W ′ = ⟨v⟩ is a direct complement for W : by construction
W ∩W ′ = {0} and dim(W ⊕W ′) = 2 by Grassmann formula. It must
then be W ⊕W ′ = V , since the unique subspace of V of dimension 2 is
V itself (see Corollary 1.4.15).
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Theorem 1.5.9 (Grassmann formula). Let V be a K-vector space and let
U,W ⊆ V be f.g. vector subspaces. Then:

dim(U +W ) = dimU + dimW − dim(U ∩W ).

Proof. If dimU = 0 or dimW = 0 the formula is obvious since dimU ∩
W = 0. From now on, we let B = (u1, . . . , um) be a basis of U and
B′ = (w1, . . . , wn) be a basis of W , so that dimU = m and dimW = n
and m,n ≥ 1.

Case 1: U ∩W = {0}. If this happens, then dim(U ∩W ) = 0, and so
we need to prove that

dim(U +W ) = dimU + dimW. (6)

By Proposition 1.5.5, B ∪ B′ generates U + W . If we can prove that
u1, . . . , um, w1, . . . , wn are linearly independent, it will follow that B ∪ B′

is a basis of U+W withm+n elements, and therefore dim(U+W ) = m+n
as we need.

Let α1, . . . , αm, β1, . . . , βn ∈ K be such that

α1u1 + . . .+ αmum + β1w1 + . . .+ βnwn = 0.

Then
α1u1 + . . .+ αmum = −β1w1 − . . .− βnwn. (7)

The left hand side of the above equality is an element of U and it equals the
right hand side that is a vector of W . It follows that α1u1+ . . .+αmum ∈
U ∩W = {0}. This means that

α1u1 + . . .+ αmum = 0.

But B is a basis, and therefore α1 = . . . = αm = 0. Substituting this in
(7) it follows that

β1w1 + . . .+ βnwn = 0.

But B′ is also a basis, and hence β1 = . . . = βn = 0. We proved that the
αi’s and the βj’s are all 0, and so that u1, . . . , um, w1, . . . , wn are linearly
independent; it follows that B∪B′ is a basis of U+W of cardinality m+n,
and (6) is proved.

Case 2: U ∩W ̸= {0}. By Proposition 1.5.5, the space U ∩W is f.g.,
and hence it admits a basis B′′ = {v1, . . . , vp}, where p = dim(U ∩W ) ≥ 1
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and p ≤ min{m,n}. By Theorem 1.4.16, we can complete B′′ to a basis
of U , using vectors of B, and to a basis of W , using vectors of B′. Up to
permuting the elements of B and those of B′, we can assume that B̃ =
(v1, . . . , vp, u1, . . . , um−p) is a basis of U and B̃′ = (v1, . . . , vp, w1, . . . , un−p)
is a basis of W . If m − p = 0 this means that dimU ∩W = dimU , and
this in turn means that U = U ∩W , so that U ⊆ W . Then the formula
we need to prove becomes dim(U +W ) = dimW , which is certainly true
since U+W = W . The case n−p = 0 is analogous. Hence we can assume
that m− p, n− p ≥ 1.

Now we claim that C = (v1, . . . , vp, u1, . . . , um−p, w1, . . . , wn−p) is a
basis of U +W . This will conclude the proof, since then U +W has a
basis with m+ n− p elements, i.e. dim(U +W ) = m+ n− p. We need to
prove that C generates U +W and that it consists of linearly independent
vectors.

The first claim follows immediately by Proposition 1.5.5, because C =
B̃ ∪ B̃′.

Now let α1, . . . , αm−p, β1, . . . , βn−p, γ1, . . . , γp ∈ K be such that:

α1u1+ . . .+αm−pum−p+β1w1+ . . .+βn−pwn−p+γ1v1+ . . .+γpvp = 0. (8)

Rewrite this as:

α1u1 + . . .+ αm−pum−p = −β1w1 − . . .− βn−pwn−p − γ1v1 − . . .− γpvp.

The left hand side is a vector of U , and it equals the right hand side that
is a vector of W . Hence the left hand side is a vector of U ∩ W , and
therefore it can be expressed in the basis B′′. This means that there exist
δ1, . . . , δp ∈ K such that

∑n−p
i=1 αiui =

∑p
i=1 δivi. Substituting this in (8),

we get:

β1w1 + . . .+ βn−pwn−p + (γ1 + δ1)v1 + . . .+ (γp + δp)vp = 0.

Now remember that B̃′ is a basis; it must then be

β1 = . . . = βn−p = γ1 + δ1 = . . . = γp + δp = 0.

Since the βi’s are all 0, equation (8) becomes:

α1u1 + . . .+ αm−pum−p + γ1v1 + . . .+ γpvp = 0.
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But now remember that also B̃ is a basis, and therefore

α1 = . . . = αm−p = γ1 = . . . = γp = 0.

All in all, we have proved that all the αi’s, all the βi’s and all the γi’s are
0, i.e. that the vectors of C are linearly independent.
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Chapter 2: Determinant and rank

2.1 Determinant

Definition 2.1.1. Let K be a field and A ∈ Mm×n(K) an m × n matrix
with entries in K. A submatrix is a matrix obtained by erasing rows
and/or columns of A.

Example 2.1.2. Let A =


1 2 4

0 1 2

−1 6 7

 ∈M3(R).

Erasing the middle row, we obtain the submatrix

 1 2 4

−1 6 7

.

Erasing the first two columns, we obtain the submatrix


4

2

7

.

Erasing the first and third column and the third row, we obtain the

submatrix

2

1

.

Definition 2.1.3. Let K be a field and n ≥ 1 be an integer. Let A =
(aij)i,j=1,...,n ∈ Mn(K) be a square matrix. The determinant of A is the
element of K that is defined in the following recursive way:

1. if n = 1 then A = (a11) and the determinant of A is a11;

2. in general, the determinant of A is defined by:

detA =
n∑

j=1

(−1)1+ja1jA1j,
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where A1j is the determinant of the submatrix obtained by erasing
from A the first row and the j-th column.

Example 2.1.4.

• If n = 2 then A =

a11 a12

a21 a22

. Definition 2.1.3 yields:

detA = a11 det(a22)− a12 det(a21) = a11a22 − a12a21.

• If n = 3 then A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

. Definition 2.1.3 yields:

detA = a11 det

a22 a23

a32 a33

−a12 det

a21 a23

a31 a33

+a13 det

a21 a22

a31 a32

 .

Now we can use the previous computation of the determinant of a
2× 2 matrix and get:

detA = a11(a22a33−a23a32)−a12(a21a33−a23a31)+a13(a21a32−a22a31).

Definition 2.1.5. Given A ∈Mm×n(K), a minor of A is the determinant
of a square submatrix of A.

Theorem 2.1.6 (Laplace theorem). LetK be a field andA = (aij)i,j=1,...,n ∈
Mn(K). Fix an index k ∈ {1, . . . , n}. Then:

detA =
n∑

j=1

(−1)k+jakjAkj =
n∑

i=1

(−1)i+kaikAik,

where Aℓm is the minor obtained by erasing the ℓ-th row and the m-th
column from A.

In other words, Laplace theorem says that the determinant can be com-
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puted starting from any row or column of A, by multiplying each entry of
the row/column by the determinant of the corresponding submatrix and the
appropriate sign, and then adding up the terms.

Example 2.1.7. Let A =


1 2 0

−1 0 1

−1 1 1

 ∈ M3(R). The determinant of A

can be computed by its definition, namely using the first row:

detA = 1 · det

0 1

1 1

− 2 · det

−1 1

−1 1

+ 0 · det

−1 0

−1 1

 =

= 1(0− 1)− 2(−1 + 1) + 0(−1− 0) = −1.

On the other hand, Laplace theorem says that we can also compute it
using any row or column. For example, let us choose the second column:

detA = −2 · det

−1 1

−1 1

+ 0 · det

 1 0

−1 1

− 1 · det

 1 0

−1 1

 =

= −2(−1 + 1) + 0(1− 0)− 1(1− 0) = −1.

Proposition 2.1.8. Let A ∈ Mn(K). The determinant of A enjoys the
following properties.

1. If A has a row or a column all of whose entries are 0, then detA = 0.

2. det(A) = det(tA).

3. If A′ is the matrix obtained by swapping two adjacent rows or two
adjacent columns of A, then detA = − detA′.

4. If two rows or columns of A are equal, then detA = 0.
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5. If A =



R1

R2

. . .

Rk +R′
k

. . .

Rn


, where R1, . . . , Rn are the rows of A, then:

detA = det



R1

R2

. . .

Rk

. . .

Rn


+ det



R1

R2

. . .

R′
k

. . .

Rn


.

Analogously, if A = (C1| . . . |Ck + C ′
k| . . . |Cn) where C1, . . . , Cn are

the columns of A, then:

detA = det(C1| . . . |Ck| . . . |Cn) + det(C1| . . . |C ′
k| . . . |Cn).

6. if A′ is the matrix obtained by multiplying every entry of a row or
a column of A by the same constant λ ∈ K, then detA′ = λ detA.

7. if a row/column of A is a linear combination of other rows/columns
of A, then detA = 0.

8. if A′ is the matrix obtained by adding to a row/column of A a linear
combination of other rows/columns of A, then detA′ = detA.

Proof. 1. This is clear by Laplace theorem, if we compute the determinant
of A using a row or a column all of whose entries are 0.

2. Again clear by Laplace theorem: computing the determinant of A
using the first row is the same as computing the determinant of tA using
the first column.
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Thanks to point 2., it suffices to prove all remaining points for rows,
since the same statement for columns follows by considering the transpose
matrix.

3. Let A = (aij)i,j=1,...,n and suppose A′ = (bij)i,j=1,...,n is obtained by
swapping the i-th row with the (i+ 1)-th row of A. By Laplace theorem,

detA =
n∑

j=1

(−1)i+jaijAij

by computing the determinant using the i-th row. On the other hand,

detA′ =
n∑

j=1

(−1)i+1+jb(i+1)jA
′
(i+1)j

by Laplace theorem, where we computed the determinant using the (i+1)-
th row and A′

(i+1)j is the minor of A′ obtained by erasing the (i + 1)-th
row and the j-th column. Now just notice that b(i+1)j = aij for every
j ∈ {1, . . . , n}, since we swapped row i and row i + 1, and A′

(i+1)j = Aij

for every j ∈ {1, . . . , n}: deleting the (i + 1)-th row of A′ has the same
effect of deleting the i-th row of A. Hence

detA′ =
n∑

j=1

(−1)i+1+jaijAij = −
n∑

j=1

(−1)i+jaijAij = − detA.

4. By induction on n. If n = 2 and two rows are equal, we necessarily

have A =

a b

a b

, so that detA = ab − ab = 0. Now suppose that the

claim is true for a square matrix of size n − 1 and consider A ∈ Mn(K),
with n ≥ 3. Suppose that two rows of A coincide, say Ri = Rj and fix
another row Rk, with k ̸= i, j. By Laplace theorem,

detA =
n∑

ℓ=1

(−1)k+ℓakℓAkℓ,

where Akℓ is the minor of A obtained by erasing the k-th row and the ℓ-th
column. Clearly, when we erase the k-th row and the ℓ-th column from
A, the submatrix we obtain has two equal rows, because A had them and
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we erased a different row. This means that Akℓ = 0 for every ℓ, by the
inductive hypothesis. It follows that detA = 0.

5. Let Rk = (ak1, . . . , akn) and R
′
k = (a′k1, . . . , a

′
kn). Then by Laplace

theorem using the k-th row we get:

detA =
n∑

j=1

(−1)k+j(akj + a′kj)Akj =

=
n∑

j=1

(−1)k+jakjAkj +
n∑

j=1

(−1)k+ja′kjAkj,

and by Laplace theorem these two terms are exactly the determinants of

the matrices



R1

R2

. . .

Rk

. . .

Rn


and



R1

R2

. . .

R′
k

. . .

Rn


.

6. Let A = (aij)i,j=1,...,n and suppose A′ is obtained by A by multiplying
the k-th row by a constant λ ∈ K. By Laplace theorem we get:

detA′ =
n∑

j=1

(−1)k+j(λakj)Akj = λ
n∑

j=1

(−1)k+jakjAkj = λ detA.

7. Let R1, . . . , Rn be the rows of A and suppose that the k-th row Rk

of A can be written as
∑

i ̸=k λiRi, for some λi ∈ K. By points 5. and 6.
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we get that

detA =
∑

i=1,...,n
i ̸=k

λi det



R1

. . .

Ri

. . .

Ri

. . .

Rn


,

and each of the determinants in the right hand side is 0 by point 4.
8. Suppose A′ is obtained from A by adding to the k-th row Rk a

linear combination of the other rows, so that the k-th row of A′ equals
Rk +

∑
i=1,...,n

i ̸=k
λiRi. By point 5. we have

detA′ = det



R1

R2

. . .

Rk

. . .

Rn


+ det



R1

R2

. . .∑
λiRi

. . .

Rn


.

Now the first term in the right hand side is exactly detA and the second
term is 0 by point 7.

Remark 2.1.9. If A is upper triangular or lower triangular, then the deter-
minant of A equals the product of the elements on the diagonal. This can
be shown by induction on the size n of the matrix. Of course it is enough
to prove it for upper triangular matrices, since the transpose of a lower
triangular matrix is upper triangular and has the same diagonal. If n = 1,
the claim is obvious. Suppose it is true for upper triangular matrices of
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size n − 1 and let A =


a11 a12 . . . a1n

0 a22 . . . a2n

. . . . . . . . . . . .

0 . . . 0 ann

 be upper triangular of size

n. By Laplace theorem, using the first column, we get:

detA = a11 det


a22 a23 . . . a2n

0 a32 . . . a3n

. . . . . . . . . . . .

0 . . . 0 ann

 .

In the right hand side of the equality we are computing the determinant
of an upper triangular matrix of size n − 1 and hence by the inductive
hypothesis its determinant is a22a33 . . . ann. It follows that

detA = a11a22 . . . ann.

Theorem 2.1.10 (Binet theorem). Let A,B ∈Mn(K). Then:

det(AB) = detA · detB.

Definition 2.1.11. A matrix A ∈ Mn(K) is invertible if there exists a
matrix B ∈Mn(K) such that AB = BA = In.

Theorem 2.1.12. A matrix A ∈Mn(K) is invertible if and only if detA ̸=
0. If this is the case, the inverse matrix is unique, is denoted by A−1 and
it is given by:

A−1 =
1

detA
· t((−1)i+jAij)i,j=1,...,n,

where Aij is the minor of A obtained by erasing the i-th row and the j-th
column.
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2.2 Change of basis

Let V be a f.g. K-vector space, and let B = (v1, . . . , vn) and B′ = (v′1, . . . , v
′
n)

be two bases for V . For every j ∈ {1, . . . , n}, let

v′j =
n∑

i=1

λijvi

be the expression of the vectors of B′ with respect to the basis B.

Definition 2.2.1. The matrix A = (λij)i,j=1,...,n is called change of basis
matrix from B′ to B.

Proposition 2.2.2. Let v =
∑n

i=1 aiv
′
i and let E = (a1, . . . , an). Then

A · tE is the vector of the components of v with respect to the basis B.

Proof. Let v =
∑n

j=1 ajv
′
j. Now substitute v′j =

∑n
i=1 λijvi so that

v =
n∑

i=1

(
n∑

j=1

ajλij

)
vi

is the expression of v with respect to the basis B. Now it is just a matter
of checking that

A


a1

a2

. . .

an

 =



∑n
j=1 ajλ1j∑n
j=1 ajλ2j

. . .∑n
j=1 ajλnj

 .

Therefore once we have the change of basis matrix, in order to transform the
expression of a vector in basis B′ into the expression in basis B we just have
to multiply the column vector of components by the matrix A.

Example 2.2.3. Let V = R3. The sequence

B = ((1, 1, 1), (1, 0, 1), (−1, 0, 0))
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is a basis of V , and so is

B′ = ((2, 0, 0), (0, 1, 1), (2, 3, 0)).

In order to write down the change of basis matrix, all we need to do is to
express vectors of B′ with respect to B, and then writing the components
by columns in a 3× 3 matrix. We have:

(2, 0, 0) = −2 · (−1, 0, 0)

(0, 1, 1) = 1 · (1, 1, 1) + 1 · (−1, 0, 0)

(2, 3, 0) = 3 · (1, 1, 1)− 3 · (1, 0, 1)− 2 · (−1, 0, 0)

so that the change of basis matrix is:

A =


0 1 3

0 0 −3

−2 1 −2

 .

Now if we take any vector of V and we write it with respect to the basis
B′, such as for example (4, 4, 1) = 1 · (2, 0, 0) + 1 · (0, 1, 1) + 1 · (2, 3, 0), in
order to find its components with respect to B we just need to compute

0 1 3

0 0 −3

−2 1 −2

 ·


1

1

1

 =


4

−3

−3

 .

In fact,
(4, 4, 1) = 4 · (1, 1, 1)− 3 · (1, 0, 1)− 3 · (−1, 0, 0).

Proposition 2.2.4. The change of basis matrix A from B′ to B is invertible,
and its inverse A−1 is the change of basis matrix from B to B′

Proof. Let A′ be the change of basis matrix from B to B′. Then clearly
for any (a1, . . . , an) ∈ Kn we have

A′A · t(a1, . . . , an) = t(a1, . . . , an),
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because A·t(a1, . . . , an) is the vector of components of the vector
∑n

i=1 aiv
′
i

with respect to B, and hence A′ · (A · t(a1, . . . , an)) is the vector of com-
ponents of

∑n
i=1 aiv

′
i in basis B′, that is just t(a1, . . . , an).

Then in particular when (a1, . . . , an) = (0, . . . , 0, 1, 0, . . . , 0), with the
only 1 in position k, we see that A′At(a1, . . . , an) on the one hand is the
k-th column of A′A, and on the other hand is t(0, . . . , 0, 1, 0, . . . , 0). This
means precisely that A′A = In. On the other hand one can swap the role
of B and B′ and repeat the same argument; this leads to proving that
AA′ = In. Therefore A is invertible and A′ is its inverse.

2.3 Rank

Definition 2.3.1. Let A ∈ Mm×n(K) be a matrix. If B is a square sub-
matrix of A, the size of B is the number of rows (or columns) of B.

The rank of A is the largest size of a square submatrix of A with
nonzero determinant. If all square submatrices of A have determinant 0,
then we say that A has rank 0. The rank of A is denoted by rk(A).

Remark 2.3.2.

1. A has rank 0 if and only if all of its entries are 0. In fact, if all of
its entries are 0 then clearly there are no square submatrices with
nonzero determinant, and conversely if all square submatrices of A
have determinant 0 then in particular all submatrices of size 1 have
determinant 0. But a square submatrix of size 1 is just an entry of
A.

2. If A ∈Mn(K), then rk(A) = n if and only if detA ̸= 0. In fact, the
unique square submatrix of A of size n is A itself.

3. If A ∈Mm×n(K), then rk(A) ≤ min{m,n}, since a square submatrix
of A can have size at most min{m,n}.

4. Since the determinant of a matrix equals the determinant of the
transpose, we have that rk(A) = rk(tA).

5. if B is a submatrix of a matrix A, then rk(A) ≥ rk(B).
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Example 2.3.3.

• Let A =

1 2 3

2 4 6

 ∈ M2×3(R). Since A is not the zero matrix,

rk(A) ≥ 1 and of course rk(A) ≤ 2. To decide whether rk(A) = 1
or rk(A) = 2 we need to decide if A has a submatrix of size 2 with
non-zero determinant. The submatrices of size 2 of A are:1 2

2 4

 ,

1 3

2 6

 and

2 3

4 6

 .

These all have determinant 0, so rkA = 1

• Let A =

1 2 3

0 4 6

 ∈ M2×3(R). The size 2 submatrix of A given

by

1 2

0 4

 has determinant 4 ̸= 0. Therefore, rk(A) = 2.

If A ∈Mm×n(K) has a square submatrix of size r with non-zero determinant,
then the rank of A is at least r, by definition. In order to prove that the
rank is exactly r, one needs to prove that every square submatrix of A of size
larger than r has zero determinant. However, it is enough to consider square
submatrices of size r + 1, as shown by the following proposition.

Proposition 2.3.4. Let A ∈ Mm×n(K) and let r ≤ min{m,n}. Suppose
that every square submatrix of A of size r + 1 has determinant 0. Then
rk(A) ≤ r.

Proof. To prove that the rank of A is at most r, we need to prove that
the determinant of every square submatrix of A of size r + k is zero, for
every k = 1, . . . ,min{m,n} − r. We do this by induction on k.

The claim for k = 1 is true by hypothesis. Now suppose the claim is
true for k−1, i.e. suppose that every square submatrix of A of size r+k−1
has determinant 0, and let B = (bij)i,j=1,...,r+k be a square submatrix of A
of size r + k. Computing the determinant of B via Laplace theorem via
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the first row of B yields:

detB =
r+k∑
j=1

(−1)1+jb1j detB1j, (9)

where B1j is the submatrix obtained from B by erasing the first row and
the j-th column of B. But now for every j = 1, . . . , r + k the matrix B1j

is a square submatrix of B, and hence of A, of size r + k − 1, and hence
it has determinant 0 by the inductive hypothesis. It follows from (9) that
detB = 0.

Corollary 2.3.5. Let A ∈ Mm×n(K) and suppose that A has a size r
submatrix with non-zero determinant. If all submatrices of size r+1 have
zero determinant, then rk(A) = r

Proof. Since A has a size r submatrix with non-zero determinant, rk(A) ≥
r. On the other hand, by Proposition 2.3.4 we have rk(A) ≤ r, and
therefore rk(A) = r.

Definition 2.3.6. Let V be a f.g. K-vector space and let B = (v1, . . . , vn)
be a basis of V . Let w1, . . . , wk ∈ V and write, for every i ∈ {1, . . . , k},
wi =

∑n
j=1 λjivj with λ1i, . . . , λni ∈ K. The matrix

AB =


λ11 λ12 . . . λ1k

λ21 λ22 . . . λ2k

. . . . . . . . . . . .

λn1 λn2 . . . λnk


is called component matrix of the vectors w1, . . . , wk with respect to the
basis B.

Example 2.3.7. Let V = R3 and let B = ((1, 1, 1), (1, 0, 1), (0, 0,−1)),
that is a basis of V . Let w1 = (2, 1, 0) and w2 = (−1, 0, 0). We have
that w1 = (1, 1, 1)+ (1, 0, 1)+ 2(0, 0,−1) and w2 = −(1, 0, 1)− (0, 0,−1).

64



Andrea Ferraguti Chapter 2: Determinant and rank

Hence the component matrix of w1, w2 with respect to B is:
1 0

1 −1

2 −1

 .

Theorem 2.3.8. Let V be a f.g. K-vector space of dimension n, let B
be a basis of V and let v1, . . . , vk ∈ V be k vectors with k ≤ n. Let
AB ∈ Mn×k(K) be the component matrix of such vectors with respect to
B. Then v1, . . . , vk are linearly independent if and only if rk(AB) = k.

Proof. Let A := AB = (λij)i=1,...,n
j=1,...,k

be the component matrix.

First, we prove that if v, . . . , vk are linearly dependent then rk(A) <
k. Hence assume that v1, . . . , vk are linearly dependent. Then there are
α1, . . . , αk ∈ K, not all 0, such that

α1v1 + . . .+ αkvk = 0. (10)

Let B = (w1, . . . , wn) and let vi =
∑n

j=1 λjiwj for every i. Substituting in
(10), we get that

n∑
i=1

(
k∑

j=1

αjλij

)
wi = 0.

Since B is a basis, it follows that for every row index i ∈ {1, . . . , n} we
have

α1λi1 + . . .+ αkλik = 0. (11)

Notice that the j-th column Cj of A is given by


λ1j

λ2j

. . .

λnj

, and therefore

relation (11) implies that
∑k

j=1 αjCj = 0.
Now if we erase any n− k rows from A, obtaining a square submatrix

Ã of size k, relation (11) will still hold on every row of Ã, of course. But

this means precisely that the columns of Ã, when thought as vectors in
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Mk×1(K), are linearly dependent. Hence, by Proposition 2.1.8, det(Ã) =
0. Since this holds for every square submatrix of A of size k, by Proposition
2.3.4 it follows that rk(A) < k.

Conversely, we prove that if v1, . . . , vk are linearly independent then
rk(A) = k. Assume then that v1, . . . , vk are linearly independent. By
Theorem 1.4.16, there exist vk+1, . . . , vn ∈ B such that B′ = (v1, . . . , vn)
is a basis of V . Now let H be the change of basis matrix from B′ to B.
In order to obtain it, we need to express the vectors of B′ in the basis B.
When doing this process on v1, . . . , vk, we obtain precisely the columns of
A, by definition. On the other hand the vectors vk+1, . . . , vn are already
expressed with respect to the basis B, as they are simply elements of such
basis. Hence the corresponding columns of the change of basis matrix will
have all entries equal to 0 except for one entry equal to 1. All in all, the
matrix H will look like (A|A′), where

A′ =


. . . . . . . . . . . .

. . . . . . . . . 1

1 . . . . . . . . .

. . . 1 . . . . . .


is an n × (n − k) matrix whose columns have one entry equal to 1 and
all the remaining ones equal to 0. Moreover, since vk+1, . . . , vn are all
different, if C,C ′ are two columns of A′ then the entry 1 will be in two
different positions.

Now the matrix H has non-zero determinant by Proposition 2.2.4. On
the other hand, we can compute detH by Laplace theorem using the last
column of A′. This has only one non-zero entry that is 1 in position i,
so erasing the corresponding row of H we get that the determinant of H
is (up to sign) that of (Ã|Ã′), where Ã is the submatrix obtained from

A by erasing the i-th row and Ã′ is the submatrix obtained from A′ by
erasing the i-th row and the last column. Now we can repeat this process
using the last column of Ã′; notice that such column will have exactly one
non-zero entry 1, since when we erased the i-th row from A′ we did not
erased any other non-zero entry from A′: this happens because the 1’s in
such matrix are all in different positions. Repeating this process until we
use up all columns of A′ we end up seeing that the determinant of H is, up
to sign, that of a square submatrix of A obtained by erasing n − k rows.
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Since detH ̸= 0, this means that A has a square submatrix of size k with
non-zero determinant, and hence rk(A) = k.

Corollary 2.3.9. Let V be a f.g. K-vector space of dimension n. Let
v1, . . . , vk ∈ V and let B be a basis of V . Then v1, . . . , vk are linearly de-
pendent if and only if in the component matrix AB every square submatrix
of size k has determinant 0.

Proof. By Theorem 2.3.8, v1, . . . , vk are linearly dependent if and only if
AB has rank < k, and this happens precisely when every submatrix of size
k has determinant 0, by the definition of rank.

Corollary 2.3.10. Let V be a f.g. K-vector space of dimension n. Let
v1, . . . , vn ∈ V and let B be a basis of V . Then (v1, . . . , vn) is a basis of
V if and only if the component matrix of v1, . . . , vn with respect to B has
non-zero determinant.

Proof. By Corollary 1.4.15, (v1, . . . , vn) is a basis if and only if v1, . . . , vn
are linearly independent. By Theorem 2.3.8, this happens if and only
if the component matrix AB of v1, . . . , vn with respect to B has rank n.
Since this is an n× n matrix, it has rank n if and only if its determinant
is non-zero, by Remark 2.3.2.

Example 2.3.11.

• Let V = R3 and let v1 = (1, 1, 0), v2 = (−1, 0, 1) and v3 = (2, 2, 2).
In order to decide whether (v1, v2, v3) is a basis of V or not, we
can apply Corollary 2.3.10. That is, we choose a basis B of V , we
write down the component matrix of (v1, v2, v3) with respect to V
and then we compute its determinant: this is non-zero if and only if
(v1, v2, v3) is a basis. Clearly the easiest choice for B is the canonical
basis B = (e1, e2, e3); the component matrix is

AB =


1 −1 2

1 0 2

0 1 2
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and its determinant is 2. Therefore (v1, v2, v3) is a basis of V .

• Let V = R[x]≤3. Consider the vectors v1 = 2 − x + 3x2, v2 =
1−x−x2−x3 and v3 = −x−5x2−2x3. In order to decide whether
they are linearly independent or not, we can apply Theorem 2.3.8.
So first we choose a convenient basis of V , such as, for example, B =
(1, x, x2, x3). Next, we write the component matrix of (v1, v2, v3)
with respect to B. This is:

AB =


2 1 0

−1 −1 −1

3 −1 −5

0 −1 −2

 .

Theorem 2.3.8 says that the vectors are linearly independent if and
only if rk(AB) = 3. The four submatrices of AB of size 3 are:

2 1 0

−1 −1 −1

3 −1 −5

 ,


2 1 0

−1 −1 −1

0 −1 −2

 ,


2 1 0

3 −1 −5

0 −1 −2

 ,


−1 −1 −1

3 −1 −5

0 −1 −2

 ,

and they all have determinant 0. Therefore rk(AB) < 3 and the
three vectors are linearly dependent.

• Let V =M2(R), and consider the vectors

v1 =

2 0

0 1

 , v2 =

−1 −1

0 0

 , v3 =

0 1

0 1

 , v4 =

1 1

1 1

 .
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Let B be the following basis of V :1 0

0 0

 ,

0 1

0 0

 ,

0 0

1 0

 ,

0 0

0 1

 .

The component matrix of (v1, v2, v3, v4) with respect to B is:

AB =


2 −1 0 1

0 −1 1 1

0 0 0 1

1 0 1 1

 .

The determinant of AB is

detAB = − det


2 −1 0

0 −1 1

1 0 1

 = −2 det

−1 1

0 1

−det

−1 0

−1 1

 =

= 2 + 1 = 3 ̸= 0,

and therefore (v1, v2, v3, v4) is a basis of V by Corollary 2.3.10.

Let A ∈ Mm×n(K). The rows of A can be thought as elements of Kn,
since they are n-tuples of elements of K. Analogously, the columns of A can
be thought as elements of Km.

Example 2.3.12. Let

A =

1 2 3

4
√
2 −1

 ∈M2×3(R).

The two rows of A can be seen as the vectors (1, 2, 3) and (4,
√
2,−1) in

R3. The three columns of A can be seen as the vectors (1, 4), (2,
√
2) and

(3,−1) in R2.
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Remark 2.3.13. Every matrix A ∈ Mm×n can be read as the component
matrix of its column vectors, with respect to the canonical basis of Km.

In fact, if Cj =


a1j

a2j

. . .

amj

 is a column of A then we can identify Cj with

the vector (a1j, a2j, . . . , amj) ∈ Km, and one writes this vector as a1je1 +
a2je2 + . . . + amjem, where (ue1, . . . , em) is the canonical basis of Km.
Hence A is the component matrix of the vectors C1, . . . , Cn with respect
to the canonical basis.

Lemma 2.3.14. Let A ∈ Mm×n(K). Then the rank of A is equal to the
maximum number of linearly independent columns of A.

Proof. By Remark 2.3.13, the matrix A is the component matrix of its
column vectors C1, . . . , Cn with respect to the canonical basis of Km. Let
r be the maximum number of linearly independent columns of A, and let
Ci1 , . . . , Cir be linearly independent. By Theorem 2.3.8, the submatrix of
A given by (Ci1|Ci2| . . . |Cir) has rank r. Hence rk(A) ≥ r. On the other
hand, if it was rk(A) = s > r, the would be a size s submatrix A′ of
A with non-zero determinant. The submatrix A′ is formed by selecting
s columns Ci1 , . . . , Cis and s rows of A. Now consider the matrix A′′ =
(Ci1 |Ci2| . . . |Cis). This is an m×s matrix that contains A′ as a submatrix;
since the latter has rank s, then rk(A′′) = s. But then by Theorem
2.3.8 the columns of A′′ are linearly independent, and since they are also
columns of A, this means that there are s linearly independent columns
in A. Since s > r, we obtain a contradiction, because r was the maximum
number of linearly independent columns. Hence it must be s ≤ r, and it
follows that rk(A) = r.

Corollary 2.3.15. The rank of A ∈ Mm×n(K) equals the maximum num-
ber of linearly independent rows of A.

Proof. By lemma 2.3.14 applied to tA we get that rk(tA) is the maximum
number of linearly independent columns of tA. On the other hand, the
columns of tA are the rows of A, and rk(A) = rk(tA).
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Definition 2.3.16. Let A ∈ Mm×n(K). The space of rows of A, denoted
by R(A), is the subspace of Kn generated by the rows of A. The space of
columns of A, denoted by C(A), is the subspace of Km generated by the
columns of A.

Example 2.3.17. If A is the matrix of example 2.3.12, the space of rows
of A is the subspace of R3 generated by (1, 2, 3) and (4,

√
2,−1). These

are linearly independent vectors, so such subspace has dimension 2.
The space of columns of A is the subspace of R2 generated by the vec-

tors (1, 4), (2,
√
2) and (3,−1). Notice that (1, 4) and (2,

√
2) are linearly

independent, while

(3,−1) =
3 +

√
2

1− 4
√
2
(1, 4) +

13
√
2

8
√
2− 2

(2,
√
2),

so that (1, 4), (2,
√
2), (3,−1) are linearly dependent. Hence the space of

columns has dimension 2, too.

Theorem 2.3.18 (Kronecker theorem). Let A ∈Mm×n(K). Then

rk(A) = dimR(A) = dim C(A).

Proof. By Lemma 2.3.14 and Corollary 2.3.15, rk(A) is the maximum
number of linearly independent columns (maximum number of linearly
independent rows) of A. By Corollary 1.4.15, this equals the dimension
of C(A) (dimension of R(A)).

Corollary 2.3.19.

1. Let A ∈ Mm×n(K). The rank of A is the maximum number of
linearly independent rows or linearly independent columns of A.

2. Let A ∈Mn(K). Then the following are equivalent:

(a) detA ̸= 0;

(b) A is invertible;

(c) rk(A) = n;
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(d) the rows (columns) of A are linearly independent, when seen
as vectors in Kn;

(e) the rows (columns) of A are a basis of Kn.

Proof. 1. It follows by Theorem 2.3.18 and Corollary 1.4.15.
2. The equivalence (a) ⇐⇒ (b) follows from Theorem 2.1.12.
The equivalence (a) ⇐⇒ (c) follows from the definition of rank.
The equivalence (c) ⇐⇒ (d) follows from Theorem 2.3.18 theorem,

together with Corollary 1.4.15.
The equivalence (d) ⇐⇒ (e) follows from Corollary 1.4.15.

Kronecker’s theorem yields an easier way to compute the rank of a matrix.
By Corollary 2.3.5, if A ∈ Mm×n(K) is a matrix, in order to prove that A
has rank r we need to find a size r square submatrix of A with non-zero
determinant and then show that every square submatrix of A of size r+1 has
determinant 0. However, this can result in a large number of operations. The
next theorem yields a simpler criterion.

Theorem 2.3.20. Let A ∈ Mm×n(K) be a matrix. Suppose that A has
a square submatrix B of size r with nonzero determinant and that every
square submatrix of A of size r+1 containing B has determinant 0. Then
rk(A) = r.

Proof. The submatrix B is formed by taking r columns Ci1 , . . . , Cir and
r rows from A, where i1 < i2 < . . . < ir. Now consider the matrix
B̃ = (Ci1| . . . |Cir) ∈ Mm×r(K); this has B as a size r square submatrix
with non-zero determinant, and therefore it has rank r. By Theorem 2.3.8,
the columns Ci1 , . . . , Cir are therefore linearly independent when seen as
vectors of Km.

We now claim that if C is a column of A different from Ci1 , . . . , Cir ,
then Ci1 , . . . , Cir , C are linearly dependent vectors of Km. Notice that
this implies that the columns Ci1 , . . . , Cir span the space of columns C(A),
and since they are linearly independent then by Theorem 2.3.18 we have
rk(A) = r.

Let C be a column of A different from Ci1 , . . . , Cir , and consider the

m× (r+ 1) submatrix B̃′ of A formed by taking the columns Ci1 , . . . , Cir

and C. This has B as a submatrix, formed by taking the r columns
Ci1 , . . . , Cir and r rows Rj1 , . . . , Rjr . Now consider the matrix B̃′′ formed

only by the r rows Rj1 , . . . , Rjr of B̃′. This is an r × (r + 1) matrix that
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has B as a size r square submatrix with non-zero determinant; hence it
has rank r. By Theorem 2.3.18, this implies that Rj1 , . . . , Rjr are linearly

independent when seen as vectors of Kr+1. Now let R′ be a row of B̃′

different from Rj1 , . . . , Rjr . The matrix formed by R′, Rj1 , . . . , Rjr is an
(r+1)×(r+1) submatrix of A that contains B, and hence it has determi-
nant 0 by hypothesis. Therefore, R′, Rj1 , . . . , Rjr are linearly dependent

vectors of Kr+1. Since this holds for every row of B̃′, it follows that
Rj1 , . . . , Rjr span R(B̃′), and hence the matrix B̃′ has rank r by Theorem

2.3.18. But then, again by Theorem 2.3.18, the r + 1 columns of B̃′ must
be linearly dependent, as desired.

Example 2.3.21. Let A =


1 2 3 4

5 −1 6 7

7 −4 3 2

 ∈ M3×4(R). The submatrix

B =

1 2

5 −1

 has determinant −11 ̸= 0, so rk(A) ≥ 2. The 3 × 3

submatrices of A that contain B are:
1 2 3

5 −1 6

7 −4 3

 and


1 2 4

5 −1 7

7 −4 2

 ,

and they both have determinant 0. Hence rk(A) = 2 by Theorem 2.3.20.
Notice that A has four different square submatrices of size 3, but thanks
to Theorem 2.3.20 we only need to look at two of them.

Alternatively, one can notice that the first two rows R1, R2 of A are
linearly independent, while R3 = −3R1 + 2R2, so that rk(A) = 2 by
Kronecker theorem.
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Chapter 3: Linear systems

3.1 Compatibility of linear systems

Definition 3.1.1. Let K be a field, let m,n ≥ 1 be integers. A linear
system of m equations in n variables with coefficients in K is a system of
equations of the following form:

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

. . .

am1x1 + am2 + . . .+ amnxn = bm

, (12)

where the elements aij, bk are in K and x1, . . . , xn are variables.
The matrix associated to the linear system is the matrix

A =


a11 a12 . . . a1n

. . . . . . . . . . . .

am1 am2 . . . amn

 ∈Mm×n(K).

If we let

X =


x1

x2

. . .

xn

 and B =


b1

b2

. . .

bm

 ,

we can write linear system (12) in its matrix form

AX = B, (13)

where AX is the usual matrix multiplication.
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Definition 3.1.2. A column vector X =


x1

x2

. . .

xn

 ∈ Mn×1(K) is a solution

to system (12) if AX = B.
A linear system is compatible if it admits at least one solution.

Note:-

Notice that there is a big difference between the matrix form of a linear
system (13) and the identity AX = B for some X ∈ Mn×1(K). In fact,
the former is a formal way of expressing (12), that is a system of equations,
while the latter is an identity between matrices with coefficients in K.

When the number of variables is low, typically less than 5, instead of
labeling them as x1, . . . , xn we will label them as x, y, z, t.

Example 3.1.3.

• The system {
2x+ 3z = 1

y − z = −1

is a linear system of 2 equations and 3 variables with coefficients in
R. The matrix associated to the system is

A =

2 0 3

0 1 −1

 ,

and if we let X =


x

y

z

 and B =

 1

−1

 then the matrix form of

the system is AX = B.
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A solution is, for example, the vector


−4

2

3

, and therefore the

system is compatible. Another one is


−7

4

5

. We will see later on

that this system has infinitely many solutions.

• The system of 3 equations in 2 variables
x+ y = 1

x− y = 3

2x− 2y = 4

,

when considered as a linear system over R, has no solutions, since
clearly the second and the third equations cannot hold true at the
same time for any pair of real numbers (x, y). This system is there-
fore not compatible.

Now let A ∈ Mm×n(K), X ∈ Mn×1(K) and B ∈ Mm×1(K). The key obser-
vation that allows to relate linear systems to vector spaces is the following: if

C1, . . . , Cn are the columns of A, so that A = (C1|C2| . . . |Cn), andX =


x1

x2

. . .

xn

,

then
AX = x1C1 + x2C2 + . . .+ xnCn.

Namely, multiplying A by X means taking the linear combination of the
columns of A with coefficients x1, . . . , xn.

Note:-

If AX = B is a linear system, we will denote by (A|B) the matrix obtained
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by adjoining the column B to the matrix A. For example, if A =

2 2

1 −3


and B =

1

0

, the matrix (A|B) is

2 2 1

1 −3 0

.

Theorem 3.1.4 (Rouché-Capelli). Let K be a field, A ∈ Mm×n(K), X =
x1

x2

. . .

xn

 and B ∈ Mm×1(K). The system AX = B is compatible if and

only if rk(A) = rk(A|B).

Proof. The system is compatible if and only if there exists X ∈Mn×1(K)
such that AX = B. By what we observed above, this is equivalent to the
existence of coefficients x1, . . . , xn ∈ K such that

x1C1 + x2C2 + . . .+ xnCn = B,

where C1, . . . , Cn are the columns of A. This is equivalent to saying that
B ∈ ⟨C1, . . . , Cn⟩, which in turn is equivalent to saying that

dim⟨C1, . . . , Cn⟩ = dim⟨C1, . . . , Cn, B⟩.

By Kronecker theorem, this is equivalent to asking that rk(A) = rk(A|B).

A particular case of Rouché-Capelli theorem is that where m = n, i.e. where
the number of equations equals the number of variables.

Theorem 3.1.5 (Cramer). Let AX = B be a linear system over a field K,
where A ∈Mn(K). If detA ̸= 0, then the system is compatible and has a
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unique solution, given by

X =



det(B1)
det(A)

det(B2)
det(A)

. . .

det(Bn)
det(A)

 .

Here Bi is the matrix obtained from A by replacing the i-th column with
B.

Proof. First, since detA ̸= 0 then by Corollary 2.3.19 we have rk(A) = n.
Now (A|B) is an n× (n+ 1) matrix, so that its rank is at most n. Since
A is a submatrix of size n of (A|B) with non-zero determinant, it follows
that rk(A|B) = n and hence by Theorem 3.1.4 the system is compatible.

Now suppose that X1, X2 ∈Mn×1(K) are two solutions of the system,
so that AX1 = AX2. Since detA ̸= 0 then A is invertible, so we can
multiply both sides of the expression by A−1, obtaining

A−1(AX1) = A−1(AX2).

Since matrix multiplication is associative, we get (AA−1)X1 = (AA−1)X2,
and since AA−1 = In it follows that X1 = X2. Hence the solution of the
system is unique.

Notice that the vector X = A−1B is a solution, because A(A−1B) =
(AA−1)B = B, and therefore it is the unique solution. To end the proof,
we just need to show that this vector has the form claimed in the state-
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ment. Let B =


b1

b2

. . .

bn

. Recall that

A−1 =
1

det(A)


A11 −A21 . . . (−1)n+1An1

−A12 A22 . . . (−1)n+2An2

. . . . . . . . . . . .

(−1)1+nA1n (−1)2+nA2n . . . Ann

 ,

where Aij is the determinant of the (n − 1) × (n − 1) submatrix of A
obtained by erasing the i-th row and the j-th column. Therefore we have:

A−1B =
1

det(A)



∑n
i=1 bi(−1)i+1Ai1∑n
i=1 bi(−1)i+2Ai2

. . .∑n
i=1 bi(−1)i+nAin

 .

A moment of reflection, using Laplace theorem on the j-th column, shows
that

∑n
i=1 bi(−1)i+jAij is exactly the determinant of the matrix Bj =

(C1| . . . |Cj−1|B|Cj+1| . . . |Cn), where C1, . . . , Cn are the columns of A.

Example 3.1.6. Let A =


1 1 −1

1 −1 1

0 0 3

, X =


x

y

z

 and B =


2

0

1

,

where all coefficients are real. Using Laplace theorem on the last row of
A we see that detA = −6 ̸= 0, so by Theorem 3.1.5 the system has a
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unique solution. In the notation of the theorem we have:

B1 =


2 1 −1

0 −1 1

1 0 3

 , B2 =


1 2 −1

1 0 1

0 1 3

 , B3 =


1 1 2

1 −1 0

0 0 1

 ,

so that detB1 = −6, detB2 = −8, detB3 = −2. This yields

X =


1

4/3

1/3


as the unique solution to the system.

3.2 The rank-nullity theorem

The next step in the theory of linear system is to describe, in a precise sense,
how many solutions a compatible linear system has.

Example 3.2.1.

• Let A =

1 2

3 4

 ∈ M2(R). The system AX =

1

1

 has a unique

solution, by Theorem 3.1.5.

• Let A =
(
1 2

)
∈ M1×2(R). The system AX = 0 has infinitely

many solutions, since all vectors of the form

−2x

x

, with x ∈ R,

are solutions.

• Let A =

1

2

 ∈ M2×1(R). The system AX =

1

1

 has no solu-

tions, since if x ∈ R = M1(R) is a solution, then the two equations
x = 1 and 2x = 1 should hold true at the same time.
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Definition 3.2.2. A linear system AX = B is homogeneous if B is the
zero vector.

Remark 3.2.3. A homogeneous linear system is always compatible, as
it admits the zero vector as a solution. Namely, if A ∈ Mm×n(K) and

X =


0

. . .

0

 ∈ Mn×1(K) then AX =


0

. . .

0

 ∈ Mm×1(K). We will denote

by 0 the m× 1 or n× 1 zero matrix, so that a homogeneous linear system
will be written as AX = 0.

If A is a square matrix with non-zero determinant, the system AX = 0
only has X = 0 as a solution, by Theorem 3.1.5.

Definition 3.2.4. Let K be a field and A ∈ Mm×n(K). The kernel of A
is the set of solutions of the homogeneous linear system AX = 0. The
kernel of A will be denoted by kerA.

A solution of the system AX = 0 is called nontrivial if it is different
from 0.

Remark 3.2.5. Let A ∈ Mm×n(K). Then kerA is a vector subspace of
Mn×1(K). In fact, if X,Y ∈ kerA and α, β ∈ K then

A(αX + βY ) = A(αX) + A(βY ) = α(AX) + β(AY ) = 0 + 0 = 0,

so that αX + βY ∈ kerA.

Lemma 3.2.6. Let K be a field and A ∈ Mm×n(K). Let p ∈ {1, . . . , n}
be a natural number. Let ei1 , . . . , eip be vectors of the canonical basis
of Mn×1(K), with 1 ≤ i1 < i2 < . . . < ip ≤ n. Let C1, . . . , Cn be the
columns of A. Then Ci1 , . . . , Cip are linearly independent if and only if
kerA ∩ ⟨ei1 , . . . , eip⟩ = {0}.

Proof. Start by noticing that ⟨ei1 , . . . , eip⟩ coincides with the set of n× 1
matrices (ai1)i=1...,n ∈ Mn×1(K) with the property that aj1 = 0 for every
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j /∈ {i1, . . . , ip}. It follows that the set {AX : X ∈ ⟨ei1 , . . . , eip⟩} coincides
with the set of all linear combinations of Ci1 , . . . , Cip : if α1, . . . , αp ∈ K,
the linear combination

∑p
j=1 αjCij corresponds to A(

∑p
j=1 αjeij).

The condition kerA∩ ⟨ei1 , . . . , eip⟩ = {0} means that no non-zero vec-
tors in ⟨ei1 , . . . , eip⟩ are solutions to the system AX = 0. By what we
said above, this means precisely that no linear combination of Ci1 , . . . , Cip

with not all coefficients being zero gives the zero vector; in other words,
Ci1 , . . . , Cip are linearly independent.

Theorem 3.2.7 (Rank-nullity theorem). LetK be a field andA ∈Mm×n(K).
Then

dim(kerA) = n− rk(A).

Proof. Let r = rk(A) and p = dim(kerA). We need to prove that
p = n − r. Since rk(A) = r, by Theorem 2.3.18 there are r linearly
independent columns Ci1 , . . . , Cir in A. By Lemma 3.2.6, it follows that
kerA ∩ ⟨ei1 , . . . , eir⟩ = {0}. Therefore, by Grassmann formula we have:

dim(⟨ei1 , . . . , eir⟩+ kerA) = r + p ≤ n,

so that p ≤ n− r. Now we have to prove the converse inequality.
Let B be a basis of kerA in Mn×1(K). By Theorem 1.4.16, the basis B

can be completed to a basis B′ of Mn×1(K) using vectors of the canonical
basis. Thus there are ei1 , . . . , ein−p

in the canonical basis such that B ∪
(ei1 , . . . , ein−p

) is a basis of Mn×1(K). Since the latter set is a basis, we
must have, by Grassmann formula, that

kerA ∩ ⟨ei1 , . . . , ein−p
⟩ = {0}.

By Lemma 3.2.6, it follows that the columns Ci1 , . . . , Cin−p are linearly
independent. By Theorem 2.3.18, this implies that r ≥ n − p, i.e. p ≥
n− r.

Corollary 3.2.8. Let K be a field and A ∈ Mm×n(K). The homogeneous
system AX = 0 has a nontrivial solution if and only if rk(A) < n. In
particular:

1. if m < n, the homogeneous system AX = 0 always has a nontrivial
solution.
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2. if m = n, the homogeneous system AX = 0 has a nontrivial solution
if and only if detA = 0.

Proof. The system AX = 0 has a nontrivial solution if and only if kerA ̸=
{0}, that is, if and only if dim kerA > 0. By Theorem 3.2.7, this is
equivalent to asking that n > rk(A).

If m < n then rk(A) ≤ m < n, since rkA ≤ min{m,n}, and hence the
system has a nontrivial solution.

If m = n then the condition rk(A) < n is equivalent to detA = 0 by
Corollary 2.3.19.

Proposition 3.2.9. Let K be a field, A ∈ Mm×n(K) and B ∈ Mm×1(K).
Suppose that the system AX = B is compatible and let X ∈Mn×1(K) be
a solution. Then the set S of all solutions of the system AX = B is given
by:

{X + Z : Z ∈ kerA}.

Proof. Let S = {X+Z : Z ∈ kerA}. We need to prove that S = S. First,
let Y ∈ S, so that AY = B. Since AX = B as well, subtracting these two
equations term by term we get that

A(Y −X) = B −B = 0.

This means exactly that Y − X ∈ kerA, or, in other words, that there
exists Z ∈ kerA such that Y −X = Z. Hence Y = X+Z, that is, Y ∈ S.

Conversely, let Y ∈ S, so that there exists Z ∈ kerA such that Y =
X + Z. Then

AY = A(X + Z) = AX + AZ = B + 0 = B,

so that Y ∈ S.

Proposition 3.2.9 completely describes all solutions of a compatible linear
system AX = B: once we find one solution X of the system, all solutions are
of the form X + Z, where Z is any element of the kernel of A.

Remark 3.2.10. When K = R, if a system of m equations in n variables is
compatible, we will say that it has ∞n−rk(A) solutions. When n = rk(A),
the system has a unique solution.
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3.3 How do I solve a linear system?

To conclude this chapter, we have to explain how to solve a linear system.
Thanks to Theorem 3.2.7 and Proposition 3.2.9, we know the structure of the
set of solutions. Now all remains to do is to actually find the solutions.

We begin by proving a lemma that allows to reduce a linear system to a
smaller one with the same solutions.

Lemma 3.3.1. Let K be a field, A ∈ Mm×n(K) and B =


b1

. . .

bm

 ∈

Mm×1(K). Let the linear system AX = B be compatible and let r =

rk(A) = rk(A|B). Let R1, . . . , Rm be the rows of A and R̃1, . . . , R̃m be

the rows of (A|B), so that deleting the last entry of R̃i one obtains Ri.

Let 1 ≤ i1 < i2 < . . . < ir ≤ m be such that rk


Ri1

Ri2

. . .

Rir

 = r, let

A′ =


Ri1

Ri2

. . .

Rir

 and B′ =


bi1

bi2

. . .

bir

. Then the following hold:

1. rk(A′|B′) = r.

2. An element X ∈ Mn×1(K) is a solution of the system AX = B if
and only if it is a solution of A′X = B′.

Proof. 1. The matrix (A′|B′) is obtained from A′ by adding a final column,
whose entries are the i1, i2, . . . , ir-th entries of B. Hence (A′|B′) is a
submatrix of (A|B), and since A′ is a submatrix of (A′|B′) of rank r and
(A|B) has rank r, too, we must have that rk(A′|B′) = r by Remark 2.3.2.
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2. An element X ∈Mn×1(K) is a solution of AX = B if and only if:

RiX = bi for every i = 1, . . . ,m, (14)

where RiX is the usual matrix multiplication between the i-th row of A
and X. On the other hand, X is a solution to A′X = B′ if and only
if RijX = bij for every j = 1, . . . , r. Hence it is obvious that if X is a
solution of AX = B then it is also a solution of A′X = B′.

Conversely, suppose that X is a solution of A′X = B′. This means
that:

RijX = bij for every j = 1, . . . , r. (15)

Since rk(A′|B′) = rk(A′) = rk(A) = rk(A|B) = r, we have by Kronecker
theorem that

⟨R̃i1 , . . . , R̃ir⟩ = ⟨R̃1, . . . , R̃m⟩,

or, in other words, that R̃i1 , . . . , R̃ir generate the space of rows of (A|B).
Hence for every k ∈ {1, . . . ,m} there exist λ1, . . . , λr ∈ K such that∑r

j=1 λjR̃ij = R̃k. This means, in particular, that:

r∑
j=1

λjRij = Rk and
r∑

j=1

λjbij = bk. (16)

From (15) and (16) we get that

RkX =

(
k∑

j=1

λjRij

)
X =

k∑
j=1

(λjRijX) =
k∑

j=1

(λjbij) = bk.

Since this holds true for every k ∈ {1, . . . ,m}, we have by (14) that X is
a solution to AX = B.

What Lemma 3.3.1 is saying is that once we have a compatible linear
system, in order to solve it we can erase equations that are linearly dependent
from the others.
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Example 3.3.2. Let K = R. Let A =


1 1 0 1

1 −2 2 −1

2 −1 2 0

1 4 −2 3

 and B =


1

0

1

2

. Let R1, . . . , R4 be the rows of A and R̃1, . . . , R̃4 be the rows of

(A|B). Since R1, R3 are linearly independent, while R2 = R3 − R1 and

R4 = 3R1 − R3, we have rk(A) = 2. Moreover, R̃2 = R̃3 − R̃1 and

R̃4 = 3R̃1 − R̃3, so that rk(A|B) = 2 and the system is compatible. By
Lemma 3.3.1, in order to solve the system we can disregard the second
and the fourth equation, i.e. it is enough to solve the system:

1 1 0 1

2 −1 2 0



x

y

z

t

 =

1

1

 .

In consequence of Lemma 3.3.1, we can just look at systems of the form
AX = B with A ∈ Mm×n(K) and rk(A) = rk(A|B) = m. In fact, if the
system is compatible then rk(A) = rk(A|B) ≤ m, and we can erase equations
until we get a basis of the space of rows of (A|B).

Hence suppose that A ∈Mm×n(K) is such that rk(A) = m and the system
AX = B is compatible. Clearly if n = m then Theorem 3.1.5 already tells
us how to solve it. In principle, this theorem can be always used, even when
n > m, in view of the following observation. Since rk(A) = m, the matrix
A has m linearly independent columns, say Ci1 , . . . , Cim . Now consider the
variables xk, with k /∈ {i1, . . . , im}. However we fix values xk ∈ K for such
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variables, the system
a1i1xi1 + . . .+ a1imxim = b1 −

∑
k/∈{i1,...,im} a1kxk

a2i1xi1 + . . .+ a2imxim = b2 −
∑

k/∈{i1,...,im} a2kxk

. . .

ami1xi1 + . . .+ amimxim = bm −
∑

k/∈{i1,...,im} amkxk

is compatible, because the matrix that represents it is a square matrix of
full rank, by construction. Therefore, we can just apply Theorem 3.1.5 to the
system 

a1i1xi1 + . . .+ a1imxim = b1 −
∑

k/∈{i1,...,im} a1kxk

a2i1xi1 + . . .+ a2imxim = b2 −
∑

k/∈{i1,...,im} a2kxk

. . .

ami1xi1 + . . .+ amimxim = bm −
∑

k/∈{i1,...,im} amkxk

, (17)

where the variables xk with k /∈ {i1, . . . , im} will be treated as parameters.
Applying Theorem 3.1.5 we will obtain an expression of the form:

xi1 = d1 +
∑

k/∈{i1,...,im} c1kxk

xi2 = d2 +
∑

k/∈{i1,...,im} c2kxk

. . .

xim = dm +
∑

k/∈{i1,...,im} cmkxk

,

where the coefficients cij and dℓ are elements of k. This means that to ob-
tain all solutions to our linear system, we have to let all variables xk with
k /∈ {i1, . . . , im} vary over K, and the values of the remaining variables are
determined by the values of the former ones.

Note:-

Formally, solutions of a linear system AX = B are vectors of Mn×1(K),
so they should be written as column vectors. However, this is annoying in
practice, so we will often write solutions as vectors in Kn, namely as row
vectors.

Example 3.3.3. Let us go back to the system of Example 3.3.2. We have
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seen, thanks to Lemma 3.3.1, that it is enough to solve

1 1 0 1

2 −1 2 0



x

y

z

t

 =

1

1

 . (18)

Now, the matrix A =

1 1 0 1

2 −1 2 0

 has rank 2. Let us choose two

linearly independent columns: the first and the second one. These cor-
respond to the variables x and y; treating the other two variables as
parameters we can rewrite the system as:{

x+ y = 1− t

2x− y = 1− 2z
.

Now this can be seen as a system of 2 equations in 2 variables, namely

x and y, that is represented by the matrix A′ =

1 1

2 −1

, that has

determinant −3. Applying Theorem 3.1.5, we get the solutions:

x = −1

3
det

 1− t 1

1− 2z −1

 = −1

3
(2z + t− 2)

y = −1

3
det

1 1− t

2 1− 2z

 = −1

3
(2t− 2z − 1).

This means that the set S of solutions of (18) is:

S =

{(
−1

3
(2z + t− 2),−1

3
(2t− 2z − 1), z, t

)
: z, t ∈ R

}
.

Notice how this has exactly the shape predicted by Proposition 3.2.9: a
specific solution of the system is (2/3, 1/3, 0, 0), and the kernel of the
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matrix A is given by:{(
−1

3
(2z + t),−1

3
(2t− 2z), z, t

)
: z, t ∈ R

}
,

that is a 2-dimensional subspace of R4.

Note:-

One is not obliged to use Theorem 3.1.5 to solve the system{
x+ y = 1− t

2x− y = 1− 2z
.

For example, here one can also notice that adding up the two equation the
relation

3x = 2− t− 2z

must hold, so that x = 1
3
(2 − t − 2z), and substituting this for x in any of

the two equations gives the value of y.
Moreover, one can choose any two linearly independent columns from the
matrix A. For example, a smarter choice here would be to choose the third
and the fourth column, so that the system to be solved becomes:{

t = 1− x− y

2z = 1− 2x+ y
,

whose solution in t and z is obvious, and yields the following equivalent
form of the set of solutions S of the system (18):

S =

{(
x, y,

1

2
(1− 2x+ y), 1− x− y

)
: x, y ∈ R

}
.

This is exactly the same set we found in Example 3.3.3, but written in a
different way.

We end the section by illustrating another way of solving a system in the
form (17). This is called Gauss elimination method, and it is based on the
following observations.

1. Let A ∈Mm(K), X ∈Mn×1(K), B ∈Mm×1(K) and U ∈ GLm(K) be an
invertible matrix. Then AX = B if and only if (UA)X = UB. In fact,
if AX = B then multiplying both sides by U one gets (UA)X = UB,
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and conversely if (UA)X = UB then multiplying both sides by U−1 one
gets AX = B.

2. Let AX = B be a linear system, with A ∈Mm×n(K) and B ∈Mm×1(K).
Let i, j ∈ {1, . . . ,m} be two distinct indices. If A′, B′ are the matrices
obtained from A,B, respectively, by swapping row i and row j, then X
is a solution of AX = B if and only if it is a solution of A′X = B′.

3. Let A ∈ Mm×n(K) and let R1, . . . , Rm be the rows of A. Let i, j ∈
{1, . . . ,m} with j < i and let c ∈ K. Finally, let

U =



1 0 0 0 . . . 0

0 1 0 0 . . . 0

. . . . . . . . . . . . . . . . . .

. . . c . . . 1 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 . . . . . . 0 1


∈Mm(K),

namely the m ×m matrix that differs from the identity matrix just by
the (i, j)-th entry, that is equal to c. Then U is invertible, since it is
lower triangular and the entries on the diagonal are all 1, and UA is an
m×n matrix that coincides with A, except for the fact that the i-throw
is replaced by cRj +Ri.

Given a square matrix A of size m, by applying the three operations de-
scribed above, multiple times if necessary, we can find a matrix U ∈ GLm(K)
such that UA is upper triangular. Notice that we do not really need to compute
U , we can just perform the following two types of operations on A: swapping
two rows, or replacing a row Ri with Ri + cRj, for some other row Rj and
some c ∈ K.

Now let us go back to the linear system (17). In order to ease the notation,
we assume that {i1, . . . , im} = {1, . . . ,m}, but the argument works in any
case. Let A′ = (aij)i,j=1,...,m ∈ Mm(K) be the matrix of the coefficients of the
system and write the system as A′X = B′. By our preliminary reductions,
detA′ ̸= 0. Now let U ∈ GLm(K) be such that UA′ is upper triangular. The
system UA′ = UB′, that has the same solutions as the original system by
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point 1., has the form:

a′11x1 + a′12x2 + . . .+ a′1nxn = d′1 +
∑n

k=m+1 c
′
1kxk

a′22x2 + a′23x3 + . . .+ a′2nxn = d′2 +
∑n

k=m+1 c
′
2kxk

a′33x3 + a′34x4 + . . .+ a′3nxn = d′3 +
∑n

k=m+1 c
′
3kxk

. . .

a′mmxm = d′m +
∑n

k=m+1 c
′
mkxk

.

That is, the last equation directly gives us the value of xm. Substituting this
into the m−1-th equation we immediately get the value of xm−1. Substituting
these values into the (m− 2)-th equation we get the value of xm−2, and so on.
Notice that the fact that detA ̸= 0 is crucial, since it ensures that a′ii ̸=
0 for every i = 1, . . . ,m. Let us show how this algorithm works with two
examples.

Example 3.3.4. Consider the linear system with real coefficients:
3x+ 2y + z = 1

x− y + z = 0

x− z = 2

,

whose associated matrices are:

A =


3 2 1

1 −1 1

1 0 −1

 , B =


1

0

2

 .

The matrix A is square and has nonzero determinant, so we are already
in the form of (17). Moreover, by Theorem 3.1.5 we know that the system
has a unique solution. Let us bring A into upper triangular form. Let
R1, R2, R3 be the rows of A. As a first step, we replace R2 with R2−1/3R1

and R3 with R3 − 1/3R1, and we do the same on B. We end up with the
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matrices:

A1 =


3 2 1

0 −5/3 2/3

0 −2/3 −4/3

 , B1 =


1

−1/3

5/3

 .

Next, if R′
1, R

′
2, R

′
3 are the rows of A1, we replace R′

3 with R′
3 − 2/5R′

2,
and we do the same on B1. We end up with:

A2 =


3 2 1

0 −5/3 2/3

0 0 −24/15

 , B1 =


1

−1/3

27/15

 .

The system A2X = B2 is:
3x+ 2y + z = 1

−5y + 2z = −1

−8z = 9

,

that easily gives x = 7/8, y = −1/4 and z = −9/8.

Example 3.3.5. Consider the system AX = B over R, where:

A =



1 1 2 0 0

1 0 1 −1 −1

0 1 1 −1 −1

1 0 1 1 1

0 1 1 1 1


, X =



x1

x2

x3

x4

x5


, B =



1

−1

1

0

2


.

One checks that R2 = R1 − R5 and R3 = R1 − R4, where R1, . . . , R5

are the rows of (A|B) while first, fourth and fifth rows of A are linearly
independent. Hence rk(A) = rk(A|B) = 3, and by Theorem 3.2.7 the
system is compatible and has ∞2 solutions.

By Lemma 3.3.1, it is enough to consider the system given by the first,
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fourth and fifth equations, namely the system:
x1 + x2 + 2x3 = 1

x1 + x3 + x4 + x5 = 0

x2 + x3 + x4 + x5 = 2

(19)

whose associated matrices are:

A′ =


1 1 2 0 0

1 0 1 1 1

0 1 1 1 1

 and B′ =


1

0

2

 .

The matrix A′ has rank 3, by construction. The next step is to select
three linearly independent columns of A′. For example, we can select the
first, the second and the fourth. Now in system (19) we move the third
and the fifth variables, namely the ones not corresponding to the selected
columns, to the right side of the equalities, getting the system:

x1 + x2 = 1− 2x3

x1 + x4 = −x3 − x5

x2 + x4 = 2− x3 − x5

. (20)

Now all we need to do is to solve for x1, x2, x4. This is easy and can
be done by substitution, or via Cramer’s theorem 3.1.5. However, let us
show how to use Gauss’ elimination. The matrices associated to system
(20) are:

A′′ =


1 1 0

1 0 1

0 1 1

 and B′′ =


1− 2x3

−x3 − x5

2− x3 − x5

 .

In order to bring A′′ to upper triangular form, the first step is to replace
its second row R2 with R2 − R1, and to perform the same operation on
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B′′. This yields:

A′′
1 =


1 1 0

0 −1 1

0 1 1

 and B′′
1 =


1− 2x3

−1 + x3 − x5

2− x3 − x5

 .

Now the second and last step is to replace the third row R3 of A′′
1 with

R3 +R2, and do the same on B′′
1 . We get:

A′′
1 =


1 1 0

0 −1 1

0 0 2

 and B′′
1 =


1− 2x3

−1 + x3 − x5

1− 2x5

 .

This corresponds to the system:
x1 + x2 = 1− 2x3

−x2 + x4 = −1 + x3 − x5

2x4 = 1− 2x5

. (21)

System (21) is easy to solve: the third equation tells us that x4 = 1/2−
x5; substituting into the second one we get that x2 = 3/2 − x3, and
substituting the latter into the first tells us that x1 = −1/2 − x3. This
means that the set of solutions to (21), and thus to (19), is

S = {(−1/2− x3, 3/2− x3, x3, 1/2− x5, x5) : x3, x5 ∈ R}.

Once again, we can see how the set S matches the prediction of Propo-
sition 3.2.9. A specific solution to the system is (−1/2, 3/2, 0, 1/2, 0),
while

kerA = ⟨(−1,−1, 1, 0, 0), (0, 0, 0,−1, 1)⟩,

that is a two-dimensional subspace of R5, so that the set S can be written
as

A = {(−1/2, 3/2, 0, 1/2, 0) + Z : Z ∈ kerA}.
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Chapter 4: Scalar products and orthogonality

4.1 Bilinear forms and scalar products

Definition 4.1.1. Let K be a field and V be a K-vector space. A bilinear
form on V is a function

∗ : V × V → K

that satisfies the following properties:

1. for every u, v, w ∈ V ,

(u+ v) ∗ w = u ∗ w + v ∗ w;

2. for every u, v, w ∈ V ,

u ∗ (v + w) = u ∗ v + u ∗ w;

3. for every v, w ∈ V and every λ ∈ K,

λ(v ∗ w) = (λv) ∗ w = v ∗ (λw).

If, in addition, for every v, w ∈ V we have that

v ∗ w = w ∗ v,

then ∗ is called a symmetric bilinear form or, alternatively, a scalar prod-
uct.

Example 4.1.2.

• Let V = C3. The function

∗ : V × V → C

((x1, x2, x3), (y1, y2, y3)) 7→ x1y1 + x1y2 + x2y2 + x3y3

is a bilinear form. You can check, as an exercise, that properties
1., 2., 3. are satisfied. However, this is not a scalar product, since
for example (1, 1, 0) ∗ (1, 0, 0) = 1 while (1, 0, 0) ∗ (1, 1, 0) = 2.
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• Let V = R2. The function

∗ : V × V → R

((x1, x2), (y1, y2)) 7→ x1y1 + x1y2 + x2y1 + x2y2

is a scalar product.

Definition 4.1.3. Let V be a K-vector space with a scalar product ∗.
Two vectors v, w ∈ V are orthogonal if v ∗ w = 0.

Remark 4.1.4.

• Let V be a K-vector space and ∗ be a scalar product on V . Then
the zero vector is orthogonal to every vector v. In fact, (0+ 0) ∗ v =
2(0 ∗ v) by property 1. of bilinear forms, but on the other hand
(0+0)∗v = 0∗v, so that 0∗v = 2(0∗v). This implies that 0∗v = 0,
and since a scalar product is a symmetric bilinear form, it follows
that v ∗ 0 = 0.

• It might happen that v ∗ v = 0 even if v is not the zero vector. For
example, in V = R2 consider the scalar product given by:

(x1, x2) ∗ (y1, y2) = x1y1 − x2y1 − x1y2 + x2y2.

Then (1, 1) ∗ (1, 1) = 0.

• If v ∗ w = 0 then for every α, β ∈ K we have:

(αv) ∗ (βw) = (αβ)(v ∗ w) = 0.

Definition 4.1.5. Let V be a K-vector space with a scalar product ∗. Let
A ⊆ V be a non-empty subset. The orthogonal complement of A in V is
the set:

A⊥ = {v ∈ V : w ∗ v = 0, ∀w ∈ A}.

Proposition 4.1.6. Let V be a K-vector space, let ∗ be a scalar product
on V and let A ⊆ V be a non-empty subset.

96



Andrea Ferraguti Chapter 4: Scalar products and orthogonality

1. A⊥ is a vector subspace of V .

2. If A ⊆ B ⊆ V , then B⊥ ⊆ A⊥.

3. A⊥ = ⟨A⟩⊥.

4. ⟨A⟩ ⊆ (A⊥)
⊥
.

5. Let U ⊆ V be a vector subspace and let B be a basis for U . Then
B⊥ = U⊥.

Proof. 1. Let v1, v2 ∈ A⊥, let α1, α2 ∈ K and let w ∈ A. Then

(α1v1 + α2v2) ∗ w = α1(v1 ∗ w) + α2(v2 ∗ w) = 0 + 0 = 0,

so that α1v1 + α2v2 ∈ A⊥.
2. If v ∈ B⊥, then v ∗ w = 0 for every w ∈ B. Since A ⊆ B, it follows

in particular that v ∗ w = 0 for every w ∈ A, and therefore v ∈ A⊥.
3. Since A ⊆ ⟨A⟩, by 2. it follows that ⟨A⟩⊥ ⊆ A⊥. Conversely,

suppose that v ∈ A⊥. Let w ∈ ⟨A⟩. Then, by definition of span, there
exist α1, . . . , αn ∈ K and v1, . . . , vn ∈ A such that w =

∑n
i=1 αivi. Then:

v ∗ w = v ∗

(
n∑

i=1

αivi

)
=

n∑
i=1

αi(v ∗ vi) = 0

since v ∗ vi = 0 for every i, because vi ∈ A and v ∈ A⊥.

4. We have that (A⊥)
⊥
= {v ∈ V : v ∗w = 0 ∀w ∈ A⊥}, by definition.

However, by point 3. we have that A⊥ = ⟨A⟩⊥, so that

(A⊥)
⊥
= {v ∈ V : v ∗ w = 0 ∀w ∈ ⟨A⟩⊥}.

Now if v ∈ ⟨A⟩ then by definition v ∗ w = 0 for every w ∈ ⟨A⟩⊥, and
therefore v ∈ (A⊥)

⊥
.

5. Follows immediately from 3. by setting A = B.

4.2 Positive definite scalar products

Until the end of this chapter, we will only consider vector spaces over the field
R of real numbers.
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Definition 4.2.1. Let V be an R-vector space and let ∗ be a scalar product
on V . The product ∗ is positive definite if:

1. for every v ∈ V we have v ∗ v ≥ 0;

2. v ∗ v = 0 if and only if v = 0.

Positive definite scalar products will be denoted using a dot: ·.

Example 4.2.2. The most important example of positive definite scalar
product is the usual scalar product on V = Rn. That is, the function

Rn × Rn → R

((x1, . . . , xn), (y1, . . . , yn)) 7→
n∑

i=1

xiyi.

This will be called the standard or euclidean scalar product on Rn.
However, there are many other examples. For instance, the function

R2 × R2 7→ R

((x1, x2), (y1, y2)) 7→ 3x1x2 − x2y1 − x1y2 + 3y1y2

is a positive definite scalar product.

Definition 4.2.3. Let V be an R-vector space and · a positive definite
scalar product on V . The norm of a vector v ∈ V is defined as:

∥v∥ =
√
v · v.

A vector v ∈ V is called versor if ∥v∥ = 1. If v ∈ V is a non-zero vector,
the versor associated to v is the vector 1

∥v∥v.

Proposition 4.2.4. Let V be an R-vector space with a positive definite
scalar product ·. For every α ∈ R and every v ∈ V we have:

∥αv∥ = |α|∥v∥.

98



Andrea Ferraguti Chapter 4: Scalar products and orthogonality

Consequently, if v ∈ V then the versor associated to v has norm 1.

Proof.
∥αv∥ =

√
(αv) · (αv) =

√
α2(v · v) = |α|∥v∥.

Proposition 4.2.5 (Cauchy-Schwarz inequality). Let V be an R-vector space
with a positive definite scalar product ·. Let u, v ∈ V . Then we have:

|u · v| ≤ ∥u∥∥v∥,

and equality holds if and only if u, v are linearly dependent.

Proof. If u, v are linearly dependent, there exists α ∈ R such that αu = v,
so that

|u · v| = |(αu) · u| = |α|∥u∥2 = |α|∥u∥∥u∥ = ∥u∥∥v∥,

using Proposition 4.2.4, as desired. Hence we can assume that u, v are
linearly independent. This is equivalent to say that for every α ∈ R we
have αu+ v ̸= 0. Therefore, for every α ∈ R we have:

0 < (αu+ v) · (αu+ v) = α2∥u∥2 + 2α(u · v) + ∥v∥2.

This means that the degree 2 polynomial with real coefficients:

x2∥u∥2 + 2x(u · v) + ∥v∥2

only assumes positive values. Hence, its discriminant must be negative,
i.e.

(u · v)2 − ∥u∥2∥v∥2 < 0,

which is precisely the desired inequality.

Definition 4.2.6. Let V be an R-vector space with a positive definite
scalar product ·. A subset A = {v1, . . . , vn} ⊆ V is called an orthogonal
system if vi · vj = 0 for every i ̸= j. If in addition every vi is a versor, the
set is called an orthonormal system.

If, in addition, A is a basis then it will be referred to as an orthogonal
basis or an orthonormal basis, respectively.
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Theorem 4.2.7. Let {v1, . . . , vn} ⊆ V be an orthogonal system not con-
taining 0. Then v1, . . . , vn are linearly independent.

Proof. Suppose that α1v1 + . . .+ αnvn = 0 for some α1, . . . , αn ∈ R. For
every i ∈ {1, . . . , n}, taking the scalar product with vi on both sides of
such equality we get:

0 = 0 · vi = (α1v1 + . . .+ αnvn) · vi =
n∑

j=1

αj(vj · vi) = αi∥vi∥2,

because vi · vj = 0 whenever i ̸= j. Now since vi ̸= 0 and · is positive
definite, we have that ∥vi∥2 ̸= 0, and therefore it must be αi = 0. Since
this is true for every i, the vectors v1, . . . , vn are linearly independent.

The next fundamental theorem to prove is that every f.g. R-vector space en-
dowed with a positive definite scalar product has an orthonormal basis. The
proof is based on the following lemma.

Lemma 4.2.8. Let V be an R-vector space endowed with a positive def-
inite scalar product ·. Suppose that {v1, . . . , vn} is an orthogonal system
not containing 0 and let w ∈ V be such that w /∈ ⟨v1, . . . , vn⟩. Let

vn+1 = w −
n∑

i=1

w · vi
∥vi∥2

vi.

Then {v1, . . . , vn+1} is an orthogonal system not containing 0.

Proof. To prove that {v1, . . . , vn+1} is an orthogonal system we only need
to prove that vj · vn+1 = 0 for every j ∈ {1, . . . , n}, since {v1, . . . , vn} is
already orthogonal by hypothesis. This holds true because

vn+1·vj = w·vj−
n∑

i=1

w · vi
∥vi∥2

(vi·vj) = w·vj−
w · vj
∥vj∥2

(vj ·vj) = w·vj−w·vj = 0,

using the fact that {v1, . . . , vn} is orthogonal.
Now we need to prove that {v1, . . . , vn+1} does not contain 0. Suppose

by contradiction it does; then necessarily vn+1 = 0, since {v1, . . . , vn} does
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not contain 0 by hypothesis. However, if vn+1 = 0 then:

w =
n∑

i=1

w · vi
∥vi∥2

vi,

which is impossible since by hypothesis w /∈ ⟨v1, . . . , vn⟩.

Remark 4.2.9. In the hypotheses of Lemma 4.2.8, if w is orthogonal to
every vi, then

vn+1 = w −
n∑

i=1

w · vi
∥vi∥2

vi = w.

In other words, the vector w stays the same.

Theorem 4.2.10 (Gram-Schmidt orthonormalization algorithm). Let V be
a f.g. R-vector space endowed with a positive definite scalar product ·.
Then there exists an orthonormal basis for V .

Proof. Let B = (v1, . . . , vn) be any basis for V . Define v′1 = v1 and
recursively, for every j = 2, . . . , n, let:

v′j = vj −
j−1∑
i=1

vj · v′i
∥v′i∥2

v′i.

We claim that {v′1, . . . , v′n} is an orthogonal basis for V . To see this,
first notice that {v′1} is an orthogonal system not containing 0. Since
{v1, . . . , vn} is a basis, it follows, in particular, that v2 /∈ ⟨v1⟩, and there-
fore by Lemma 4.2.8 we have that {v′1, v′2} is an orthogonal system not
containing 0. Now again v3 /∈ ⟨v1, v2⟩, and since v′1 and v′2 are both
linear combinations of v1 and v2, they both belong to ⟨v1, v2⟩, so that
v3 /∈ ⟨v′1, v′2⟩. Hence {v′1, v′2, v′3} is an orthogonal system not containing 0.
Iterating this process, we find that {v′1, . . . , v′n} is an orthogonal system
not containing 0. Now by Theorem 4.2.7 such set is linearly independent,
and since dimV = n, it follows that (v′1, . . . , v

′
n) is a basis.

To conclude, just replace each v′i with its associated versor; this way
we obtain, by Remark 4.1.4, a sequence of n versors that are still pairwise
orthogonal or, in other words, an orthonormal basis.
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Example 4.2.11.

• Let V = R3, endowed with the standard scalar product. The se-
quence B = ((1, 1, 1), (1, 0, 1), (0, 0, 2)) is a basis of V . Let us see
how to obtain from B an orthonormal basis using Theorem 4.2.10.
We start by setting v1 = (1, 1, 1), v2 = (1, 0, 1), v3 = (0, 0, 2). The
first step is simply to let

v′1 = v1 = (1, 1, 1).

Next, we let

v′2 = v2 −
v2 · v′1
∥v′1∥2

v′1 = (1, 0, 1)− 2

3
(1, 1, 1) = (1/3,−2/3, 1/3).

Finally, we let

v′3 = v3 −
v3 · v′2
∥v′2∥2

v′2 −
v3 · v′1
∥v′1∥2

v′1 =

= (0, 0, 2)− 2/3

2/3
(1/3,−2/3, 1/3)− 2

3
(1, 1, 1) = (−1, 0, 1).

The sequence ((1, 1, 1), (1/3,−2/3, 1/3), (−1, 0, 1)) is then an or-
thogonal basis of V . In order to obtain an orthonormal basis, we
just need to divide every vector by its norm. This yields:

B′ =

((
1√
3
,
1√
3
,
1√
3

)
,

(
1√
6
,−

√
2√
3
,
1√
6

)
,

(
− 1√

2
, 0,

1√
2

))
.

• Let again V = R3, but this time let it be endowed with a different
positive definite scalar product, namely the function

R3 × R3 → R

(x1, x2, x3) · (y1, y2, y3)) =

= 2x1y1 + x1y2 + x2y1 + 4x2y2 + x2y3 + x3y2 + 2x3y3.

The reader can verify as an exercise that this is indeed a posi-
tive definite scalar product. Now consider the canonical basis B =
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((1, 0, 0), (0, 1, 0), (0, 0, 1)). This is of course an orthonormal basis
with respect to the standard scalar product on V , but it is no longer
orthonormal (and neither orthogonal) with respect to the above
scalar product. Hence, we can apply Gram-Schmidt algorithm and
obtain an orthonormal one. First, we set

v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1).

Next, we let
v′1 = v1 = (1, 0, 0).

Notice that ∥v′1∥2 = 2. Next, we let:

v′2 = v2 −
v2 · v′1
∥v′1∥2

v′1 = (0, 1, 0)− 1

2
(1, 0, 0) = (−1/2, 1, 0).

Notice that ∥v′2∥2 = 7/2 Finally,

v′3 = v3 −
v3 · v′2
∥v′2∥2

v′2 −
v3 · v′1
∥v′1∥2

v′1 =

(0, 0, 1)− 1

7/2
(−1/2, 1, 0)− 0

2
(1, 0, 0) = (1/7,−2/7, 1),

so that ∥v′3∥2 = 12/7. Hence an orthonormal basis for this scalar
product is:((

1√
2
, 0, 0

)
,

(
− 1√

14
,

2√
14
, 0

)
,

(
1√
84
,− 2√

84
,

7√
84

))
.

Theorem 4.2.12. Let V be an R-vector space of dimension n endowed
with a positive definite scalar product. Let {v1, . . . , vk} ⊆ V be a subset
of orthogonal vectors not containing the zero vector. Then there exist
vk+1, . . . , vn such that (v1, . . . , vn) is an orthogonal basis for V .

Proof. By Theorem 4.2.7, the vectors v1, . . . , vk are linearly independent.
Therefore we can apply Theorem 1.4.16, and find vectors wk+1, . . . , wn

such that B = (v1, . . . , vk, wk+1, . . . , wn) is a basis of V . Now we can
apply Gram-Schmidt algorithm to the basis B. In order to do that, we
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first have to let, for every i ∈ {1, . . . , k}:

v′i = vi −
i−1∑
j=1

vi · v′j
∥v′j∥2

v′j.

However, as noticed in Remark 4.2.9, when we apply the above operation
to a vector that is already orthogonal to the previous ones, we are not
actually doing anything. That is, when performing the Gram-Schmidt
algorithm to B we obtain a basis of the form (v1, . . . , vk, w

′
k+1, . . . , w

′
n), as

required.

Theorem 4.2.13. Let V be an R-vector space of dimension n endowed
with a positive definite scalar product. Let A ⊆ V be a non-empty subset.
Then:

V = ⟨A⟩ ⊕ A⊥.

Proof. First, we need to show that ⟨A⟩ ∩ A⊥ = {0}. This is easy: first
recall that, by Proposition 4.1.6, A⊥ = ⟨A⟩⊥. Hence if v ∈ ⟨A⟩ ∩ A⊥ =
⟨A⟩ ∩ ⟨A⟩⊥ then we must have v · v = 0. But v · v = ∥v∥2, and hence
∥v∥2 = 0. Since the scalar product is positive definite, this implies that
v = 0.

Next, let m = dimA. To conclude the proof, we need to show that
dimA⊥ = n−m. By Grassmann formula, we have:

dim(⟨A⟩ ⊕ A⊥) = m+ dimA⊥,

and since ⟨A⟩ ⊕ A⊥ ⊆ V , we must have

dimA⊥ ≤ n−m.

Now let B = (v1, . . . , vm) be an orthogonal basis of ⟨A⟩. By Theorem
4.2.12, there exist vm+1, . . . , vn ∈ V such that (v1, . . . , vn) is an orthogonal
basis of V . Since vm+1, . . . , vn are orthogonal to v1, . . . , vm, they must
belong to A⊥, since A⊥ = B⊥. It follows that ⟨vm+1, . . . , vn⟩ ⊆ A⊥. Since
vm+1, . . . , vn are part of a basis then they are linearly independent, and
hence their span has dimension n−m. It follows that

dimA⊥ ≥ n−m,

104



Andrea Ferraguti Chapter 4: Scalar products and orthogonality

concluding the proof.

Corollary 4.2.14. Let V be an R-vector space of dimension n endowed
with a positive definite scalar product. Let U ⊆ V be a subspace. Then:

(U⊥)
⊥
= U

Proof. Letm = dimU . By Theorem 4.2.13, dimU⊥ = n−m. By the same
theorem, dim(U⊥)⊥ = n− (n−m) = m. On the other hand, U ⊆ (U⊥)⊥

by Proposition 4.1.6, and since both spaces have the same dimension m,
equality must hold.
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Chapter 5: Eigenspaces and diagonalization

5.1 Eigenvalues,eigenvectors and eigenspaces

Definition 5.1.1. Let K be a field and A ∈ Mn(K). The characteristic
polynomial of the matrix A is the expression:

pA(x) = det(A− xIn) ∈ K[x].

The eigenvalues of the matrix A are the roots of the characteristic poly-
nomial.

Remark 5.1.2. By developing the expression det(A − xIn) with Laplace
theorem, one sees easily that deg pA(x) = n.

Example 5.1.3.

• Let A =

1 2

1 0

 ∈M2(R). Then

pA(x) = det

1− x 2

1 −x

 = x2 − x− 2.

• Let A =


1 0 −1

0 1 −1

−1 −1 0

 ∈M3(R). Then

pA(x) = det


1− x 0 −1

0 1− x −1

−1 −1 −x

 = x3 − 3x2 − x+ 2

Notice that if λ ∈ K is an eigenvalue of A, then det(A−λIn) = 0. This means
that dimker(A − λIn) ≥ 1, because of Theorem 3.2.7. Hence, there exists a
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non-zero X ∈Mn×1(K) such that (A− λIn)X = 0, i.e.

AX = λX.

Definition 5.1.4. Let λ ∈ K be an eigenvalue of A. The eigenspace
relative to λ is the space

Vλ = ker(A− λIn).

The eigenvectors relative to λ are the non-zero elements of Vλ.

Note:-

Technically, an eigenspace is a subspace ofMn×1(K), so eigenvectors will be
column vectors. However, since practically it is easier to write rows instead
of columns, we will think of eigenspace as subspaces of Kn, i.e. we will write
eigenvectors as n-tuples of elements of K.

Definition 5.1.5. Two matrices A,B ∈Mn(K) are similar if there exists
an invertible matrix P ∈ GLn(K) such that P−1AP = B.

A matrix A ∈ Mn(K) is diagonalizable if it is similar to a diagonal
matrix. If this is the case, and P−1AP is diagonal for some P ∈ GLn(K),
the matrix P is called a diagonalizing matrix for A.

Remark 5.1.6. IfD =


λ1 0 . . . 0

0 λ2 . . . 0

. . . . . . . . . . . .

0 . . . 0 λn

 ∈Mn(K) is a diagonal matrix

then

pD(x) = det(D−xIn) = det


λ1 − x 0 . . . 0

0 λ2 − x . . . 0

. . . . . . . . . . . .

0 . . . 0 λn − x

 =
n∏

i=1

(λi−x).
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Therefore, the eigenvalues of D are precisely the elements on the diagonal.

Lemma 5.1.7. if A,B ∈Mn(K) are similar, then pA(x) = pB(x).

Proof. Let P ∈ GLn(K) be such that P−1AP = B. Then:

pB(x) = det(B − xIn) = det(P−1AP − xIn) = det(P−1AP − xP−1P ) =

= det(P−1(A− xIn)P ) = detP−1 · pA(x) · detP =

= (detP )−1 · detP · pA(x) = pA(x).

Theorem 5.1.8. A matrix A ∈Mn(K) is diagonalizable if and only if the
vector space Kn has a basis entirely consisting of eigenvectors of A.

Proof. First, suppose that A is diagonalizable. Let P ∈ GLn(K) be such
that P−1AP = D with D ∈ Mn(K) a diagonal matrix. Multiplying on
both sides by D, we get that

AP = PD.

Now write P = (P1|P2| . . . |Pn) with P1, . . . , Pn the columns of P . Then:

AP = (AP1|AP2| . . . |APn),

that is, the columns of the matrix AP are AP1, . . . , APn. On the other

hand, if D =


λ1 0 . . . 0

0 λ2 . . . 0

. . . . . . . . . . . .

0 . . . 0 λn

 then

PD = (λ1P1|λ2P2| . . . |λnPn),

that is, the columns of PD are λ1P1, . . . , λnPn. Since the two matrices
are equal, it follows that APi = λiPi for every i = 1, . . . , n. This means
precisely that every Pi is an eigenvector of A (notice that no Pi can be
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the zero vector since P is invertible). Moreover, since detP ̸= 0 then the
columns of P are a basis of Kn.

Conversely, let P1, . . . , Pn be a basis of Kn consisting of eigenvectors
of A. Let P = (P1| . . . |Pn). Since AP = (AP1| . . . |APn) and the Pi’s are
eigenvectors, there exist λ1, . . . , λn ∈ K such that APi = λiPi for every
i = 1, . . . , n. Therefore,

AP = (λ1P1| . . . |λnPn) = DP,

where D =


λ1 0 . . . 0

0 λ2 . . . 0

. . . . . . . . . . . .

0 . . . 0 λn

. Since (P1, . . . , Pn) is a basis of Kn, the

matrix P is invertible and therefore

P−1AP = D,

so that A is diagonalizable.

Remark 5.1.9. The proof of Theorem 5.1.8 shows how to find a diagonal-
izing matrix for a diagonalizable matrix A ∈ Mn(K): it sufficies to find
a basis (P1, . . . , Pn) of Kn consisting of eigenvectors of A and then set
P = (P1|P2| . . . |Pn). The matrix P is a diagonalizing matrix for A.

Example 5.1.10.

• Let A =

1 2

2 1

 ∈M2(R). The characteristic polynomial of A is:

PA(x) = det

1− x 2

2 1− x

 = (1− x)2 − 4,

so that the eigenvalues of A are λ1 = −1, λ2 = 3. Let us compute
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the eigenspaces. We have:

V−1 = ker(A+ I2) = ker

2 2

2 2

 ,

and it is immediate to see that this is the subspace

{(α,−α) : α ∈ R} ⊆ R2.

Next,

V3 = ker(A− 3I2) = ker

−2 2

2 −2

 = {(α, α) : α ∈ R}.

Thus both eigenspaces are 1-dimensional. A basis of V−1 is ((1,−1)),
while a basis of V3 is ((1, 1)). Since (1,−1) and (1, 1) are linearly
independent, they together constitute a basis of R2. This means
that ((1,−1), (1, 1)) is a basis of R2 consisting of eigenvectors of A.
Hence the matrix

P =

 1 1

−1 1


is a diagonalizing matrix for A. In fact one can verify that:

P−1AP =

−1 0

0 3

 .

• Let A =

1 1

0 1

 ∈ M2(R). We have pA(x) = (1 − x)2, so that

the unique eigenvalue of A is λ = 1. The relative eigenspace is

ker(A− I2) = ker

0 1

0 0

, that is a 1-dimensional subspace of R2.

Therefore, R2 cannot have a basis consisting of eigenvectors of A; it
follows that A is not diagonalizable.
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• Let A be the second matrix in Example 5.1.3, so that

pA(x) = x3 − 3x2 − x+ 2 = (x+ 1)(x− 1)(x− 2).

The eigenvalues are therefore: λ1 = −1, λ2 = 1 and λ3 = 2. Hence

V−1 = ker(A+ I3) = ker


2 0 −1

0 2 −1

−1 −1 1

 .

To find such kernel, we need to solve the homogeneous linear system
2x− z = 0

2y − z = 0

−x− y + z = 0

.

The associated matrix is of course A+ I2, that has rank 2. The first
two rows are linearly independent, so we can disregard the third
equation and solve the system{

2x− z = 0

2y − z = 0
,

whose set of solutions is

V−1 = {(α, α, 2α) : α ∈ R} = ⟨(1, 1, 2)⟩.

Next,

V1 = ker(A− I2) = ker


0 0 −1

0 0 −1

−1 −1 −1

 ,

so that
V1 = {(α,−α, 0) : α ∈ R} = ⟨(1,−1, 0)⟩.

111



Andrea Ferraguti Chapter 5: Eigenspaces and diagonalization

Finally,

V2 = ker(A− 2I2) = ker


−1 0 −1

0 −1 −1

−1 −1 −2


so that

V2 = {(α, α,−α) : α ∈ R} = ⟨(1, 1,−1)⟩.

The sequence ((1, 1, 2), (1,−1, 0), (1, 1,−1)) is a basis of R3, and

therefore the matrix A is diagonalizable. If P =


1 1 1

1 −1 1

2 0 −1


then

P−1AP =


−1 0 0

0 1 0

0 0 2

 .

Definition 5.1.11. Let A ∈Mn(K) and let λ ∈ K be an eigenvalue of A.
The algebraic multiplicity aλ of λ is the multiplicity of λ as a root of the
characteristic polynomial of A.

The geometric multiplicity gλ of λ is the dimension of the eigenspace
relative to λ.

Remark 5.1.12. We have that aλ, gλ ≥ 1. In fact, this is obvious by
definition for the algebraic multiplicity, and since gλ = dim(ker(A− λIn))
and det(A− λIn) = 0 we have that gλ ≥ 1 by Theorem 3.2.7.

Theorem 5.1.13. Let A ∈ Mn(K) and let λ ∈ K be an eigenvalue of A.
Then:

gλ ≤ aλ.

Proof. Let Vλ be the eigenspace relative to λ. Let P1, . . . , Pm be a basis
of Vλ, so that m = gλ. Let us fix a basis B = (P1, . . . , Pm, Pm+1, . . . , Pn)
of Kn, thanks to Theorem 1.4.16, and let P = (P1|P2| . . . |Pm), where we
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think of the Pi’s as column vectors. Then:

P−1AP = (P−1AP1|P−1AP2| . . . |P−1APn),

and since P1, . . . , Pm ∈ Vλ we have APi = λPi for every i ∈ {1, . . . ,m}.
Hence:

P−1AP = (P−1λP1|P−1AP2| . . . |P−1λPm|P−1APm+1| . . . |P−1APn) =

(λP−1P1|λP−1P2| . . . |λP−1Pm|P−1APm+1| . . . |P−1APn).

Now notice that P−1Pi is simply the i-th vector of the canonical basis,
since

In = P−1P = (P−1P1|P−1P2| . . . |P−1Pn).

Therefore, the first m columns of P−1AP are λe1, λe2, . . . , λem. It follows
that when we compute the characteristic polynomial of P−1AP we will
obtain (λ − x)mq(x), for some polynomial q(x) ∈ K[x]. In other words,
(λ− x)m is a factor of the characteristic polynomial of P−1AP . But this
equals pA(x), thanks to Lemma 5.1.7. Hence the algebraic multiplicity of
λ is at least m, as desired.

Definition 5.1.14. An eigenvalue λ of a matrix A ∈ Mn(K) is called
regular if aλ = gλ.

Remark 5.1.15. If aλ = 1 then λ is regular, by Remark 5.1.12 and Theo-
rem 5.1.13.

Proposition 5.1.16. Let A ∈ Mn(K) and let λ1, . . . , λm ∈ K be distinct
eigenvalues. Then the sum Vλ1 + Vλ2 + . . .+ Vλm is direct.

Proof. By induction on m. For m = 1 there is nothing to prove. Now
assume that the claim is true for m − 1. Let X ∈ Vλ1 + Vλ2 + . . . + Vλm .
We need to show that this can be written in a unique way as a sum of
eigenvectors belonging to different eigenspaces. Suppose then that:

X = X1 +X2 + . . .+Xm = Y1 + Y2 + . . .+ Ym

where Xi, Yi ∈ Vλi
for every i = 1, . . . ,m. Subtracting the two expressions
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we get:
(X1 − Y1) + (X2 − Y2) + . . .+ (Xm − Ym) = 0. (22)

Multiplying by A on the left both sides of (22) we get:

λ1(X1 − Y1) + λ2(X2 − Y2) + . . .+ λm(Xm − Ym) = 0, (23)

since Xi − Yi is an eigenvector relative to λi, for every i. On the other
hand, we can multiply both sides of (22) by λm and get:

λm(X1 − Y1) + λm(X2 − Y2) + . . .+ λm(Xm − Ym) = 0. (24)

Subtracting (24) from (23), we get:

(λ1 − λm)(X1 − Y1) + . . .+ (λm−1 − λm)(Xm−1 − Ym−1) = 0

or, in other words:

(λ1−λm)X1+. . .+(λm−1−λm)Xm−1 = (λ1−λm)Y1+. . .+(λm−1−λm)Ym−1.

We have therefore written a vector of Vλ1 + . . . + Vλm−1 in two ways; by
the inductive hypothesis these two ways must coincide. That is, for every
i ∈ {1, . . . ,m− 1} we must have:

(λi − λm)Xi = (λi − λm)Yi.

Since the λi’s are all distinct, the coefficient λi − λm is non-zero, and
therefore we get:

Xi = Yi for every i ∈ {1, . . . ,m− 1}.

Substituting in (22), we get that Xm = Ym, too, and the proof is complete.

Theorem 5.1.17. Let A ∈ Mn(K). Then A is diagonalizable if and only
if all eigenvalues belong to K and they are all regular.

Proof. First, suppose that A is diagonalizable. By Theorem 5.1.8, the
space Kn has a basis B consisting of eigenvectors of A. Since such eigen-
vectors must belong to certain eigenspaces, there exist pairwise distinct
eigenvalues λ1, . . . , λm ∈ K of A such that B ⊆ Vλ1 + Vλ2 + . . .+ Vλm . By
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Proposition 5.1.16, the latter sum is direct and hence

B ⊆ Vλ1 ⊕ Vλ2 ⊕ . . .⊕ Vλm .

Since ⟨B⟩ = V , we must have Vλ1 ⊕ Vλ2 ⊕ . . .⊕ Vλm = Kn. Therefore,
by Grassmann formula,

n = gλ1 + . . .+ gλm .

On the other hand, gλi
≤ aλi

for every i by Theorem 5.1.13, and of course
aλ1+ . . .+aλm ≤ n by the fundamental theorem of algebra 0.5.3. It follows
that:

n = gλ1 + . . .+ gλm ≤ aλ1 + . . .+ aλm ≤ n,

and hence equality must hold everywhere. In particular, aλ1 + . . .+aλm =
n, so that λ1, . . . , λm are all the eigenvalues of A, and so they all belong
to K, and gλi

= aλi
for every i, so that all eigenvalues are regular.

Conversely, suppose that all eigenvalues of A belong to K and they
are all regular. Let such eigenvalues be λ1, . . . , λm. Since aλi

= gλi
for

every i, we have that gλ1 + . . .+ gλm = n because, as we explained above,
aλ1 + . . .+ aλm = n by the fundamental theorem of algebra. On the other
hand,

dim(Vλ1 + . . .+ Vλm) = dim(Vλ1 ⊕ . . .⊕ Vλm)

by Proposition 5.1.16. Altogether, these observations imply that

Vλ1 ⊕ . . .⊕ Vλm = Kn.

Hence if Bi is a basis of Vλi
for every i, we have, by Proposition 1.5.5, that

B1 ∪ B2 ∪ . . . ∪ Bm is a basis of Kn consisting of eigenvectors of A, and it
follows that A is diagonalizable by Theorem 5.1.8.

Example 5.1.18.

• We have seen in Example 5.1.10 that the matrix1 1

0 1

 ∈M2(R)

is not diagonalizable. In fact, such matrix does not satisfy the hy-
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potheses of Theorem 5.1.17, since 1 is a non-regular eigenvalue: it
has algebraic multiplicity 2 but geometric multiplicity 1.

• The matrix A =

0 −1

1 0

 ∈ M2(R) is not diagonalizable for a

different reason: its characteristic polynomial is x2 + 1, that has
no roots in R. So this matrix has no real eigenvalues, and again
it does not satisfy the hypotheses of Theorem 5.1.17. However,
if we think of A as an element of M2(C) rather than an element
of M2(R), then the eigenvalues belong to the base field C, since
they are ±i, and they are both regular, since they have algebraic
multiplicity 1. Hence the matrix A is diagonalizable over C. In fact

if P =

 1 1

−i i

 then one can verify that:

P−1AP =

i 0

0 −i

 .

5.2 Real symmetric matrices

Definition 5.2.1. We recall that a square matrix A ∈ Mn(K) is called
symmetric if A = tA.

If X ∈ Cn, we denote by X the vector whose entries are the complex
conjugates of the entries of X. Namely, if X = (x1, . . . , xn) then:

X = (x1, . . . , xn).

Notice that if X = (x1, . . . , xn) ∈ Cn is non-zero then

X tX =
n∑

i=1

|xi|2 > 0. (25)

Theorem 5.2.2. Let A ∈ Mn(R) be a symmetric matrix. Then its eigen-
values are all real.
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Proof. Let pA(x) ∈ R[x] be the characteristic polynomial of A. If λ ∈ C
is an eigenvalue of A, namely a root of pA(x), then also λ is an eigenvalue
of A (cf. Lemma 0.5.4). Moreover, if X is an eigenvector of A relative to
λ then

AX = λX,

and taking conjugates we get:

AX = AX = λX = λ ·X, (26)

using the fact that A = A since A has real entries. This means that
X is an eigenvector of A relative to the eigenvalue λ. Using (26) together
with the fact that A = tA we get:

λ(tX ·X) = t(λX) ·X = t(AX) ·X = tX tAX =

= tX(AX) = tXλX = λ(tXX).

Equating the first and the last terms of the above chain of equalities we
see that λ(tX ·X) = λ(tX ·X), namely

(λ− λ)(tX ·X) = 0.

Since X is an eigenvector, it is not the zero vector, and therefore by (25)
we have tX · X ̸= 0. It follows that λ = λ, or, in other words, that
λ ∈ R.

The standard scalar product · : Rn × Rn → R can be extended to a scalar
product

• : Cn × Cn → C

((x1, . . . , xn), (y1, . . . , yn)) 7→
n∑

i=1

xiyi.

Note:-

The standard scalar product Cn × Cn → C defined above is not positive
definite; in fact it makes no sense to talk about positive complex numbers.
Moreover, it is not even true that (x1, . . . , xn) • (x1, . . . , xn) = 0 if and only
if (x1, . . . , xn) = 0. For example, (1, i) • (1, i) = 1− 1 = 0.
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Proposition 5.2.3. Let A ∈ Mn(R) be a symmetric matrix. Let λ, µ ∈ R
be distinct eigenvalues of A. Let X be an eigenvector relative to λ and Y
an eigenvector relative to µ. Then X • Y = 0.

Proof. By hypothesis, AX = λX and AY = µY . Hence

λ(X • Y ) = λ(tX · Y ) = t(λX) · Y =

= t(AX) · Y = (tX tA)Y = tXAY =

= tXµY = µ(X • Y ),

so that
(λ− µ)(X • Y ) = 0.

Since by hypothesis λ ̸= µ, we get that X • Y = 0.

Definition 5.2.4. A matrix A ∈ Mn(R) is orthogonal if its rows form an
orthonormal basis of Rn and its columns form an orthonormal basis of
Rn.

Example 5.2.5. The matrix A =

1/
√
2 1/

√
2

1/
√
2 −1/

√
2

 ∈M2(R) is orthogo-

nal, since ((1/
√
2, 1/

√
2), (1/

√
2,−1/

√
2)) is an orthonormal basis of R2.

Remark 5.2.6. An orthogonal matrix is necessarily invertible, since its
rows/columns are linearly independent.

Lemma 5.2.7. A matrix A ∈Mn(R) is orthogonal if and only if tA = A−1.

Proof. Let R1, . . . , Rn be the rows of A and C1, . . . , Cn be the columns of
A. If A is orthogonal, then by definition the following conditions hold:

1. Ri •Rj = 0 for every i ̸= j;

2. Ri •Ri = 1 for every i;
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3. Ci • Cj = 0 for every i ̸= j;

4. Ci • Ci = 1 for every i.

On the other hand, tA = A−1 if and only if the following conditions hold:

(a) A · tA = In;

(b) tA · A = In.

To conclude the proof, it is enough to look at how the products A · tA
and tA ·A are computed. The matrix AtA is given by (aij)i,j∈{1,...,n} where
aij = Ri • Rj for every i, j. Hence such matrix equals In precisely if
conditions 1. and 2. hold true. Similarly, we have

tA · A = (Ci • Cj)i,j∈{1,...,n},

so that tA · A = In if and only if conditions 3. and 4. hold true.

Remark 5.2.8. If A,B ∈ Mn(R) are orthogonal, then AB is orthogonal,
since

(AB)−1 = B−1A−1 = tBtA = (AB)t.

In fact, the set of all orthogonal matrices in GLn(R) is a group, with the
operation being the usual multiplication of matrices.

Definition 5.2.9. A matrix A ∈ Mn(R) is orthogonally diagonalizable
if there exists an orthogonal matrix O ∈ GLn(R) such that O−1AO is
diagonal.

Theorem 5.2.10 (Spectral theorem). A matrix A ∈Mn(R) is orthogonally
diagonalizable if and only if it is symmetric.

Proof. First, suppose that A is orthogonally diagonalizable, and let O ∈
GLn(R) be an orthogonal matrix such that O−1AO = D, with D ∈Mn(R)
diagonal. By Lemma 5.2.7, we have that O−1 = tO, and hence tOAO = D.
On the other hand, a diagonal matrix is symmetric, so thatD = tD. Hence

tOAO = D = tD = t(tOAO) = tOtAO,
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so that tOAO = tOtAO. Multiplying this equality on the left by O and
on the right by tO yields A = tA, i.e. that A is symmetric.

Conversely, suppose that A is symmetric. We will prove the claim by
induction on n. For n = 1, there is nothing to do because A is itself
diagonal and equals 1×A× 1, with 1 being an orthogonal (1× 1)-matrix.
Now suppose that the claim is true for all square matrices of size n − 1
and consider our matrix A ∈ Mn(R). Let λ ∈ R be an eigenvalue (that
exists thanks to Theorem 5.2.2), and let X be an eigenvector relative to
λ, normalized so that X • X = 1. Now choose an orthonormal basis
B = (X,X2, . . . , Xn) of Rn and let P = (X|X2| . . . |Xn) be the matrix
whose columns are the vectors in B. Then

tPAP = tP (AX|AX2| . . . |AXn) =
tP (λX|AX2| . . . |AXn).

Now notice that since B is an orthonormal basis, when we compute the
product tP (λX) we obtain the columns vector t(λ, 0, 0, . . . , 0), and there-
fore

tPAP =

 λ v

t0 C

 , (27)

where v ∈ Rn−1, t0 is the column vector of size n− 1 with only 0 entries
and C ∈ Mn−1(R). Since the matrix A is symmetric, then so is tPAP ,
and hence expression (27) implies that v is the zero vector in Rn−1 and
C = tC. Now we can use the inductive hypothesis: C ∈ Mn−1(R) is
symmetric, and hence orthogonally diagonalizable. Let Q ∈ GLn−1(R) be
an orthogonal matrix such that tQCQ = D, with D diagonal. Now let

P ′ =

 1 0

t0 Q

 ;

this is orthogonal because Q is orthogonal and O = PP ′ is orthogonal
since both P and P ′ are (see Remark 5.2.8). All in all, we have that:

tOAO = t(PP ′)A(PP ′) = tP ′(tPAP )P ′ =

= tP ′

 λ 0

t0 C

P ′ =

 λ 0

t0 D

 ,

that is diagonal, ending the proof.
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Chapter 6: Affine geometry

6.1 Affine spaces

Definition 6.1.1. An affine space of dimension n over a field K is a triple
(A, V, f) where:

• A is a non-empty set, whose elements are called points of the affine
space;

• V is a K-vector space of dimension n;

• f : A× A→ V is a function with the following properties:

(i) For every P ∈ A and every v ∈ V , there exists a unique Q ∈ A
such that f(P,Q) = v.

(ii) If P,Q,R ∈ V are such that f(P,Q) = v and f(Q,R) = w,
then f(P,R) = v + w.

One shall think of A as the set of points in the affine space, while elements of V
are vectors that represent the ”difference” between two points. The following
examples are the keys to understanding the concept of affine space.

Example 6.1.2. Let K = R, let A = R2, seen as the well-known set of
points in the cartesian plane, and let V be the vector space R2. Given
two points P = (xP , yP ) and Q = (xQ, yQ) in A, we define

f(P,Q) := (xQ − xP , yQ − yP ) ∈ V.

Let us check that the triple (A, V, f) is an affine space of R of dimension
2. First, given a point (xP , yP ) ∈ A and a vector v ∈ V , we can write
v = (v1, v2) for some v1, v2 ∈ R. Hence if we let Q := (v1 + xP , v2 + yP )
then f(P,Q) = (v1 + xP − xP , v2 + yP − yP ) = v, and it is easy to check
that Q is the unique point of A with this property. Therefore property
(i) holds true. Moreover, if P,Q,R ∈ A are such that f(P,Q) = v and
f(Q,R) = w, then writing P = (xP , yP ), Q = (xQ, yQ) and R = (xR, yR)
we get that v = (xQ − xP , yQ − yP ) and w = (xR − xQ, yR − yQ), so that
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v + w = (xR − xP , yR − xR). On the other hand, by definition

f(P,R) = (xR − xP , yR − yP ),

so that f(P,R) = f(P,Q) + f(Q,R) and (ii) holds true as well.

Example 6.1.2 is nothing else than the well-known cartesian plane. The
points of the space are given by pairs of real numbers, and for every pair of
points P,Q in the plane there is a vector connecting them. This vector can be
visualized by drawing a straight arrow from P to Q pointing at Q. However,
one needs to be careful using this graphic representation because vectors with
the same length, direction and verse are the same element of the underlying
vector space V . For example, the vector connecting the points (0, 0) and (1, 0)
is the same vector that connects (0, 1) and (1, 1), although graphically we
represent the two vectors as two separate objects.

The function f of example 6.1.2 is nothing else that the function that
associates to a pair of points P,Q the vector of V = R2 that connects them.
Property (i) then just says that given a point P and a vector v, one can
”translate” the point P by v in a unique way, obtaining a new point Q. For
example, if one is given the point P = (1, 1) and the vector v = (−2, 0), the
unique translate of P by v is the point Q = (−1, 1). Finally, property (ii)
simply says that if Q is the translate of P by a vector v and R is the translate
of Q by a vector w then R is the translate of P by the vector v + w.

Example 6.1.2 can of course be generalized to any dimension and any field.
We will see later on that this is, in a way, the only relevant example.

Example 6.1.3. Let n ≥ 1 be an integer, K a field, A = Kn, seen as a
set of points, and V = Kn seen as an n-dimensional K-vector space. Let
f : A× A→ V be the function defined by

((x1, . . . , xn), (y1, . . . , yn)) 7→ (y1 − x1, . . . , yn − xn).

Then the triple (A, f, V ) is an affine space of dimension n over the field K.
Of course when n = 2 and K = R we recover Example 6.1.2. When n = 3
and K = R this is also a well-known object: it is nothing else that the
3-dimensional space, where every point is identified uniquely by a triple
of real numbers, usually referred to as ”coordinates”. Once again, given
two points in the space it is possible to connect them by a unique vector,
represented as a straight arrow starting at the first point and pointing at
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the second one.
The case n > 3 and K = R cannot be drawn on paper of course, since

our world is only 3-dimensional, but it works exactly in the same way: a
point is identified with an n-tuple of real numbers, and there is a unique
vector connecting two distinct points.

When n = 1 and K = R the affine space above is simply the real line:
its points are real numbers, and the vector connecting two real numbers
is just their difference.

Definition 6.1.4. The affine space defined in Example 6.1.3 will be de-
noted by An(K).

From now on, when (A, V, f) is an affine space and P,Q ∈ A, we will denote

by
−→
PQ the vector f(P,Q).

Proposition 6.1.5. Let (A, V, f) be an affine space over a field K, and let
P,Q,R, S ∈ A. The following hold true.

1.
−→
PQ =

−→
PR if and only if Q = R;

2.
−→
PQ = 0 if and only if P = Q;

3. if v =
−→
PQ, then −v =

−→
QP ;

4.
−→
PQ =

−→
RS if and only if

−→
PR =

−→
QS.

Proof. 1. Of course if Q = R then
−→
PQ =

−→
PR. Conversely, let v :=

−→
PQ.

By property (i) of the function f , there exists a unique point X ∈ A such

that
−−→
PX = v. Therefore that point must be Q, and hence if

−→
PR = v then

necessarily R = Q.

2. By property (ii) of the function f , we have
−→
PP =

−→
PP +

−→
PP , and

therefore
−→
PP = 0. Conversely, if

−→
PQ = 0, then

−→
PQ =

−→
PP , and therefore

Q = P by point 1.

3. By property (ii) of the function f , we have
−→
PP =

−→
PQ +

−→
QP . By

point 2., this implies that
−→
PQ = −

−→
QP .

4. By property (ii) of f , we have
−→
PQ +

−→
QS =

−→
PS =

−→
PR +

−→
RS. The

claim follows immediately.
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Definition 6.1.6. Let (A, V, f) be an affine space of dimension n over a
field K. Let P ∈ A and v ∈ V . The translate of P by v, denoted by

tv(P ), is the unique point Q ∈ A such that
−→
PQ = v.

Given a vector v ∈ V , the translation map associated to v is the map

tv : A→ A

P 7→ tv(P )

Note:-

The existence of the translate of P by v is granted by property 1. of the
function f associated to an affine space.

Corollary 6.1.7. The translation map tv : A→ A is a bijection.

Proof. Suppose tv(P ) = tv(Q) = R. This is the same as saying that
−→
PR = v =

−→
QR. By Proposition 6.1.5, it follows that

−→
RP = −v =

−→
RQ and

in turn that P = Q. Hence tv is injective.
If Q ∈ A, by the definition of affine space there exists a unique P ∈ A

such that
−→
QP = −v. By Proposition 6.1.5 it follows that

−→
PQ = v, namely

we have tv(P ) = Q. This shows that tv is surjective.

6.2 Linear subspaces

Definition 6.2.1. Let (A, V, f) be an affine space of dimension n over a
field K. Let O ∈ A and W ⊆ V be a vector subspace of dimension m.
The linear subspace associated to O and W is the set

[O,W ] := {tv(O) : v ∈ W}.

The vector subspace W is called translation space of [O,W ]. The point
O is called origin of [O,W ].

In other words, a linear subspace of an affine space is the set of all translates
of a point via vectors that lie in a vector subspace of V .
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Example 6.2.2. Let A2(R) be the affine space of Example 6.1.2. Let
W ⊆ V be the subspace generated by the vector (1, 1) and let O =
(0, 0) ∈ A2(R). The linear subspace [O,W ] is the set of all points in the
plane that are translates of (0, 0) via a multiple of (1, 1). Depicting A2(R)
as the usual cartesian plane, [O,W ] is nothing else than the bisector of
the first quadrant.

Similarly, let A3(R) be the affine space of Example 6.1.3 with n = 3
and K = R. Let O = (1, 1, 1) ∈ A3(R) and let W = ⟨(1, 0, 0), (0, 1, 0)⟩ ⊆
V . Depicting A3(R) in the usual way, the linear subspace [O,W ] is the
plane passing by (1, 1, 1) and parallel to the xy-plane.

In general, we will see that linear subspaces in An(K) are nothing else
than sets of solutions of linear systems!

Proposition 6.2.3. Let (A, V, f) be an affine space of dimension n over a
field K, and let [O,W ] be a linear subspace. Then the triple

([O,W ],W, f |[O,W ]×[O,W ])

is an affine space of dimension m.

Proof. In order to ease the notation, we will write f |[O,W ] in place of
f |[O,W ]×[O,W ].

First, we need to show that f |[O,W ] takes values in W . In other words,
we need to show that if P,Q ∈ [O,W ] then f(P,Q) ∈ W . Since P,Q ∈
[O,W ] then by definition there exist v, w ∈ W such that f(O,P ) = v and
f(O,Q) = w. Then by Proposition 6.1.5 we have that f(P,O) = −v and
since (A, V, f) is a vector space we have

−v + w = f(P,O) + f(O,Q) = f(P,Q).

It follows that f(P,Q) = w − v, and since W is a vector subspace the
latter difference belongs to W . Hence f |[O,W ] takes values in W .

Next, we need to show that f |[O,W ] satisfies properties 1. and 2. of
Definition 6.1.1. Let then P ∈ [O,W ] and v ∈ W . Since (A, V, f) is an
affine space, there exists a unique Q ∈ A such that f(P,Q) = v. Showing
that Q ∈ [O,W ] is equivalent then to proving that property 1. holds for
f |[O,W ]. Since P ∈ [O,W ], by definition of linear subspace there is a
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w ∈ W such that f(O,P ) = w. Then

f(O,Q) = f(O,P ) + f(P,Q) = w + v,

so that f(O,Q) ∈ W . But this means precisely that Q is a translate of O
via a vector of W , namely that Q ∈ [O,W ].

Finally, let P,Q,R ∈ [O,W ]. Then f(P,Q) + f(Q,R) = f(P,R)
because (A, V, f) is an affine space. On the other hand of course f(P,Q)
equals f |[O,W ](P,Q), and the same holds true for f(Q,R) and f(P,R).
Property 2. then holds true for f |[O,W ].

Remark 6.2.4. One can prove that if (A, V, f) is an affine space, B ⊆
A is a non-empty subset and W ⊆ V is a vector subspace such that
(B,W, f |B×B) is an affine space, then for every O ∈ B the set {tw(O) : w ∈
W} is a linear subspace of (A, V, f).

Proposition 6.2.5. Let (A, V, f) be an affine space of dimension n over a
field K, and let [O,W ] be a linear subspace. Then we have:

[O,W ] = [O′,W ] for every O′ ∈ [O,W ].

In other words, every point of a linear subspace can be taken as origin of
the subspace.

Proof. Let O′ ∈ [O,W ]. First, we prove that [O,W ] ⊆ [O′,W ]. Let

Q ∈ [O,W ]. Then there exists w ∈ W such that w =
−→
OQ. On the other

hand O′ ∈ [O,W ] as well, and therefore there exists w′ ∈ [O,W ] such that

w′ =
−−→
OO′. It follows that

−−→
O′Q =

−−→
O′O +

−→
OQ = w − w′ ∈ W,

and therefore Q ∈ [O′,W ], by definition.
To conclude the proof we need to show that [O′,W ] ⊆ [O,W ]. So

let Q ∈ [O′,W ]. Then there is some w ∈ W such that
−−→
O′Q = w. Since

O′ ∈ [O,W ], there is also some v ∈ W such that
−−→
OO′ = v. It follows that

−→
OQ =

−−→
OO′ +

−−→
O′Q = v + w ∈ W,
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so that Q ∈ [O,W ].

Proposition 6.2.6. Let (A, V, f) be an affine space over a field K and let
[O,W ] and [O′,W ′] be two linear subspaces.

1. If P ∈ [O,W ] ∩ [O′,W ′], then

[O,W ] ∩ [O′,W ′] = [P,W ∩W ′].

2. [O,W ] ⊆ [O′,W ′] if and only if [O,W ] ∩ [O′,W ′] ̸= ∅ and W ⊆ W ′

Proof. 1. Since P ∈ [O,W ] ∩ [O′,W ′], by Proposition 6.2.5 we can write
[O,W ] = [P,W ] and [O′,W ′] = [P,W ′]. Therefore it is enough to show
that [P,W ] ∩ [P,W ′] = [P,W ∩W ′].

First, we show that [P,W ∩ W ′] ⊆ [P,W ] ∩ [P,W ′]. Let then Q ∈
[P,W ∩ W ′], and write w =

−→
PQ with w ∈ W ∩ W ′. Since w ∈ W , it

follows that Q ∈ [P,W ], and since w ∈ W ′, it follows that Q ∈ [P,W ′].
Hence Q ∈ [P,W ] ∩ [P,W ′].

Conversely, we need to show that [P,W ] ∩ [P,W ′] ⊆ [P,W ∩W ′]. Let
Q ∈ [P,W ] ∩ [P,W ′]. Then there are vectors w ∈ W and w′ ∈ W ′ such

that
−→
PQ = w and

−→
PQ = w′. But then w = w′, hence w ∈ W ∩W ′ and it

follows that Q ∈ [P,W ∩W ′].
2. First assume that [O,W ] ⊆ [O′,W ′]. It is then obvious that [O,W ]∩

[O′,W ′] ̸= ∅. Moreover, since O ∈ [O′,W ′] then by Proposition 6.2.5 we
have [O′,W ′] = [O,W ′]. Now we have to show that W ⊆ W ′. If w ∈ W ,
then Q := tw(O) ∈ [O,W ′], but by definition of [O,W ′] we must also have

Q = tw′(O) for some w′ ∈ W ′. It follows that w =
−→
OQ = w′, and so

w ∈ W ′. This shows that W ⊆ W ′.
Conversely, assume that [O,W ]∩ [O′,W ′] ̸= ∅ and W ⊆ W ′. By point

1. we have that [O,W ] ∩ [O′,W ′] = [P,W ∩W ′] for some P ∈ [O,W ] ∩
[O′,W ′]. Since W ⊆ W ′, it follows that [O,W ] ∩ [O′,W ′] = [P,W ]. Since

P ∈ [O,W ], we have that
−→
OP ∈ W , and hence

−→
PO ∈ W by Proposition

6.1.5. Hence O ∈ [P,W ] and by Proposition 6.2.5 it follows that

[O,W ] ∩ [O′,W ′] = [O,W ].

This implies obviously that [O,W ] ⊆ [O′,W ′].
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Definition 6.2.7. Two linear subspaces [O,W ] and [O′,W ′] of an affine
space (A, V, f) are called parallel if W ⊆ W ′ or W ′ ⊆ W .

To denote parallel linear subspaces we write [O,W ] ∥ [O′,W ′].

Proposition 6.2.8. If [O,W ] and [O′,W ′] are two parallel subspaces of an
affine space (A, V, f), then one of the following hold true:

1. [O,W ] ⊆ [O′,W ′];

2. [O′,W ′] ⊆ [O,W ];

3. [O,W ] ∩ [O′,W ′] = ∅.

In particular, if dimW = dimW ′ then either [O,W ] = [O′,W ′] or [O,W ]∩
[O′,W ′] = ∅.

Proof. Follows immediately form Proposition 6.2.6.

6.3 Relative position of linear subspaces

Definition 6.3.1. Let (A, V, f) be an affine space of dimension n, and let
[O,W ] be a linear subspace.

• If W = {0}, then [O,W ] is called point.

• If dimW = 1, then [O,W ] is called line.

• If dimW = 2, then [O,W ] is called plane.

• If dimW = n− 1, then [O,W ] is called hyperplane.

Remark 6.3.2. Linear subspaces of dimension 0, namely points, are noth-
ing else than elements of A. In fact by definition a point [O, {0}] is the
set {t0(O)} = {O}.

Definition 6.3.3. Let [O,W ] and [O′,W ′] be two linear subspaces of an
affine space. We say that [O,W ] lies on [O′,W ′] if [O,W ] ⊆ [O′,W ′].
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Proposition 6.3.4. Let (A, V, f) be an affine space of dimension 2, and
let r, s be two lines. If r ∩ s = ∅, then r ∥ s.

Proof. Let r = [P, ⟨v⟩] and s = [Q, ⟨w⟩] for some non-zero vectors v, w ∈
V . By contradiction, suppose that r and s are not parallel. Then w /∈
⟨v⟩, as otherwise we would have ⟨w⟩ ⊆ ⟨v⟩. Hence v and w are linearly
independent, and therefore dim⟨v, w⟩ = 2. Since dimV = 2, it follows

that V = ⟨v, w⟩. Hence there exist α, β ∈ K such that
−→
PQ = αv + βw.

Let Q′ ∈ s be such that
−−→
QQ′ = −βw. Then:

−−→
PQ′ =

−→
PQ+

−−→
QQ′ = αv + βw − βw = αv.

It follows that Q′ ∈ r, but of course Q′ ∈ s by construction. Hence
r ∩ s ̸= ∅, contradicting the hypothesis.

Definition 6.3.5. Let (A, V, f) be an affine space of dimension n ≥ 3.
Two lines that are not parallel and have empty intersection are called
skew. Two lines that lie on the same plane are called coplanar.

Proposition 6.3.6. Let (A, V, f) be an affine space of dimension n ≥ 3.

1. Two lines r, s in (A, V, f) are skew if and only if they are not coplanar

2. There exist two skew lines in (A, V, f).

3. Two skew lines lie on parallel planes.

Proof. 1. First, assume that r, s are skew. Let r = [P, ⟨v⟩] and s =
[Q, ⟨w⟩]. Suppose by contradiction that they lie on a plane π = [O,W ],
where W ⊆ V is a subspace of dimension 2. By Proposition 6.2.3, π is an
affine space of dimension 2. Since r∩ s = ∅, by Proposition 6.3.4 they are
parallel, but this contradicts the hypothesis.

Conversely, assume that there is no plane containing r and s. Assume
by contradiction that r ∩ s ̸= ∅. Let P ∈ r ∩ s. Write r = [P, ⟨v⟩] and
s = [P, ⟨w⟩] for some non-zero v, w ∈ V , thanks to Proposition 6.2.5. The
space ⟨v, w⟩ is at most 2-dimensional, hence there exists a subspace W ⊆
V such that dimW = 2 and ⟨v, w⟩ ⊆ W . Then the linear subspace [P,W ]
is a plane that clearly contains both lines, contradicting the hypothesis.
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Hence it must be r ∩ s = ∅. Now suppose by contradiction that r ∥ s.
Then there exists a non-zero vector v ∈ V such that r = [P, ⟨v⟩] and
s = [Q, ⟨v⟩]. Since r ∩ s = ∅, it must be r ̸= s and hence we can assume

that Q /∈ r. Let π = [P, ⟨
−→
PQ, v⟩]. We claim that this is a plane containing

both r and s. First,
−→
PQ cannot be proportional to v for as it was, then

Q would be a translate of P via a multiple of v, and hence it would lie
on r, which is impossible. The line r lies on π by construction. Let now

R ∈ s. Then
−→
QR = αv for some α ∈ K. On the other hand Q lies on π

by construction, since it is the translate of P via
−→
PQ. Hence R lies on π

as well, since it is the translate of Q via a multiple of v. This shows that
s lies on π, so that r, s are coplanar, contradicting the hypothesis. Hence
r, s must be skew.

2. Since dimV ≥ 3, there exist three linearly independent vectors in
V . Let them be u, v, w. Let P ∈ A and let r be the line [P, ⟨u⟩]. Next,
let Q = tv(P ) and let s be the line [Q, ⟨w⟩]. Let us prove that r and s are
skew lines. By point 1. we just have to prove that they there is no plane
that contains both of them. Suppose by contradiction that there is one,

call it π = [P,W ] with dimW = 2. Since Q ∈ π, then v =
−→
PQ ∈ W . On

the other hand, since π contains both r and s we must have u,w ∈ W .
But then ⟨u, v, w⟩ ⊆ W , that is impossible since dimW = 2.

3. Let r = [P, ⟨v⟩] and s = [Q, ⟨w⟩] be skew lines. Then dim⟨v, w⟩ = 2,
as otherwise r, s would be parallel. Then the planes π = [P, ⟨v, w⟩] and
π′ = [Q, ⟨v, w⟩] are clearly parallel and contain r and s, respectively.

Proposition 6.3.7. Let (A, V, f) be an affine space of dimension 3.

1. A line r and a plane π with empty intersection are parallel.

2. Two planes π, σ with empty intersection are parallel.

3. If two distinct planes π, σ intersect in a point P , then their intersec-
tion is a line through P .

4. Every line r is contained in at least two distinct planes.

Proof. 1. Let P be a point of r, so that r = [P, ⟨u⟩] for some non-zero
u ∈ V . Let π = [Q, ⟨v, w⟩] for some linearly independent v, w ∈ V .
Suppose by contradiction that r and π are not parallel. Then u /∈ ⟨v, w⟩
and hence we have dim⟨u, v, w⟩ = 3. Since dimV = 3 as well, it follows
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that V = ⟨u, v, w⟩. Therefore
−→
PQ = αu + βv + γw for some α, β, γ ∈ K.

Let Q′ ∈ π be the point such that
−−→
QQ′ = −βv − γw. Then

−−→
PQ′ =

−→
PQ+

−−→
QQ′ = αu.

Then Q′ ∈ r, but on the other hand by construction Q′ ∈ π. It follows
that Q′ ∈ r ∩ π, contradicting the hypothesis.

2. Let π = [P,W ] and σ = [Q,W ′] with dimW = dimW ′ = 2. Suppose
by contradiction that π, σ are not parallel. Then W ̸= W ′, and so there
exists a non-zero vector v ∈ W \W ′. Then [P, ⟨v⟩] is a line contained in
π that is not parallel to σ. By 1. it follows that r and σ have non-empty
intersection, but then also π and σ do, contradicting the hypothesis.

3. Let π = [Q,W ] and σ = [Q′,W ′] with dimW = dimW ′ = 2. Let
P ∈ π ∩ σ. Since π ̸= σ it must be that W ̸= W ′, as otherwise we
could write π = [P,W ] = σ. Hence by Grassmann formula it follows that
dim(W ∩W ′) = 1, and by Proposition 6.2.6 we have

π ∩ σ = [P,W ∩W ′],

that is a line through P .
4. Let r = [P, ⟨u⟩] for some non-zero u ∈ V . Let us complete (u) to

a basis of V , via Theorem 1.4.16: there exist v, w such that (u, v, w) is a
basis of V . Then [P, ⟨u, v⟩] and [P, ⟨u,w⟩] are two planes both containing
r. Moreover, they are distinct because if they were equal then we would
have tw(P ) ∈ [P, ⟨u, v⟩] and consequently w ∈ ⟨u, v⟩, that is impossible
since u, v, w are linearly independent.

Definition 6.3.8. Let (A, V, f) be an affine space. Two lines that intersect
in a single point, a line and a plane that intersect in a single point or two
planes that intersect in a single line are called incident.

Thanks to the propositions we have proved, we can give a complete descrip-
tion of the relative position of linear subspaces of affine spaces in dimension 2
and 3.

Theorem 6.3.9. Let (A, V, f) be an affine space of dimension ≥ 2, and let
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r, s be two lines. Then:

r ∩ s =


∅

{
skew

coplanar, parallel and distinct

a point incident

a line r = s

.

Theorem 6.3.10. Let (A, V, f) be an affine space of dimension 3 and let
π, σ be two planes. Then:

π ∩ σ =


∅ parallel and distinct

a line incident

a plane π = σ

.

Theorem 6.3.11. Let (A, V, f) be an affine space of dimension 3 and let
r be a line and π be a plane. Then:

r ∩ π =


∅ parallel and r does not lie on π

a point incident

a line r ⊆ π

.

6.4 Coordinate systems and equations of subspaces

Definition 6.4.1. Let (A, V, f) be an affine space. A system of coordinates
on (A, V, f) is a pair (O,B) where O ∈ A is a point called origin and B
is a basis of V .

Theorem 6.4.2. Let (A, V, f) be an affine space of dimension n, let O ∈ A
and B = (v1, . . . , vn) be a basis of V .

1. The map
Λ[O,B] : A→ Kn

P 7→ (x1, . . . , xn),
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where (x1, . . . , xn) ∈ Kn is the only n-tuple such that
−→
OP =

∑n
i=1 xivi,

is a bijection.

2. Let ΦB : V → Kn be the bijection defined by

ΦB

(
n∑

i=1

αivi

)
= (α1, . . . , αn)

(see Corollary 1.4.13). If P,Q ∈ A, are such that Λ[O,B](P ) =
(x1, . . . , xn) and Λ[O,B](Q) = (y1, . . . , yn), where Λ[O,B] is the bijec-
tion given by point 1., then

ΦB(
−→
PQ) = (y1 − x1, . . . , yn − xn).

Proof. 1. First, suppose that P,Q ∈ A are such that Λ[O,B](P ) = Λ[O,B](Q) =

(x1, . . . , xn). This means that
−→
OP =

∑n
i=1 xivi =

−→
OQ. However, by defini-

tion of affine space, given the point O ∈ A and the vector
∑n

i=1 xivi ∈ V ,

there exists a unique point X ∈ A such that
−−→
OX =

∑n
i=1 xivi. This means

that P = X = Q. Therefore Λ[O,B] is injective.
Next, if (x1, . . . , xn) ∈ Kn, let v =

∑n
i=1 xivi ∈ V . Once again by

definition of affine space, there exists a unique P ∈ A such that
−→
OP = v.

But then Λ[O,B](P ) = (x1, . . . , xn). This proves that Λ[O,B] is surjective as
well.

2. Since Λ[O,B](P ) = (x1, . . . , xn) and Λ[O,B](Q) = (y1, . . . , yn), the

vector
−→
OP is

∑n
i=1 xivi while

−→
OQ =

∑n
i=1 yivi. It follows that

−→
PQ =

−→
PO +

−→
OQ = −

n∑
i=1

xivi +
n∑

i=1

yivi =
n∑

i=1

(yi − xi)vi,

and therefore
ΦB(

−→
PQ) = (y1 − x1, . . . , yn − xn).

Theorem 6.4.2 is of the utmost importance. It shows that every affine space
of dimension n over a field K, once a coordinate system is chosen, ”becomes”
the affine space An(K) described in Example 6.1.3. The bijection Λ[O,B], that
depends on the choice of a coordinate system, yields a dictionary that allows
to translate all properties of an affine space of dimension n over a field K into
properties of the very concrete object An(K).
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Note:-

Notice that since
−→
OO = 0, we have that Λ[O,B](O) = (0, . . . , 0). Namely, the

map Λ[O,B] transforms the origin O of a coordinate system into the point
(0, . . . , 0) ∈ Kn.
Moreover, ΦB(0) = (0, . . . , 0).

From now on, with a slight abuse of notation, we will write An(K) to
denote the set of points of the latter affine space, although technically An(K)
denotes a triple of objects, according to the definition of affine space.

The next theorem describes how linear subspaces transform under Λ[O,B].
First, we prove two preliminary lemmas.

Lemma 6.4.3. Let V be a K-vector space of dimension n and let B =
(v1, . . . , vn) be a basis of V .

1. For every w1, w2 ∈ V and every α, β ∈ K we have

ΦB(αw1 + βw2) = αΦB(w1) + βΦB(w2).

2. Let W ⊆ V be a subspace of dimension m. Then ΦB(W ) is a
subspace of Kn of dimension m.

Proof. 1. Let w1 =
∑n

i=1 aivi and w2 =
∑n

i=1 bivi. Then

αw1 + βw2 =
n∑

i=1

(αai + βbi)vi,

so that

ΦB(αw1 + βw2) = (αa1 + βb1, αa2 + βb2, . . . , αan + βbn).

On the other hand, αΦB(w1) = α(a1, . . . , an) and βΦB(w2) = β(b1, . . . , bn),
and the claim follows easily.

2. First, we show that ΦB(W ) is a subspace of Kn. Let w1, w2 ∈
ΦB(W ), so that there exist u1, u2 ∈ W such that ΦB(u1) = w1 and
ΦB(u2) = w2. Let α, β ∈ K. Then

ΦB(αu1 + βu2) = αΦB(u1) + βΦB(u2) = αw1 + βw2
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by point 1. This proves that αw1 + βw2 ∈ ΦB(W ), and therefore ΦB(W )
is a vector subspace of V .

To prove that it has dimension m, let (u1, . . . , um) be a basis of W . If
w ∈ ΦB(W ), then w = ΦB(u) for some u ∈ W . But u =

∑m
i=1 αiui for

some α1, . . . , αm ∈ K, since (u1, . . . , um) is a basis of W . Hence

w = ΦB(u) = ΦB

(
m∑
i=1

αiui

)
=

m∑
i=1

αiΦB(ui)

by point 1. This proves that ΦB(u1), . . . ,ΦB(um) generate ΦB(W ). To
prove that these vectors are linearly independent, suppose first that

m∑
i=1

αiΦB(ui) = 0

for some α1, . . . , αm ∈ K. Then once again by point 1. we get

0 = ΦB

(
m∑
i=1

αiui

)
.

However ΦB is a bijection, and since ΦB(0) = 0, it follows that
∑m

i=1 αiui =
0. Since (u1, . . . , um) is a basis of W , we get that α1 = . . . = αm = 0.

Lemma 6.4.4. Let • be the standard scalar product on Kn, i.e. the map

Kn ×Kn → K

((x1, . . . , xn), (y1, . . . , yn)) 7→
n∑

i=1

xiyi.

Let W be a subspace of Kn.

1. dimW⊥ = n− dimW .

2. (W⊥)⊥ = W .

3. Let dimW = m, and let (u1, . . . , un−m) be a basis of W⊥, where

ui = (ci1, ci2, . . . , cin) ∈ Kn for every i.
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Then the matrix

C =


c11 c12 . . . c1n

c21 c22 . . . c2n

. . . . . . . . . . . .

c(n−m)1 c(n−m)2 . . . c(n−m)n

 ∈M(n−m)×n(K)

has rank n−m and has the property that kerC = W .

Proof. Let (w1, . . . , wm) be a basis ofW , so that dimW = m. Write wi =
(ai1, . . . , ain) ∈ Kn. Let A be the matrix of size m× n with coefficients in

K whose i-th row is
(
ai1 . . . ain

)
, for every i. This is nothing else than

the transpose of the matrix AB described in Theorem 2.3.8, with B being
the canonical basis of Kn.

Now let • be the standard scalar product on Kn. We claim that

W⊥ = kerA. (28)

In fact, by Proposition 4.1.6 we have that W⊥ = {w1, . . . , wm}⊥.
Hence v ∈ W⊥ if and only if wi • v = 0 for every i = 1, . . . ,m, but
on the other hand a moment of reflection shows that

(w1 • v, . . . , wm • v) = Av,

that is, v ∈ W⊥ if and only if v ∈ kerA.
1. Since the rows of A are linearly independent, we have rk(A) = m by

Theorem 2.3.8. By Theorem 3.2.7, we have dimkerA = n−m, and (28)
implies then that

dimW⊥ = n− dimW.

2. By point 1. applied to W⊥ and then to W we have that

dim(W⊥)⊥ = n− dimW⊥ = n− (n− dimW ) = dimW,

and since W ⊆ (W⊥)⊥ by Proposition 4.1.6, it must be (W⊥)⊥ = W .
3. Redoing the construction described at the beginning of the proof to

W⊥ we get by (28) that
(W⊥)⊥ = kerC,

and so the claim by 2.
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Theorem 6.4.5. Let (A, V, f) be an affine space of dimension n over a
field K. Let B = (v1, . . . , vn) be a basis of V , let O ∈ A and let [P,W ] be
a linear subspace of dimension m.

1. The subset Λ[O,B]([P,W ]) ⊆ An(K) is the linear subspace

[Λ[O,B](P ),ΦB(W )].

2. A subset S ⊆ An(K) is a linear subspace of dimension m if and
only if there exists a matrix A ∈M(n−m)×n(K) of rank n−m and a
matrix B ∈ M(n−m)×1(K) such that S is the set of solutions of the
linear system AX = B.

Proof. 1. Notice that thanks to Lemma 6.4.3, clearly [Λ[O,B](P ),ΦB(W )]
is a linear subspace. In order to ease the notation, we will write Λ for
Λ[O,B] and Φ for ΦB. Moreover, we let Λ(P ) = (x1, . . . , xn).

First, let (y1, . . . , yn) ∈ Λ([P,W ]). This means that there is some

Q ∈ [P,W ] such that Λ(Q) = (y1, . . . , yn). Hence
−→
OQ =

∑n
i=1 yivi. On

the other hand,
−→
OP =

∑n
i=1 xivi, and therefore

−→
PQ =

−→
OQ−

−→
OP =

n∑
i=1

(yi − xi)vi ∈ W.

It follows that

Φ

(
n∑

i=1

(yi − xi)vi

)
= (y1 − x1, . . . , yn − xn) ∈ Φ(W ),

and since Λ(Q) = Λ(P )+(y1−x1, . . . , yn−xn), we get precisely that Λ(Q)
is a translate of Λ(P ) via a vector of Φ(W ), i.e. that Λ(Q) ∈ [Λ(P ),Φ(W )].
We have thus proved that Λ([P,W ]) ⊆ [Λ(P ),Φ(W )].

Conversely, let (y1, . . . , yn) ∈ [Λ(P ),Φ(W )]. Then

(y1, . . . , yn) = (x1, . . . , xn) + (a1, . . . , an),

where (a1, . . . , an) ∈ Φ(W ). Since the map Λ is a bijection by Theorem
6.4.2, there exists a unique Q ∈ A such that Λ(Q) = (y1, . . . , yn), or, in

other words, such that
−→
OQ =

∑n
i=1 yivi. Since

−→
OP =

∑n
i=1 xivi, we get
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that
−→
PQ =

−→
OQ−

−→
OP =

n∑
i=1

aivi.

Now Φ (
∑n

i=1 aivi) = (a1, . . . , an), and since the map Φ is a bijection and
(a1, . . . , an) ∈ Φ(W ) by hypothesis, we must have that

∑n
i=1 aivi ∈ W .

Hence
−→
PQ ∈ W , that is, Q is a translate of P via a vector of W , i.e.

Q ∈ [P,W ]. Therefore Λ(Q) = (y1, . . . , yn) ∈ Λ([P,W ]). It follows that
[Λ(P ),Φ(W )] ⊆ Λ([P,W ]).

2. First, suppose that S is a linear subspace. Then S = [P,W ], for
some P ∈ Kn and W vector subspace of Kn. By Lemma 6.4.4, there
exists an (n−m)× n matrix A of rank n−m such that W = kerA. Now
if P = (x1, . . . , xn) then S, as a subset of An(K) = Kn, is nothing else
that

{(x1, . . . , xn) + (z1, . . . , zn) : (z1, . . . , zn) ∈ kerA}.

Setting B := A


x1

. . .

xn

 and appealing to Proposition 3.2.9, it follows that

S is the set of solutions of the linear system AX = B.
Conversely, if AX = B is a linear system of n − m equations in n

variables and rkA = n−m, then by Theorem 3.2.7 and Proposition 3.2.9,
if (x1, . . . , xn) ∈ Kn is a solution of the system then the set S of all
solutions is

S = {(x1, . . . , xn) + (z1, . . . , zn) : (z1, . . . , zn) ∈ kerA}.

In other words, S is the linear subspace [(x1, . . . , xn), kerA].

Theorem 6.4.5 essentially tells us that we can reduce the study of linear sub-
spaces of affine spaces to the study of solutions of linear systems.

Remark 6.4.6. Theorem 6.4.5 shows that given a linear subspace S of
An(K), defined by a linear system of the form AX = B with A an (n −
m) × n matrix of rank n −m, the translation space of S is the kernel of
A.
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6.5 Equations for lines, planes and hyperplanes

Recall that a line in An(K) is a linear subspace of dimension 1. Given Theorem
6.4.5, a line corresponds to the set of solutions of a linear system AX = B, with
A ∈ M(n−1)×n(K) a matrix of rank n− 1. This means that a line ℓ ⊆ An(K)
can be described by a system of equations of the form:

ℓ :


a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

. . .

a(n−1)1x1 + . . .+ a(n−1)nxn = bn−1

, (29)

where the matrix associated to the system has rank n− 1.

Definition 6.5.1. A system of the form (29) that describes a line in An(K)
is called a system of cartesian equations for a line.

Example 6.5.2. In A2(K), a system as (29) becomes

a11x1 + a12x2 = b1,

where the rank condition simply means that (a11, a12) ̸= (0, 0).
In A3(K), a system of cartesian equations for a line has the form:{

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2
,

with the condition that

rk

a11 a12 a13

a21 a22 a23

 = 2

or, in other words, that the two vectors (a11, a12, a13) and (a21, a22, a23)
are linearly independent.

The description of a line ℓ via a system of the form (29) is implicit, namely,
we don’t have a parametrization for the points of the line. To do this, it is
enough to solve the system. Notice that since rk(A) = n − 1, Theorem 3.2.7
implies that kerA is a 1-dimensional vector subspace of Kn, that is therefore

139



Andrea Ferraguti Chapter 6: Affine geometry

generated by a non-zero vector (a1, . . . , an) ∈ Kn. Proposition 3.2.9 implies
that the solutions of system (29) all have the form

(p1, . . . , pn) + t(a1, . . . , an)

with t ∈ K and (p1, . . . , pn) ∈ Kn. In other words, the same line defined by
(29) can be described by the following set of equations:

ℓ :


x1 = p1 + ta1

x2 = p2 + ta2

. . .

xn = pn + tan

. (30)

We stress the fact that (p1, . . . , pn) and (a1, . . . , an) are two elements of Kn,
the second one being non-zero, while t is a parameter. The point (p1, . . . , pn)
is a point lying on the line, corresponding to t = 0. All other points can be
found by letting t vary in K.

Definition 6.5.3. A system in the form of (30) is called parametric equa-
tion for a line.

In order to pass from a cartesian equation to a parametric one, it is enough to
solve the linear system. However it is also possible to pass from a parametric
equation to a cartesian one. In fact, equations (30) can be read in the following
way: for all points (x1, . . . , xn) ∈ ℓ, the vectors (x1 − p1, . . . , xn − pn) and
(a1, . . . , an) are linearly dependent, as they are proportional. This means that
the matrix x1 − p1 x2 − p2 . . . xn − pn

a1 a2 . . . an


has rank 1. In other words, points of ℓ satisfy the system of equations deter-
mined by imposing

rk

x1 − p1 x2 − p2 . . . xn − pn

a1 a2 . . . an

 = 1.

Since the above matrix has 2 lines and n columns, and the bottom row is non-
zero, asking that it has rank 1 is equivalent to asking that every 2×2 submatrix
has determinant 0. Again, since the bottom row is non-zero there exists some
i ∈ {1, . . . , n} such that ai ̸= 0. Then by Theorem 2.3.20 the condition on
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the rank is satisfied if and only if every 2 × 2 submatrix containing the i-th
column has determinant 0. Assuming that a1 ̸= 0, we get:

det

x1 − p1 xi − pi

a1 ai

 = 0 for every i = 2, . . . , n,

that amounts to the system of cartesian equations for ℓ:

ℓ :


a2x1 − a1x2 = a2p1 − a1p2

a3x1 − a1x3 = a3p1 − a1p3

. . .

anx1 − a1xn = anp1 − a1pn

.

Notice that the matrix corresponding to the above system is:
a2 −a1 0 0 . . . 0

a3 0 −a1 0 . . . 0

. . . . . . . . . . . . . . . . . .

an 0 0 . . . 0 −a1

 ,

that clearly has rank n − 1 because if we erase the first column the resulting
square matrix has determinant (−a1)n−1 ̸= 0, since we assumed that a1 ̸=
0.

Example 6.5.4. Consider the line ℓ ⊆ A3(R) given by the system of equa-
tions:

ℓ :

{
2x+ 3y + z = 1

x+ z = 3
.

In order to find a system of parametric equations for ℓ, all we have to do
is to solve the system. Letting

A =

2 3 1

1 0 1


be the matrix associated with the system, we see that it has rank 2, and
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hence the system has ∞1 solutions. Rewriting it as:{
2x+ 3y = 1− z

x = 3− z

and setting z = t, we see immediately that the set of solutions is:

S = {(3− t,−5/3 + 1/3t, t) : t ∈ R}

and therefore a system of parametric equations for ℓ is:
x = 3− t

y = −5/3 + 1/3t

z = t

.

Notice that the line ℓ passes through the point (3,−5/3, 0).

Example 6.5.5. Consider the line ℓ ⊆ A3(R) given by the system of para-
metric equations: 

x = 1 + t

y = −t
z = 1 + 2t

.

In order to find a system of cartesian equations, all we have to do is to
consider the matrix x− 1 y z − 1

1 −1 2


and to impose that the 2 × 2 submatrices all have determinant 0. As
explained, it is enough to fix a column whose bottom entry is non-zero
and to look at the two 2 × 2 submatrices containing it. In this case, we
can fix the first column and get:

det

x− 1 y

1 −1

 = det

x− 1 z − 1

1 2

 = 0,
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getting the system

ℓ :

{
x+ y = 1

2x− z = 1
.

By Theorem 6.4.5, in general a linear subspace of An(K) of dimension m
is simply the set of solutions of a system of the form:

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

. . .

a(n−m)1x1 + . . .+ a(n−m)nxn = bn−m

,

where the matrix associated to the system has rank n − m. Therefore we
immediately get the following proposition.

Proposition 6.5.6. A linear subspace π ⊆ An(K) is a hyperplane if and
only if it is described by an equation of the form:

π : a1x1 + a2x2 + . . .+ anxn = b,

where (a1, . . . , an) ̸= (0, . . . , 0).

Notice that a hyperplane in A2(K) is simply a line, and a hyperplane in A3(K)
is simply a plane.

In general a plane in An(K) is a linear subspace of dimension 2. Thanks
to Proposition 6.5.6, we see that in A3(K) a plane is described by an equation
of the form:

a1x1 + a2x2 + a3x3 = b,

with (a1, a2, a3) ̸= (0, 0, 0). It becomes then immediately clear that a sys-
tem of cartesian equations for a line in A3(K) represents, geometrically, the
intersection of two incident planes.

6.6 Relative position of subspaces via equations

Let S, S ′ ⊆ An(K) be two linear subspaces of dimension m and m′, respec-
tively. These are defined by two linear systems AX = B and A′X = B′,
respectively, where A ∈ M(n−m)×n(K), A′ ∈ M(n−m′)×n(K) are matrices of
rank n−m and n−m′, respectively. As noticed in Remark 6.4.6, the transla-
tion spaces of S and S ′ are nothing else than kerA and kerA′. Hence we have
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that
S is parallel to S ′ ⇐⇒ kerA ⊆ kerA′ or kerA′ ⊆ kerA. (31)

Lemma 6.6.1. Let m, p, n be positive integers with m ≤ p ≤ n. Let
A ∈ Mm×n(K) and B ∈ Mp×n(K) and assume that rk(A) = m and
rk(B) = p. Then we have that ker(B) ⊆ ker(A) if and only if

rk

A
B

 = rk(B)

where

A
B

 is the (m+ p)× n matrix obtained by adjoining the rows of

B below those of A.

Proof. We denote by • the standard scalar product on Kn. With respect
to this scalar product, the rows of A are orthogonal to vectors in kerA,
and those of B are orthogonal to vectors of kerB. This means that

R(A) ⊆ ker(A)⊥ and R(B) ⊆ ker(B)⊥, (32)

where R denotes the space generated by the rows.
Now by Lemma 6.4.4 we have that

dim(ker(A)⊥) = n− dim(ker(A)) and dim(ker(B)⊥) = n− dim(ker(B)),

and since rk(A) = m and rk(B) = p, by Theorem 3.2.7 we have that

dimker(A)⊥ = m and dimker(B)⊥ = p. (33)

On the other hand, by Theorem 2.3.18 we have that dimR(A) = m and
dimR(B) = p, so by (32) and (33) we get that

R(A) = ker(A)⊥ and R(B) = ker(B)⊥. (34)

It follows that the rows of A are a basis of (kerA)⊥ and those of B are
a basis of (kerB)⊥.
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If kerB ⊆ kerA, then (kerA)⊥ ⊆ (kerB)⊥, so R(A) ⊆ R(B). But

then it follows immediately that rk

A
B

 = rk(B).

Conversely, if rk

A
B

 = rk(B) then it means that each row of A is

linearly dependent from the rows of B and hence if R is a row of A then
R ∈ R(B). Hence R(A) ⊆ R(B), and therefore by (34) we have that
(kerA)⊥ ⊆ (kerB)⊥. It follows that

((kerB)⊥)⊥ ⊆ ((kerA)⊥)⊥,

and by Lemma 6.4.4 we have that kerB ⊆ kerA.

We can now proceed to describe relative positions of lines and planes in A2(K)
and A3(K) (as we did in Theorems 6.3.9,6.3.10 and 6.3.11) but using their
equations.

Theorem 6.6.2. Let ℓ : ax + by = c and ℓ′ : a′x + b′y = c′ be two lines in
A2(K).

1. ℓ ∥ ℓ′ if and only if

rk

a b

a′ b′

 = 1.

If ℓ ∥ ℓ′, then ℓ = ℓ′ if and only if

rk

a b c

a′ b′ c′

 = 1.

2. ℓ and ℓ′ are incident if and only if

rk

a b

a′ b′

 = 2.

Proof. By Remark 6.4.6, lines ℓ and ℓ′ are associated with the linear
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systems AX = B and A′X = B′, respectively, where

A =
(
a b

)
, B =

(
c
)

A′ =
(
a′ b′

)
, B =

(
c′
)

and their translation spaces are kerA and kerA′, respectively. Since
rk(A) = rk(A′) = 1, by (31) and Lemma 6.6.1, we have that ℓ ∥ ℓ′ if
and only if

rk

a b

a′ b′

 = 1,

and consequently ℓ and ℓ′ are incident if and only if

rk

a b

a′ b′

 = 2.

If ℓ ∥ ℓ′, by Proposition 6.2.8 we have ℓ = ℓ′ if and only if ℓ ∩ ℓ′ ̸= ∅, that
is, if and only if the system{

ax+ by = c

a′x+ b′y = c′

is compatible. Since rk

a b

a′ b′

 = 1, by Theorem 3.1.4 this happens if

and only if rk

a b c

a′ b′ c′

 = 1.

Theorem 6.6.3. Let π : ax+ by + cz = d and π′ : a′x+ b′y + c′z = d′ two
planes in A3(K).

1. π ∥ π′ if and only if

rk

a b c

a′ b′ c′

 = 1.
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If π ∥ π′ then π = π′ if and only if

rk

a b c d

a′ b′ c′ d′

 = 1.

2. π and π′ are incident if and only if

rk

a b c

a′ b′ c′

 = 2.

Proof. The translation spaces of the planes π, π′ are kerA, kerA′, respec-
tively, where

A =
(
a b c

)
and A′ =

(
a′ b′ c′

)
.

Since rk(A) = rk(A′) = 1, by (31) and Lemma 6.6.1, it follows that π ∥ π′

if and only if rk

a b c

a′ b′ c′

 = 1.

In this case, by Proposition 6.2.8 we have π = π′ if and only if π∩π′ ̸=
∅, that is, if and only if the system{

ax+ by + cz = d

a′x+ b′y + c′z = d′

is compatible, and since rk

a b c

a′ b′ c′

 = 1, this happens precisely when

rk

a b c d

a′ b′ c′ d′

 = 1.

Theorem 6.6.4. Let

ℓ :

{
a1x+ b1y + c1z = d1

a2x+ b2y + c2z = d2
and π : a3x+ b3y + c3z = d3
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be a line and a plane in A3(R), respectively.

1. ℓ ∥ π if and only if

rk


a1 b1 c1

a2 b2 c2

a3 b3 c3

 = 2.

If ℓ and π are parallel, then ℓ ⊆ π if and only if

rk


a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

 = 2.

2. ℓ and π are incident if and only if

rk


a1 b1 c1

a2 b2 c2

a3 b3 c3

 = 3.

Proof. The translation spaces of ℓ, π are kerA and kerA′, respectively,
where

A =

a1 b1 c1

a2 b2 c2

 and A′ =
(
a3 b3 c3

)
.

Of course since dimkerA = 1 and dimkerA′ = 2 we have that ℓ ∥ π if
and only if kerA ⊆ kerA′, and since rk(A) = 2 and rk(A′) = 1, by Lemma

6.6.1 this happens precisely when rk


a1 b1 c1

a2 b2 c2

a3 b3 c3

 = 2.

By Proposition 6.2.8, we have that ℓ ⊆ π if and only if ℓ ∩ π ̸= ∅,
namely if and only if the system{

a1x+ b1y + c1z = d1

a2x+ b2y + c2z = d2
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is compatible, and since rk


a1 b1 c1

a2 b2 c2

a3 b3 c3

 = 2 this happens precisely when

rk


a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

 = 2.

Theorem 6.6.5. Let

ℓ :

{
a1x+ b1y + c1z = d1

a2x+ b2y + c2z = d2
and ℓ′ :

{
a3x+ b3y + c3z = d3

a4x+ b4y + c4z = d4

be two lines in A3(K).

1. We have that ℓ ∥ ℓ′ if and only if

rk


a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

 = 2.

If this is the case, then ℓ = ℓ′ if and only if

rk


a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

 = 2.
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2. ℓ and ℓ′ are skew if and only if

rk


a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

 = 3 and rk


a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

 = 4.

3. ℓ and ℓ′ are incident if and only if

rk


a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

 = rk


a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

 = 3.

Proof. The translation spaces of ℓ, ℓ′ are kerA and kerA′, respectively,
where

A =

a1 b1 c1

a2 b2 c2

 and A′ =

a3 b3 c3

a4 b4 c4

 .

Since rk(A) = rk(A′) = 2, we have ℓ ∥ ℓ′ if and only if kerA = kerA′. By

Lemma 6.6.1, kerA = kerA′ if and only if rk


a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

 = 2. If this

is the case, then by Proposition 6.2.8 we have that ℓ = ℓ′ if and only if
ℓ ∩ ℓ′ ̸= ∅, that is, if and only if the system

a1x+ b1y + c1z = d1

a2x+ b2y + c2z = d2

a3x+ b3y + c3z = d3

a4x+ b4y + c4z = d4

(35)
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is compatible, and since rk


a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

 = 2 this happens precisely when

rk


a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

 = 2. If ℓ and ℓ′ are not parallel, then either they

are skew or they are incident. This depends on ℓ ∩ ℓ′, that is empty
in the first case and has one point in the second. This is governed by
system (35): the system has no solution when the lines are skew and has
precisely one solution when they are incident. Theorem 3.1.4 allows then
to conclude.

6.7 Pencils and bundles of lines and planes

Definition 6.7.1. A pencil of lines in A2(K) is the set of all lines that
pass through a given point.

An improper pencil of lines in A2(K) is the set of all lines that are
parallel to a given one.

The next proposition explains how to write down equations for pencils of
lines in A2(K).

Proposition 6.7.2.

1. Let P = (xP , yP ) ∈ A2(K). Let r : ax+ by+ c = 0 and s : a′x+ b′y+
c′ = 0 be any two distinct lines of A2(K) passing through P . Let
ℓ : a′′x+ b′′y+ c′′ = 0 be a line. Then ℓ belongs to the pencil of lines
through P if and only if there exist λ, µ ∈ K with (λ, µ) ̸= (0, 0)
such that:

a′′x+ b′′y + c′′ = λ(ax+ by + c) + µ(a′x+ b′y + c′).

2. Let r : ax + by + c = 0 be a line. A line ℓ ⊆ A2(K) belongs to the
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improper pencil of lines parallel to r if and only if there exists k ∈ K
such that an equation for ℓ is:

ax+ by + k = 0.

Proof. 1. First, assume that the line ℓ passes through P . Then a′′xP +
b′′yP + c′′ = 0. This means that the vectors (a′′, b′′, c′′) and (xP , yP , 1) are
orthogonal with respect to the standard scalar product on K3. Hence,
(a′′, b′′, c′′) ∈ ⟨(xP , yP , 1)⟩⊥. Now since r and s both pass through P , the
same reasoning holds true, so that

(a, b, c), (a′, b′, c′) ∈ ⟨(xP , yP , 1)⟩⊥.

On the one hand the space ⟨(xP , yP , 1)⟩⊥ has dimension 2 by Lemma 6.4.4.
Since by hypothesis the lines r and s are distinct, the vectors (a, b, c) and
(a′, b′, c′) are linearly independent in K3. It follows that these two vector
form a basis of ⟨(xP , yP , 1)⟩⊥, and therefore there exist λ, µ ∈ K such that

(a′′, b′′, c′′) = λ(a, b, c) + µ(a′, b′, c′),

as required.
Conversely, if the equation of ℓ is λ(ax+ by+ c)+µ(a′x+ b′y+ c′) = 0

then ℓ passes through P since axP + byP + c = a′xP + b′yP + c = 0 by
hypothesis, and therefore

λ(axP + byP + c) + µ(a′xP + b′yP + c) = 0.

2. This follows immediately from Theorem 6.6.2.

Remark 6.7.3. Let P = (xP , yP ) ∈ A2(R). In order to find the pencil of
lines through P we first need to find two distinct lines through such point.
For example, we can pick x− xP = 0 and y − yP = 0. Next, the equation
of the pencil is simply:

λ(x− xP ) + µ(y − yP ) = 0.

One might think that the pencil of lines through a point (xP , yP ) is
y − yP = m(x − xP ), where m ∈ K. However, this equation misses one
of the lines of the pencil, namely the line x = xP . In fact this equation
comes from the following simplification: given the correct equation of the
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pencil of lines through P , namely λr + µs = 0 for some lines r, s through
P , we can divide everything by µ, since proportional equations give rise
to the same line. This way we obtain an equation that depends only on
one parameter, namely λ/µ, but we miss the equation of the line of the
pencil that corresponds to µ = 0.

Definition 6.7.4. A pencil of planes in A3(K) is the set of all planes that
contain a given line.

An improper pencil of planes in A3(K) is the set of all planes that are
parallel to a given one.

Proposition 6.7.5.

1. Let ℓ ⊆ A3(K) be a line. Let π : ax+ by + cz + d = 0 and σ : a′x+
b′y+c′z+d′ = 0 be two distinct planes that contain ℓ. Then a plane
ϑ : a′′x+ b′′y + c′′z + d′′ = 0 belongs to the pencil of planes through
ℓ if and only if there exist λ, µ ∈ K with (λ, µ) ̸= (0, 0) such that:

a′′x+ b′′y + c′′z + d′′ = λ(ax+ by + cz + d) + µ(a′x+ b′y + c′z + d).

2. Let π : ax + by + cz + d = 0 be a plane in A3(K). Then a plane
σ ⊆ A3(K) belongs to the improper pencil of planes parallel to π if
and only if there exists k ∈ K such that an equation for σ is:

ax+ by + cz + k = 0.

Proof. 1. Let ℓ :


x = x0 + v1t

y = y0 + v2t

z = z0 + v3t

be a parametric equation for ℓ, with

(v1, v2, v3) ̸= (0, 0, 0).
First, assume that ϑ contains ℓ. Then we must have:

a′′(x0 + v1t) + b′′(y0 + v2t) + c′′(z0 + v3t) + d′′ = 0,
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and this is equivalent to the pair of conditions:{
a′′x0 + b′′y0 + c′′z0 + d′′ = 0

a′′v1 + b′′v2 + c′′v3 = 0
.

In turn, these two conditions are equivalent to asking that the vector
(a′′, b′′, c′′, d′′) is orthogonal, via the standard scalar product on K4, to
both (x0, y0, z0, 1) and (v1, v2, v3, 0). In other words, if we let W :=
⟨(x0, y0, z0, 1), (v1, v2, v3, 0)⟩, we have:

(a′′, b′′, c′′, d′′) ∈ W⊥.

Now, since (v1, v2, v3, 0) ̸= 0, the vectors (x0, y0, z0, 1) and (v1, v2, v3, 0) are
linearly independent, since the last coordinate of the former is 1 and that
of the latter is 0. It follows that dimW = 2 and hence dimW⊥ = 2 by
Lemma 6.4.4. Now since both π and σ contain ℓ, the same argument we
used above proves that (a, b, c, d) and (a′, b′, c′, d′) both belong toW⊥. On
the other hand these vectors must be linearly independent, since π ̸= σ.
Hence they form a basis of W⊥, and it follows that there exist λ, µ ∈ K
such that:

(a′′, b′′, c′′, d′′) = λ(a, b, c, d) + µ(a′, b′, c′, d′).

Conversely, if the equation of ϑ is of the form λπ + µσ, then necessarily
ℓ ⊆ ϑ, since it is contained in both π and σ.

2. This follows immediately from Theorem 6.6.3.

Remark 6.7.6. Let ℓ :

{
ax+ by + cz = d

a′x+ b′y + c′z + d′ = 0
be a line in A3(K).

Since the two equations defining it represent two distinct planes through
ℓ, an equation for the pencil of planes through ℓ is:

λ(ax+ by + cz + d) + µ(a′x+ b′y + c′z + d′) = 0.

Definition 6.7.7. A bundle of lines in A3(K) is the set of all lines that
pass through a given point.

An improper bundle of lines in A3(K) is the set of all lines that are
parallel to a given one.

A bundle of planes in A3(K) is the set of all planes that pass through
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a given point.
An improper bundle of planes in A3(K) is the set of all planes that

are parallel to a given line.

Given a point P = (xP , yP , zP ) ∈ A3(K), the parametric equation for the
bundle of lines through P is: 

x = xP + λt

y = yP + µt

z = zP + νt

,

where (λ, µ, ν) ∈ K3 \ {(0, 0, 0)}. Notice that two non-zero triples (λ0, µ0, ν0)
and (λ′0, µ

′
0, ν

′
0) in K

3 determine the same line in the bundle if and only if they
are proportional. Equivalently, one can write down a cartesian equation for
the bundle of lines through P , that is the following:{

µ(x− xP )− λ(y − yP ) = 0

ν(x− xP )− λ(z − zP ) = 0
.

Given a line ℓ ⊆ A3(K) with translation space generated by a non-zero
vector (v1, v2, v3) ∈ K3, the parametric equation for the bundle of lines parallel
to ℓ is: 

x = λ+ v1t

y = µ+ v2t

z = ν + v3t

,

where (λ, µ, ν) ∈ K3. Two triples (λ0, µ0, ν0) and (λ′0, µ
′
0, ν

′
0) in K

3 determine
the same line in the bundle if and only if the line through the points (λ0, µ0, ν0)
and (λ′0, µ

′
0, ν

′
0) of A3(K) has direction (v1, v2, v3). This happens precisely when

rk

λ0 − λ′0 µ0 − µ′
0 ν0 − ν ′0

v1 v2 v3

 = 1.

The proof of the following proposition is completely analogous to that of
Proposition 6.7.2, so we omit it. We invite the interested readers to try to
write it down themselves.

Proposition 6.7.8.

1. Let P ∈ A3(K) and let π1, π2, π3 ⊆ A3(K) be three planes through
P such that π1 ∩ π2 ∩ π3 = {P}. Then a plane σ belongs to the
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bundle of planes through P if and only if there exist λ, µ, ν ∈ K not
all zero such that

σ = λπ1 + µπ2 + νπ3.

2. Let ℓ ⊆ A3(K) be a line. Let π1, π2, π3 ⊆ A3(K) be three planes
parallel to ℓ such that π1 ∩ π2 ∩ π3 = ∅ and π1, π2, π3 are not all
parallel to each other. Then a plane σ belongs to the bundle of
planes parallel to ℓ if and only if there exist λ, µ, ν ∈ K not all zero
such that

σ = λπ1 + µπ2 + νπ3.

Remark 6.7.9. Similarly to what happens for pencils of lines, the bundle
of planes through a given point P = (xP , yP , zP ) ∈ A3(K) has equation:

λ(x− xP ) + µ(y − yP ) + ν(z − zP ) = 0.

Note:-

A pencil is, roughly speaking, an family that is determined by a pair of pa-
rameters, while a bundle is determined by a triple of parameters. However,
since proportional parameters define the same object in the pencil/bundle,
in a pencil there is just 1 “degree of freedom”, while in a bundle there are 2.
When K = R, we sometimes say that a pencil contains ∞1 objects, while a
bundle contains ∞2 objects.

We will see later on that projective geometry yields a framework where
there is no real distinction between proper and improper pencils and bundles.
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Chapter 7: Euclidean geometry

7.1 Euclidean spaces

Definition 7.1.1. A euclidean space of dimension n is a 4-tuple (E, V, f, •),
where V is an R-vector space of dimension n, the triple (E, V, f) is an
affine space of dimension n over the field R and • is a positive definite
scalar product on V .

Example 7.1.2. The affine space An(R) can be seen as an euclidean space
of dimension n when the underlying vector space Rn is endowed with the
standard scalar product. This euclidean space is denoted by En(R).

Definition 7.1.3. Let (E, V, f, •) be a euclidean space of dimension n.
Two linear subspaces [O,W ] and [O′,W ′] are orthogonal if W⊥ ⊆ W ′ or
W ⊆ W ′⊥.

We write [O,W ] ⊥ [O′,W ′] to denote orthogonality.

Note:-

In this chapter we will appeal several times to the following facts, without
citing them every time. Let V be an R-vector space of dimension n with a
positive definite scalar product • and W ⊆ V be a vector subspace. Then:

• W ⊕W⊥ = V ;

• dimW⊥ = n− dimW ;

• (W⊥)⊥ = W .

These facts are the content of Theorem 4.2.13 and Corollary 4.2.14.

Remark 7.1.4. Let (E, V, f, •) be a euclidean space of dimension n. Two
linear subspaces [O,W ] and [O′,W ′] such that 1 ≤ dimW, dimW ′ ≤ n−1
cannot be parallel and orthogonal at the same time. In fact, if W ∥ W ′

then suppose without loss of generality that W ⊆ W ′. If it was W⊥ ⊆ W ′

then it would also be W +W⊥ ⊆ W ′. But W +W⊥ = V , and therefore
W ′ = V , contradicting the fact that dimW ′ < n. If on the other hand
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it was W ⊆ W ′⊥, then it would be W ′ ⊆ W⊥ by taking orthogonal
complements, and henceW ⊆ W⊥, that is impossible because dimW > 0.

Proposition 7.1.5. Let (E, V, f, •) be a euclidean space of dimension n.
Let ℓ be a line, H be a hyperplane and P be a point.

1. There exists a unique hyperplane through P that is orthogonal to ℓ.

2. There exists a unique line through P that is orthogonal to H.

Proof. 1. Let W be the translation space of ℓ. Then dimW⊥ = n− 1, so
if W ′ is the translation space of a hyperplane that is orthogonal to ℓ, we
must necessarily have W ′ = W⊥. Hence [P,W⊥] is the unique hyperplane
orthogonal to ℓ passing through P .

2. Let U be the translation space of H. This has dimension n − 1,
and so dimU⊥ = 1. Hence if U ′ is the translation space of a line that is
orthogonal to H, we must necessarily have U ′ = U⊥. Hence [P,U⊥] is the
unique line through P that is orthogonal to H.

Proposition 7.1.6. Let (E, V, f, •) be a euclidean space of dimension 3.
Let ℓ, π ⊆ E be a line and a plane, respectively.

1. If ℓ ⊥ π, then ℓ is orthogonal to every line ℓ′ ⊆ π.

2. If ℓ is not orthogonal to π, then there exists a unique plane π′ that
is orthogonal to π and such that ℓ ⊆ π′.

Proof. 1. Let W be the translation space of ℓ and let U be the translation
space of π. Since dimW⊥ = 2 and ℓ ⊥ π, it must be that W⊥ = U . If
ℓ′ ⊆ π, then the translation space U ′ of ℓ′ is contained in U , and therefore
U ′ ⊆ W⊥. But then ℓ ⊥ ℓ′, by definition.

2. Let W be the translation space of π. If σ is another plane with
translation space U , then in order for π and σ to be orthogonal it must
be that W⊥ ⊆ U , since by dimension counting it cannot happen that
W ⊆ U⊥.

Now let W ′ be the translation space of ℓ. The space W⊥ is a 1-
dimensional subspace of V , and since ℓ is not orthogonal to π, we cannot
have that W⊥ = W ′. Since W ′,W⊥ are both 1-dimensional, this means
that dim(W ′ + W⊥) = 2. On the other hand, any plane containing ℓ
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must have a translation space that contains W ′. Hence the plane π′ =
[P,W ′ +W⊥], where P is any point of ℓ, is the unique plane containing ℓ
that is orthogonal to π.

Proposition 7.1.7. Let (E, V, f, •) be a euclidean space of dimension 3
and let ℓ, ℓ′ ⊆ (E, V, f, •) be two skew lines. Then there exists a unique
line that is orthogonal and incident to both ℓ and ℓ′.

Proof. Let W,W ′ be the translation spaces of ℓ, ℓ′, respectively. Since the
two lines are skew, we have W ̸= W ′. Therefore it cannot be W⊥ = W ′⊥,
as otherwise taking orthogonal complements we would get that W = W ′.
Hence W⊥ and W ′⊥ are two distinct 2-dimensional subspaces of V , and
necessarily we must have W⊥ +W ′⊥ = V . By the Grassmann formula it
follows that

dim(W⊥ ∩W ′⊥) = 1,

namely, there exists a unique 1-dimensional subspace of V that is or-
thogonal to W and W ′ at the same time. Let U := W⊥ ∩W ′⊥ be such
subspace. Now let P ∈ ℓ and consider the plane π = [P,U +W ] (notice
that dim(U+W ) = 2 since U ⊆ W⊥). Clearly, any line that is orthogonal
and incident to both ℓ and ℓ′ must be contained in π. Now we claim that
π is not parallel to ℓ′. In fact, suppose by contradiction that it is. Then
we necessarily have W ′ ⊆ U + W . Let w′ ∈ W ′ be a non-zero vector.
Then there exists w ∈ W such that w′−w ∈ U . But U = W⊥∩W ′⊥, and
hence w′ − w is orthogonal to both w and w′, i.e.

w • (w′ − w) = w′ • (w′ − w) = 0,

and subtracting the two equations term by term and using the properties
of the scalar product we would get

∥w′ − w∥2 = 0,

that implies w′ = w since • is positive definite. Hence w ∈ W ∩W ′, but
since W ̸= W ′ we have W ∩W ′ = {0}, so that w = 0, which contradicts
the hypothesis.

Hence π and ℓ′ are not parallel, and the only other possibility is that
they are incident. Let Q = π ∩ ℓ′ be the incidence point. The line [Q,U ]
is the only line that can be orthogonal and incident to both ℓ and ℓ′. We
already know that it is orthogonal to both ℓ and ℓ′, since its direction is U ,

159



Andrea Ferraguti Chapter 7: Euclidean geometry

and it is incident to ℓ′, by construction. On the other hand it is contained
in π, that is a 2-dimensional affine space that contains ℓ, and it is not
parallel to ℓ, and therefore it must be incident to ℓ as well.

Definition 7.1.8. Let (E, V, f, •) be a euclidean space of dimension n and
let P,Q ∈ E be two points.

1. The distance between P and Q is defined as d(P,Q) = ∥
−→
PQ∥.

2. The segment with endpoints P and Q is defined as

PQ = {t
λ
−−→
PQ

(P ) : λ ∈ [0, 1]},

namely it is the set of all translates of P by a vector of the form

λ
−→
PQ, where λ is a real number between 0 and 1.

3. The midpoint of the segment of endpoints P and Q is t 1
2

−−→
PQ

(P ).

4. The axis of the segment PQ is the unique hyperplane through the
midpoint of PQ that is orthogonal to the line through P and Q
(this exists unique thanks to Proposition 7.1.5).

5. Let H be a hyperplane. The orthogonal projection of P onto H is
the unique intersection between H and the line through P that is
orthogonal to H.

7.2 Coordinate systems, orthogonality and distance

Definition 7.2.1. Let (E, V, f, •) be a euclidean space of dimension n. A
coordinate system is a pair (O,B) where O ∈ E is a point called origin
and B is an orthonormal basis of V .

Of course since a euclidean space is, in particular, an affine space, once a
coordinate system is chosen then Theorems 6.4.2 and 6.4.5 can be applied,
and E can be ”transformed” into the well-known affine space An(R). However,
this time we have an additional piece of structure, that is a positive definite
scalar product. Hence it is natural to ask what happens to the scalar product
on V , once we apply the map Λ[O,B].
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Theorem 7.2.2. Let (E, V, f, •) be euclidean space of dimension n and let
B = {v1, . . . , vn} be an orthonormal basis of V . Let

ΦB : V → Rn

v 7→ (α1, . . . , αn)

where v =
∑n

i=1 αivi be the bijection of Theorem 6.4.2. Then for every
v, w ∈ V we have:

v • w = ΦB(v) · ΦB(w),

where the scalar product on the right hand side is the standard scalar
product on Rn.

Proof. Let v =
∑n

i=1 αivi and w =
∑n

i=1 βivi, where α1, . . . , αn, β1, . . . , βn ∈
R. Then ΦB(v) = (α1, . . . , αn) and ΦB(w) = (β1, . . . , βn), so that

ΦB(v) · ΦB(w) =
n∑

i=1

αiβi.

On the other hand,

v • w =

(
n∑

i=1

αivi

)
•

(
n∑

i=1

βiwi

)
=

n∑
i=1

n∑
j=1

(αiβj)vi • wj =
n∑

i=1

αiβi,

where in the second equality we just used the properties of scalar products
and in the third equality we used the fact that B is an orthonormal basis.

Theorem 7.2.2 essentially says that once we choose a coordinate system, a
euclidean space of dimension n ”becomes” the euclidean space En(R). There-
fore we can now focus on the latter, and see how orthogonality relations are
detectable from equations of linear subspaces.

Proposition 7.2.3. Let ℓ : ax + by = c and ℓ′ : a′x + b′y = c′ be two lines
in E2(R). Then ℓ ⊥ ℓ′ if and only if aa′ + bb′ = 0.

Proof. The translation spaces of ℓ, ℓ′ are kerA and kerA′, respectively,

where A =
(
a b

)
and A′ =

(
a′ b′

)
. It is immediate to see that kerA =

⟨(−b, a)⟩ and kerA′ = ⟨(−b′, a′)⟩. Since dim(kerA)⊥ = 1 = dimkerA′,
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we have that ℓ ⊥ ℓ′ if and only if (kerA)⊥ = kerA′. Clearly (kerA)⊥ =
⟨(a, b)⟩, and this coincides with kerA′ if and only if the vectors (a, b) and

(−b′, a′) are linearly dependent, namely if and only if det

 a b

−b′ a′

 = 0,

that is precisely the condition aa′ + bb′ = 0.

Proposition 7.2.4.

1. Let π : ax+ by+ cz + d = 0 be a plane in E3(R) and let W ⊆ R3 be
its translation space. Then W⊥ = ⟨(a, b, c)⟩.

2. Let π : ax+ by + cz + d = 0 and π′ : a′x+ b′y + c′z + d′ = 0 be two
planes in E3(R). Then π ⊥ π′ if and only if aa′ + bb′ + cc′ = 0.

3. Let π : ax+by+cz+d = 0 be a plane in E3(R) and let ℓ ⊆ E3(R) be
a line with translation space generated by a vector (a′, b′, c′) ∈ R3.

Then π ⊥ ℓ if and only if rk

a b c

a′ b′ c′

 = 1.

Proof. 1. The translation space of π is kerA, where A =
(
a b c

)
. Since

for every v ∈ kerA we have that Av = 0, and clearly Av is the scalar
product of the vectors (a, b, c) and v, it follows that (a, b, c) ∈ (kerA)⊥.
But dimkerA = 2, so dim(kerA)⊥ = 1 and therefore (kerA)⊥ is generated
by (a, b, c).

2. The translation spaces of π and π′ are, respectively, kerA and kerA′

where A =
(
a b c

)
and A′ =

(
a′ b′ c′

)
. Since they both have di-

mension 2, their orthogonal complements both have dimension 1. Hence
π ⊥ π′ if and only if (kerA)⊥ ⊆ kerA′. By point 1., (kerA)⊥ = ⟨(a, b, c)⟩.
Hence (kerA)⊥ is contained in kerA′ if and only if A′ ·(a, b, c) = 0, namely
if and only if aa′ + bb′ + cc′ = 0.

3. By 1., the orthogonal complement to the translation space of π is
generated by (a, b, c). Since the translation space of ℓ is also 1-dimensional,
we have that ℓ ⊥ π if and only if (a, b, c) and (a′, b′, c′) generate the same
space, i.e. if and only if they are linearly dependent.
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Remark 7.2.5. In general, if H : a1x1 + a2x2 + . . . + anxn + a0 = 0 is a
hyperplane in En(R), the orthogonal complement of its translation space
is generated by the vector (a1, . . . , an).

Definition 7.2.6. Given a point P ∈ En(R) and a hyperplane H ⊆ En(R),
the distance between P and H is the distance of P from the orthogonal
projection of P onto H.

Theorem 7.2.7. Let H : a1x1 + . . . + anxn + a0 = 0 be a hyperplane in
En(R) and let P = (xP1 , x

P
2 , . . . , x

P
n ) ∈ En(R). Then the distance between

P and H is given by the formula:

|a1xP1 + a2x
P
2 + . . .+ anx

P
n + a0|√∑n

i=1 a
2
i

.

Proof. We have to compute the orthogonal projection of P onto H. The
direction orthogonal to H is, thanks to Remark 7.2.5, (a1, . . . , an). Hence
the unique line through P that is orthogonal to H is

ℓ :


x1 = xP1 + a1t

x2 = xP2 + a2t

. . .

xn = xPn + ant

.

To find its intersection with H, we susbstitute the parametric equation
into the equation of H, obtaining

a1(x
P
1 + a1t) + . . .+ an(x

P
n + ant) + a0 = 0,

namely t = − H(P )∑n
i=1 a

2
i
, where we set H(P ) = a1x

P
1 +a2x

P
2 + . . .+anx

P
n +a0.

This means that the orthogonal projection Q of P onto H has coordinates(
xP1 − a1

H(P )∑n
i=1 a

2
i

, xp2 − a2
H(P )∑n
i=1 a

2
i

, . . . , xPn − an
H(P )∑n
i=1 a

2
i

)
.
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Hence the vector
−→
PQ is just

−→
PQ = −

(
a1

H(P )∑n
i=1 a

2
i

, a2
H(P )∑n
i=1 a

2
i

, . . . , an
H(P )∑n
i=1 a

2
i

)
and its norm, which is the distance between P and H, is√√√√ n∑

i=1

a2iH(P )2

(
∑n

i=1 a
2
i )

2 =
|H(P )|∑n

i=1 a
2
i

.

Definition 7.2.8.

1. Let π, π′ ⊆ E3(R) be two parallel planes. Their distance is defined
as the distance of any point of π from π′.

2. Let ℓ, π ⊆ E3(R) be a line and a plane, respectively, that are parallel.
Their distance is defined as the distance of any point of ℓ from π.

Remark 7.2.9. The distance between two parallel planes is well-defined,
that is, it does not depend on the choice of a point on π. In fact, suppose
π and π′ are parallel planes. Then by Theorem 6.6.3, they have cartesian
equations of the form π : ax+by+cz+d = 0 and π′ : ax+by+cz+d′ = 0.
Let P = (xP , yP , zP ) ∈ π. By Theorem 7.2.7 we have that

d(P, π′) =
|axP + byP + czP + d′|√

a2 + b2 + c2
=

|d′ − d|√
a2 + b2 + c2

,

that is a formula that does not depend on the coordinates of P . Moreover,
it is symmetric in π and π′, that is, the distance between π and π′ can
also be computed as the distance from π of any point of π′.

If ℓ and π are a line and a plane that are parallel, then there is a unique
plane π′ containing ℓ that is parallel to π, so the distance between ℓ and
π is the same as the distance between π and π′.

Definition 7.2.10. Let ℓ, ℓ′ ⊆ E3(R) be two skew lines. Let r be the
unique line that is orthogonal and incident to both ℓ and ℓ′, whose exis-

164



Andrea Ferraguti Chapter 7: Euclidean geometry

tence is granted by Proposition 7.1.7. Let P,Q be the incidence points.
Then the distance of ℓ and ℓ′ is defined as the distance of P and Q.

Proposition 7.2.11. Let ℓ, ℓ′ ⊆ E3(R) be two skew lines. Let π, π′ ⊆
E3(R) be two parallel planes such that ℓ ⊆ π and ℓ′ ⊆ π′. Then

d(ℓ, ℓ′) = d(π, π′).

Proof. Since π ∥ π′, the two planes have the same translation space W .
Since ℓ ⊆ π and ℓ′ ⊆ π′, if U is the translation space of ℓ and U ′ is the
translation space of ℓ′ then necessarily U + U ′ ⊆ W . On the other hand
since ℓ and ℓ′ are not parallel then U ̸= U ′ and hence U ⊕ U ′ = W . In
particular, if (u) is a basis of U and (u′) is a basis of U ′, then (u, u′) is a
basis of W .

Let r be the unique line that is incident and orthogonal to both ℓ and
ℓ′, and let Ur = ⟨ur⟩ be its translation space. Since r ⊥ ℓ and r ⊥ ℓ′, we
have that ur • u = 0 and ur • u′ = 0; it follows that ur ∈ W⊥. Namely,
r ⊥ π. Let P = ℓ∩ r and Q = ℓ′ ∩ r. Then Q is the orthogonal projection
of P on π′, because it is the intersection of the unique line orthogonal to
π′ and passing through P , that is r. Hence d(P,Q) is both the distance
from ℓ to ℓ′ and that of π from π′.

Example 7.2.12. Let us compute the distance between the two lines

ℓ :

{
x+ y = 0

x− z = 1
and ℓ′ :

{
x− y = 0

2x+ z = 0
.

By solving the two systems one sees that the translation space W of ℓ is
generated by (1,−1, 1) while the translation space W ′ of ℓ′ is generated
by (1, 1,−2). Hence

W⊥ = ⟨(1, 1, 0), (1, 0,−1)⟩ and W ′⊥ = ⟨(1,−1, 0), (2, 0, 1)⟩.

To find W⊥ ∩W ′⊥, we need to solve the linear system

a(1, 1, 0) + b(1, 0,−1) = c(1,−1, 0) + d(2, 0, 1),
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and we see easily that

W⊥ ∩W ′⊥ = ⟨(1, 3, 2)⟩.

Any line that is orthogonal and incident to ℓ must be contained in the
plane through ℓ that has translation space ⟨(1,−1, 1), (1, 3, 2)⟩. This has
equation:

π : 5x+ y − 4z − 4 = 0,

and its intersection with ℓ′ is the point Q = (2/7, 2/7,−4/7). The line r
with direction (1, 3, 2) passing through Q has equation

r :


x = 2/7 + t

y = 2/7 + 3t

z = −4/7 + 2t

,

and its intersection with ℓ is the point P = (1/7,−1/7,−6/7). Hence we
have

d(ℓ, ℓ′) = d(P,Q) =

√
(2/7− 1/7)2 + (2/7 + 1/7)2 + (−4/7 + 6/7)2 =

=

√
14

7
=

√
2√
7
.

Now let us try to compute d(ℓ, ℓ′) using Proposition 7.2.11. First, we
need to find two parallel planes π, π′ such that ℓ ⊆ π and ℓ′ ⊆ π′. To do
this, notice that the pencil of planes through ℓ has equation:

λ(x+ y) + µ(x− z − 1) = 0,

while the pencil of planes through ℓ′ has equation:

λ′(x− y) + µ′(2x+ z) = 0.

Rewrite these equations as:

(λ+ µ)x+ λy − µz − µ = 0 and (λ′ + 2µ′)x− λ′y + µ′z = 0.
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Now impose parallelism, namely:
λ+ µ = λ′ + 2µ′

λ = −λ′

−µ = µ′
.

This system yields: 
µ = −2/3λ

λ′ = −λ
µ′ = 2/3λ

so that the parameters λ = 3, µ = −2, λ′ = −3, µ′ = 2 yield the two
parallel planes

π : x+ 3y + 2z + 2 = 0 and π′ : x+ 3y + 2z = 0.

Now pick a point on π′, such as (0, 0, 0), and use Theorem 7.2.7. We get:

d(π, π′) =
2√

1 + 9 + 4
=

2√
14

=

√
2√
7
.
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Chapter 8: Projective geometry

8.1 Equivalence relations

Definition 8.1.1. Let S be a set. A relation on S is a subset R of S × S.
A relation R ⊆ S × S is said to be:

1. reflexive if for every s ∈ R we have that (s, s) ∈ R;

2. symmetric if (s, t) ∈ R if and only if (t, s) ∈ R;

3. transitive if (s, t) ∈ R and (t, u) ∈ R implies that (s, u) ∈ R.

A relation that is reflexive, symmetric and transitive is called an equiva-
lence relation.

Example 8.1.2.

• Let S be a set. The relation R = S × S is an equivalence relation.

• Let S be a set. The relation R = {(s, s) : s ∈ S} is an equivalence
relation.

• Let S = N. The relation R = {(s, t) ∈ N×N : s−t ≥ 0} is reflexive,
since s− s = 0 for every s ∈ N, it is transitive because if s− t ≥ 0
and t − u ≥ 0 then adding up the two inequalities it follows that
s − u ≥ 0, so that (s, u) ∈ R, but it is not symmetric, since for
example (2, 1) ∈ R but (1, 2) /∈ R.

• Let S = Z. The relation R = {(s, t) ∈ Z × Z : s · t ≤ 0} is clearly
symmetric, since s · t = t · s but it is not reflexive, since for example
(2, 2) /∈ R, and it is not transitive since for example (1,−2) ∈ R,
(−2, 3) ∈ R but (1, 3) /∈ R.

• Let S = Z. The relation R = {(s, t) ∈ Z × Z : s + t is even} is an
equivalence relation: (s, s) ∈ R for every s ∈ Z since 2s is always
even, if s + t then so is s + t and if s + t is even and t + u is even,
then (s+ t)+ (t+u) is also even. Since the latter sum is s+u+2t,
then s+ u needs to be even as well.
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Definition 8.1.3. Let S be a set and R be an equivalence relation. If
(s, t) ∈ R we write s ∼R t, or just s ∼ t when there is no risk of ambiguity.
We say that s is in relation with t.

Given s ∈ S, the set

[s] := {t ∈ S : s ∼ t}

is called the equivalence class of s.
If [s] is an equivalence class, an element of [s] is called a representative

of [s].

Remark 8.1.4. Equivalence classes are never empty because equivalence
relations are reflexive, and hence s ∈ [s] for every s ∈ S.

Proposition 8.1.5. Let S be a set and R be an equivalence relation on S.
Let s, t ∈ S. Then either [s] = [t] or [s] ∩ [t] = ∅.

Proof. Suppose that [s] ∩ [t] ̸= ∅, so that there exists u ∈ [s] ∩ [t]. Now
let v ∈ [s]. Then by definition v ∼ s. On the other hand u ∈ [s] as well,
so that u ∼ s. Since the relation R is symmetric and transitive, it follows
that v ∼ u. On the other hand u ∈ [t], and hence u ∼ t. Since the relation
R is transitive, it follows that v ∼ t, and hence v ∈ [t]. This shows that
[s] ⊆ [t]. A completely symmetric argument shows that [t] ⊆ [s], and
hence [s] = [t].

Proposition 8.1.5 shows that an equivalence relation on S defines a partition
on S. That is, we can ”slice” S into equivalence classes that have empty
intersection, and are such that every element of S belongs to exactly one
equivalence class.

Definition 8.1.6. Let S be a set and R an equivalence relation on S. The
set S/ ∼ of equivalence classes with respect to R is called quotient set.

Example 8.1.7.

• Let S be a set and R = S×S. Then every element of S is in relation
with every other element. Hence there is a single equivalence class,
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i.e. S/ ∼ is a set with just one element.

• Let S be a set and R = {(s, s) : s ∈ S}. Then the equivalence class
of an element s contains only s. Hence the set S/ ∼ is in bijection
with S, since equivalence classes are in bijection with elements.

• Let S = Z and R = {(s, t) ∈ Z×Z : s+ t is even}. Then if s ∈ Z is
even, it is in relation with every other even number, and it is not in
relation with any odd number. On the other hand if s is odd then it
is in relation with every other odd number but it is not in relation
with any even number. Hence there are just two equivalence classes:
that of even numbers and that of odd numbers. That is S/ ∼ is a
set with two elements (that we conventionally identify with 0 and
1). This quotient set is conventionally denoted by F2 (cf. Example
1.1.14).

8.2 Projective spaces

Let K be a field and let n ≥ 0 be a natural number. Consider the following
equivalence relation on the set S = Kn+1 \ {0}. We let

R = {(v, w) ∈ S × S : ∃λ ∈ K \ {0} s.t. λv = w}.

In other words, we consider two non-zero vectors of Kn+1 to be equivalent if
they are proportional. Let us check that this is an equivalence relation.

• If (x1, . . . , xn+1) ∈ S then

(x1, . . . , xn+1) = 1 · (x1, . . . , xn+1),

so the relation is reflexive.

• If λ(x1, . . . , xn+1) = (y1, . . . , yn+1) then since both vectors are non-zero
it must be λ ̸= 0, and therefore

λ−1(y1, . . . , yn+1) = (x1, . . . , xn+1),

so the relation is symmetric.

• If

λ(x1, . . . , xn+1) = (y1, . . . , yn+1) and µ(y1, . . . , yn+1) = (z1, . . . , zn+1)

then
λµ(x1, . . . , xn+1) = (z1, . . . , zn+1),

and so the relation is transitive.

170



Andrea Ferraguti Chapter 8: Projective geometry

Definition 8.2.1. The quotient space Kn+1 \ {0}/ ∼ is called projective
space of dimension n, and it is denoted by Pn(K).

Let us try to understand in detail elements of the projective space. The key
observation is the following: suppose that (x1, . . . , xn+1) ∈ Kn+1 \ {0} is such
that xn+1 ̸= 0. Then

(x1, . . . , xn+1) ∼ x−1
n+1(x1, . . . , xn+1) = (x−1

n+1x1, . . . , x
−1
n+1xn, 1).

That is, whenever the last entry of (x1, . . . , xn+1) is non-zero, the equivalence
class of (x1, . . . , xn+1) contains an element whose last coordinate is 1. On the
other hand, suppose that (x1, . . . , xn, 1), (y1, . . . , yn, 1) ∈ Kn+1 \ {0}. Then
these two elements are either equal or they are not in relation with each other.
In fact, if they were then there would be some non-zero λ ∈ K such that

λ(x1, . . . , xn, 1) = (y1, . . . , yn, 1),

but λ(x1, . . . , xn, 1) = (λx1, . . . , λxn, λ), and if this equals (y1, . . . , yn, 1) then
necessarily λ = 1. But then (x1, . . . , xn, 1) = (y1, . . . , yn, 1).

Hence we can easily prove the following proposition.

Proposition 8.2.2. There exists a bijection between Kn and the set of
equivalence classes of elements (x1, . . . , xn+1) ∈ Kn+1 \{0} with xn+1 ̸= 0.

Proof. Consider the function

ϕ : Kn → Pn(K)

(x1, . . . , xn) 7→ [(x1, . . . , xn, 1)].

As we have seen above, this map is injective. On the other hand, if
[X] ∈ Pn(K) is the equivalence class of an element (x1, . . . , xn+1) with
xn+1 ̸= 0 then

ϕ((x−1
n+1x1, . . . , x

−1
n+1xn)) = [(x−1

n+1x1, . . . , x
−1
n+1xn, 1)] = [X],

so every such equivalence class [X] is in the image of ϕ.

Definition 8.2.3. Equivalence classes [(x1, . . . , xn+1)] ∈ Pn(K) with xn+1 ̸=
0 are called proper points of Pn(K).
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Now let us focus our attention on equivalence classes of elements of Kn+1 \
{0} of the form (x1, . . . , xn, 0). Notice that the subset of all such elements in
bijection with Kn \ {0}, because since the last coordinate is 0 then it must be
(x1, . . . , xn) ̸= (0, . . . , 0). Now if (x1, . . . , xn, 0), (y1, . . . , yn, 0) ∈ Kn+1 \ {0},
these are in relation with each other exactly when (x1, . . . , xn) and (y1, . . . , yn)
are in relation with each other as elements of Kn \ {0}, because

λ(x1, . . . , xn, 0) = (y1, . . . , yn, 0) ⇐⇒ λ(x1, . . . , xn) = (y1, . . . , yn).

But equivalence classes of Kn \ {0} are, by definition, elements of Pn−1(K).
We have therefore proved the following proposition.

Proposition 8.2.4. There exists a bijection between Pn−1(K) and the set
of equivalence classes of elements (x1, . . . , xn+1) ∈ Kn+1 \{0} with xn+1 =
0.

Definition 8.2.5. Equivalence classes [(x1, . . . , xn+1)] ∈ Pn(K) with xn+1 =
0 are called improper points of Pn(K).

From now on, we will denote equivalence classes of the form [(x1, . . . , xn+1)]
by (x1 : x2 : . . . : xn+1).

We have seen that the space Pn(K) decomposes into two parts: the proper
points and the improper points. Let us now understand them more in detail
in the cases n = 1, 2, 3.

For n = 1, the proper points are in bijection with K, and they are in
bijection with points of the form (x : 1), where x is an element of K. What
are improper points? They are points of the form (x : 0), where x is a non-
zero element of K. But of course any two elements (x, 0), (y, 0) ∈ K2 \ {0}
are in relation with each other, since x−1y(x, 0) = (y, 0). Therefore there is
a unique improper point, that is (1 : 0). Hence P1(K) is the union of K and
an improper point. This should be thought as a ”point at infinity”, and it is
sometimes denoted by ∞. Hence we have, as sets, P1(K) = K ∪ {∞}.

On the other hand, K can be thought as the set of points of the affine
space A1(K), and hence we can write

P1(K) = A1(K) ∪ {∞}.

In other words, the projective space of dimension 1, that is called projective
line, is the union of the affine line and an extra point ”at infinity”.
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Remark 8.2.6. Another way we can think about points in P1(K), without
distinguishing between proper and improper points, is as 1-dimensional
vector subspaces of K2. In fact, every non-zero (x, y) ∈ K2 generates
a 1-dimensional subspace, that coincides with the subspace generated by
λ(x, y), for every λ ∈ K \ 0. Conversely, every 1-dimensional subspace is
generated by a non-zero vector of K2. Therefore there is a bijection

P1(K) → {1-dimensional vector subspaces of K2}.

The projective space P2(K) is called projective plane. Its proper points are
in bijection with K2, and in turn they are in bijection with points of the form
(x : y : 1), where (x, y) ∈ K2. Since K2 is the set of points of A2(K), we can
say that proper points are in bijection with A2(K). Improper points are points
of the form (x : y : 0), and they are in bijection with P1(K). Thanks to Remark
8.2.6, we can think of these as 1-dimensional subspaces of K2. Now every line
in A2(K) has a translation space, that is simply a 1-dimensional subspace of
K2. Hence improper points of P2(K) can be thought as translation spaces of
the lines in A2(K). In other words there is a bijection

P2(K) → A2(K) ∪ {translation spaces of lines in A2(K)}.

Hence the projective plane should be thought as the affine plane A2(K) to-
gether with some ”extra points” that represent directions of the lines in A2(K).

This view extends to higher dimensions as well, since Kn \ {0}/ ∼ can
always be thought as the set of 1-dimensional subspaces of Kn. Hence for
example there is a bijection

P3(K) → A3(K) ∪ {translation spaces of lines in A3(K)}.

8.3 Linear subspaces

Definition 8.3.1. A linear subspace of dimension m in Pn(K) is a subset
of the form

S = {(x1 : . . . : xn+1) ∈ Pn(K) : (x1, . . . , xn+1) ∈ kerA},

where A ∈M(n−m)×(n+1)(K) is a matrix of rank n−m.

In other words, a linear subspace of dimension m is the set of equivalence
classes of vectors in the kernel of an (n−m)× (n+ 1) matrix of rank n−m,
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with 0 removed. Similarly to what we do for affine spaces, we call a line a
linear subspace of dimension 1, plane a linear subspace of dimension 2 and
hyperplane a linear subspace of dimension n− 1.

Example 8.3.2.

• A line in P2(K) is a subset of the form

ℓ = {(x : y : z) ∈ P2(K) : ax+ by + cz = 0},

where a, b, c ∈ K are not all 0.

• A plane in P3(K) is a subset of the form

π = {(x : y : z : t) ∈ P3(K) : ax+ by + cz + dt = 0},

where a, b, c, d ∈ K are not all 0.

• A line in P3(K) is a subset of the form

ℓ = {(x : y : z : t) ∈ P3(K) : ax+by+cz+dt = a′x+b′y+c′z+d′t = 0},

where a, b, c, d, a′, b′, c′, d′ ∈ K and rk

a b c d

a′ b′ c′ d′

 = 2.

Geometrically, one can define a surjective map

ψ : Kn+1 \ {0} → Pn(K)

(x1, . . . , xn+1) 7→ (x1 : . . . : xn+1).

Namely, each non-zero vector in Kn+1 is mapped to its equivalence class in
the quotient set.

Now if we think of Kn+1 as of the set of points of the affine space An+1(K),
then a linear subspace of Pn(K) of dimension m is simply the image, via ψ, of
a linear subspace of An+1(K) of dimension m+1 passing through (0, 0, . . . , 0),
with (0, 0, . . . , 0) removed.

Let now ℓ : ax+ by + cz = 0 be a line in P2(K). We have seen that

P2(K) = A2(K) ∪ {directions of lines in A2(K)}.

Hence we can ask what are the sets

ℓ ∩ A2(K) and ℓ ∩ {directions of lines in A2(K)}
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or, in other words, what are the proper points of ℓ and what are the improper
points. Let us start by assuming that (a, b) ̸= (0, 0). To find proper points, we
just have to find which points (x0 : y0 : 1) of P2(K) satisfy ax0 + bx0 + c = 0.
These are clearly in bijection with points on the affine line ax + by + c = 0.
On the other hand, improper points of ℓ are points of the form (x0 : y0 : 0)
that satisfy

ax0 + by0 = 0

It is immediate to see that there is just one such point, and it is (−b : a : 0).
Moreover, the space ⟨(−b, a)⟩ is precisely the translation space of the line
ax + by + c = 0. All in all, we have proven that the line ax + by + cz has
two types of points: its proper points are essentially points of the affine line
ax+ by+ c = 0, its unique improper point is (−b : a : 0), and it represents the
direction of the line ax+ by + c = 0 in A2(K).

When (a, b) = (0, 0) the line ℓ becomes z = 0.

Definition 8.3.3. The line z = 0 in P2(K) is called improper line.

The improper line contains no proper points but it contains all improper
points of P2(K).

An analogous reasoning can be applied to planes in P3(K). If π : ax+ by+
cz + dt = 0 is a plane with (a, b, c) ̸= (0, 0, 0), its proper points are essentially
the points on the affine plane ax+ by + cz + d = 0, while its improper points
are the points of the form (x0 : y0 : z0 : 0) that satisfy ax0 + bx0 + cz0 = 0.
Of course vectors (x0, y0, z0) ∈ K3 that satisfy such relation constitute the

kernel of the matrix
(
a b c

)
, and this is the translation space of the plane

ax + by + cz = 0 in A3(K). Therefore improper points of π correspond to
directions of the lines that are contained in the plane ax+ by + cz = 0.

When (a, b, c) = (0, 0, 0), the plane π becomes t = 0.

Definition 8.3.4. The plane t = 0 in P3(K) is called improper plane.

The improper plane contains no proper points but it contains all improper
points of P3(K).

The above discussion can also be reversed. Namely, given a linear subspace
S of An(K), we can find a linear subspace S ′ of Pn(K) such that S ′∩An(K) =
S. This is very easy to do: all we need to do is to homogeneize the equation of
the subspace. A subspace of An(K) is given by a system of linear equations,
in which all variables x1, . . . , xn appear to the first degree. If we think of these
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as of the proper points of a linear subspace of Pn(K), this means that each
variable xi has to be thought as xi/xn+1. For instance, if ax + by + c = 0 is
the equation of a line in A2(K), then all we need to do is to replace x with
x/z and y with y/z. The equation then becomes ax/z + by/z + c = 0, and
multiplying by z we get ax + by + cz = 0, that is the equation of a line in
P2(K).

8.4 Equations of linear subspaces

As it happens for affine spaces, projective lines and planes have parametric
equations, too. Given two distinct points P = (xP : yP : zP ), Q = (xQ : yQ :
zQ) ∈ P2(K), a parametric equation of the line through P and Q is:

ℓ :


x = λxP + µxQ

y = λyP + µyQ

z = λzP + µzQ

;

here one should think of λ and µ as varying parameters that cannot be both
zero. In order to obtain a cartesian equation for ℓ one just has to impose that

det


x y z

zP yP zP

xQ yQ zQ

 = 0.

Conversely, given a line ax+by+cz = 0, in order to find a parametric equation
we just solve the linear system. Assuming without loss of generality that a ̸= 0
we get that x = −(b/a)y − (c/a)z, so that the resulting parametric equation
is: 

x = λ · (−b/a) + µ · (−c/a)
y = λ

z = µ

.

Given two distinct points P = (xP : yP : zP : tP ), Q = (xQ : yQ : zQ : tQ) ∈
P3(K), the parametric equation of the line through them is:

x = λxP + µxQ

y = λyP + µyQ

z = λzP + µzQ

t = λtP + µtQ

;
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to recover a cartesian equation we have to impose that

rk


x y z t

zP yP zP tP

xQ yQ zQ tQ

 = 2.

Conversely, given a cartesian equation of the form ax + by + cz + dt = 0 =
a′x+ b′y + c′z + d′t for a line in P3(K), to find a parametric equation we just
need to solve the system.

Example 8.4.1.

• Let x+y−2z = 0 be a line in P2(R). To find a parametric equation,
simply notice that x = −y + 2z, so we get

x = −λ+ 2µ

y = λ

z = µ

.

• Let 
x = λ− µ

y = 2λ

z = −λ+ 2µ

be a parametric equation for a line in P2(R). To find a cartesian
equation, we let

det


x y z

1 2 −1

−1 0 2

 = 4x− y + 2z = 0.

• Let 
x = 2λ+ µ

y = 2λ− µ

z = µ

t = λ
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be a parametric equation for a line in P3(R). To find a cartesian
equation, we have to impose

rk


x y z t

2 2 0 1

1 −1 1 0

 = 2.

To do this, we can for example select the 2× 2 submatrix given by
the third and fourth row and column and use Theorem 2.3.20. This
way we get:

det


x z t

2 0 1

1 1 0

 = det


y z t

2 0 1

−1 1 0

 = 0,

which in turn yields the cartesian equation:{
x− z − 2t = 0

y + z − 2t = 0
.

Analogously to the case of lines, given three distinct points P = (xP : yP :
zP : tP ), Q = (xQ : yQ : zQ : tQ) and R = (xR : yR : zR : tR) in P3(K) that
do not lie on the same line, a parametric equation of the plane that contains
them is: 

x = λxP + µxQ + νxR

y = λyP + µyQ + νyR

z = λzP + µzQ + νzR

.

To obtain a cartesian equation, just impose

det


x y z t

xP yP zP tP

xQ yQ zQ tQ

xR yR zR tR

 = 0.

Conversely, given a cartesian equation such as ax+by+cz+dt = 0, to obtain a
parametric one we just have to solve the linear system. If a ̸= 0, for example,
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we get x = −(b/a)y − (c/a)z − (d/a)t, so that
x = λ · (−b/a) + µ · (−c/a) + ν · (−d/a)
y = λ

z = µ

t = ν

.

8.5 Relative position of linear subspaces

Lemma 8.5.1. Two lines in P2(K) always have non-empty intersection.
The same holds true for a plane and a line in P3(K) and for two planes in
P3(K).

Proof. Let ℓ : ax+ by + cz = 0 and ℓ′ : a′x+ b′y + c′z = 0 be two lines in
P2(K). Their intersection is given by the system{

ax+ by + cz = 0

a′x+ b′y + c′z = 0
.

This is a homogeneous system of 2 equations in 3 variables, and therefore
the set of its solutions is a vector subspace of dimension at least 1. It
follows that it always contains least one non-zero solution (x0, y0, z0). This
gives rise to a point (x0 : y0 : z0) ∈ P2(K) that lies on the intersection of
the two lines.

If π : ax + by + cz + dt = 0 and π′ : a′x + b′y + c′z + d′t = 0 are two
planes in P3(K), their intersection is given by the system{

ax+ by + cz + dt = 0

a′x+ b′y + c′z + d′t = 0
.

This is a homogeneous system of 2 equations in 4 variables, and hence the
set of its solutions is a vector subspace of dimension at least 2. Therefore
it always contains a non-zero solution.

Similarly, if ℓ :

{
ax+ by + cz + dt = 0

a′x+ b′y + c′z + d′t = 0
is a line and π : a′′x+b′′y+

c′′z+d′′t = 0 is a plane, the system that determines ℓ∩π is a homogeneous
system of 3 equation in 4 variables, and therefore its set of solutions is a
vector space of dimension at least 1.
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Example 8.5.2.

• Let ℓ : x + 2y + z = 0 and ℓ′ : x − y − z = 0 be two lines in P2(R),
and let us determine their intersection. To do this, we need to solve
the linear system {

x+ 2y + z = 0

x− y − z = 0
.

The set of solutions of such system is:

{(s,−2s, 3s) : s ∈ R}

or, in other words, it is the vector subspace of R3 generated by
(1,−2, 3). Notice that since this is 1-dimensional, all non-zero vec-
tors in this subspace belong to the same equivalence class, that is
that of (1,−2, 3). This simply means that ℓ ∩ ℓ′ = {(1 : −2 : 3)}:
the two lines intersect in a proper point.

• Let π : x+ y + t = 0 and π′ : x− y + t = 0 be two planes in P3(R).
To find their intersection, we need to solve the linear system{

x+ y + t = 0

x− y + t = 0
.

The matrix representing this linear system, namely

1 1 0 1

1 −1 0 1


has rank 2. Therefore, this system of two equations represents a line
in P3(R), that is exactly the intersection of π and π′.

Of course one can also find the solutions to the system. The set of
solutions is a 2-dimensional subspace of R4 and a basis is, for exam-
ple, ((1, 0, 0,−1), (0, 0, 1, 0)). It follows that a parametric equation
for π ∩ π′ is: 

x = λ

y = 0

z = µ

t = −λ

.
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• Let ℓ : x + y + t = x − y + t = 0 be the line of the previous point
and let π : x+3y+ t = 0 be a plane. In order to find ℓ∩ π, we need
to solve the system: 

x+ y + t = 0

x− y + t = 0

x+ 3y + t = 0

,

whose set of solutions is a 1-dimensional vector subspace of R4

generated by the vector (0, 0, 1, 0). This means that ℓ ∩ π is the
point (0 : 0 : 1 : 0). Notice that since its last coordinate is
0, this is an improper point. In fact, the affine part of ℓ is the
line ℓ′ : x + y + 1 = x − y + 1 = 0, while the affine part of π is
π′ : x + 3y + 1 = 0. In A3(R), ℓ′ and π′ are parallel and ℓ′ does
not lie on π′, and hence they have no intersection. In the projective
space instead, these two subspaces have an improper intersection
point, that represents the direction of the line ℓ′.

If we start with two parallel linear subspaces in A2(K) or A3(K) that
have empty intersection and we extend them to the projective space P2(K) or
P3(K), Lemma 8.5.1 tells us that these have non-empty intersection. Hence
their intersection points must belong to the improper line of P2(K) or the
improper plane in P3(K). In fact, if for example ax + by + c = 0 and ax +
by + c′ = 0 are two parallel lines with empty intersection in A2(K), once we
homogeneize their equations we obtain the projective lines ax + by + cz = 0
and ax + by + c′z = 0. Their intersection is the improper point (−b : a : 0).
That is, two parallel line in A2(K) meet in P2(K) in the improper point that
represents their direction.

Similarly, two distinct parallel planes in A3(K) given by π : ax+ by+ cz+
dt = 0 and π′ : ax + by + cz + d′t = 0 meet in the line given by the equation{
ax+ by + cz = 0

t = 0
. This is a line contained in the improper plane whose

points represent the directions of the lines contained in π (or π′, that is the
same since they are parallel).

Finally, a line and a plane in A3(K) that are parallel and distinct meet in
P3(K) in the improper point that represents the direction of the line.
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8.6 Projective pencils and bundles

The concepts of pencils and bundles of lines and planes that we encountered
in Chapter 6 can be revisited in the projective setting.

Definition 8.6.1.

1. A pencil of lines in P2(K) is the set of all lines through a given point
of P2(K).

2. A pencil of planes in P3(K) is the set of all planes that contain a
given line.

3. A bundle of lines in P3(K) is the set of all lines through a given
point of P3(K).

4. A bundle of planes in P3(K) is the set of all planes through a given
point of P3(K).

Proposition 8.6.2.

1. Let P ∈ P2(K) and let r : ax+ by+ cz = 0 and s : a′x+ b′y+ c′z = 0
be two distinct lines through P . Then the pencil of lines through
P ∈ P2(K) is given by the equation

λ(ax+ by + cz) + µ(a′x+ b′y + c′z) = 0.

2. Let ℓ ⊆ P3(K) be a line and let r : ax + by + cz + dt = 0 and
s : a′x+ b′y+ c′z+d′t = 0 be two distinct planes containing ℓ. Then
the pencil of planes in P3(K) containing ℓ is given by the equation

λ(ax+ by + cz + dt) + µ(a′x+ b′y + c′z + d′t) = 0.

In the projective space there is no distinction between proper and improper
pencil, since the concept of parallelism does not make sense anymore. On the
other hand once we have a pencil of lines/planes in the affine space, we can
homogeneize the equation of the pencil, obtaining a set of lines in P2(K) or
P3(K). If we start with a proper pencil, we end up with a pencil in the
projective space.
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Example 8.6.3.

• Consider the pencil of lines through the point (1, 1) ∈ A2(K). This
is given by the equation:

λ(x− 1) + µ(y − 1) = 0,

and homogeneizing this we get:

λ(x− z) + µ(y − z) = 0. (36)

Since x − z = 0 and y − z = 0 are two lines in P2(K) through
(1 : 1 : 1), by Proposition 8.6.2, equation (36) is that of the pencil
of lines through (1 : 1 : 1).

• Consider the pencil of planes through the line x− y − 1 = z − 2 =
in A3(K). This is given by the equation:

λ(x− y − 1) + µ(z − 2) = 0.

Homogeneizing, we get

λ(x− y − t) + µ(z − 2t) = 0,

that is the pencil of planes through the line x− y − t = z − 2t = 0
in P3(K).

What happens if, on the other hand, we start with an improper pencil of
lines/planes? Suppose first we have an improper pencil of lines in A2(K), that
is given by the equation:

ax+ by + µ = 0,

where (a, b) ∈ K2 \ {(0, 0)} are given coefficients and µ ∈ K is a varying
parameter. Homogeneizing this, we get:

ax+ by + µz = 0. (37)

Now this closely recalls the equation of a pencil of lines in P2(K), except for
the fact that we have only one parameter µ. However, consider the equation

λ(ax+ by) + µz = 0, (38)

where λ, µ ∈ K are not both zero. This is precisely the equation of a pencil
of lines in P2(K). The lines z = 0 and ax + by = 0 intersect in the point
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(−b : a : 0), so (38) is an equation for the pencil of lines through (−b : a : 0).
Notice that this is the improper point corresponding to the direction of the
affine line ax+ by + µ = 0!

How different is this from (37)? Not much: if λ ̸= 0, we can divide (38)
by λ, obtaining a line that belongs to the family (37). If λ = 0, on the other
hand, we obtain the line z = 0, that does not appear in (37) for any value of
µ. Hence (38) only differs from (37) by the improper line. We have therefore
understood what improper pencils represent in the projective space: they are
simply pencils of lines through an improper point, and thus the name.

Similarly, consider an improper pencil of planes in A3(K) given by

ax+ by + cz + µ = 0,

where (a, b, c) ∈ K3 is not the zero vector and µ is a varying parameter.
Mimicking the above argument, we can consider the pencil of projective planes:

λ(ax+ by + cz) + µt = 0.

This is the pencil defined by the planes ax+by+cz = 0 and t = 0, that intersect
(as already explained in this chapter) in the line ax + by + cz = t = 0, that
lies on the improper plane and contains all points corresponding to directions
of lines lying on ax + by + cz = 0. This explains what an improper pencil of
planes becomes in the projective space: it simply becomes the pencil of planes
that contain the line ax+ by + cz = t = 0, plus the improper plane itself.

This is why in the projective space there is no distinction between proper
and improper pencils: they are defined exactly in the same way, but the latter’s
support is contained in the improper line/plane.

Proposition 8.6.4. Let P = (xP : yP : zP : tP ) ∈ P3(K).

1. The bundle of lines through P has equation:
x = λxP + µv1

y = λyP + µv2

z = λzP + µv3

t = λtP + µv4

,

where (v1, v2, v3, v4) ̸= (0, 0, 0, 0).

2. Let π1, π2, π3 be pairwise distinct planes passing through P . Then

184



Andrea Ferraguti Chapter 8: Projective geometry

the bundle of planes through P is given by

λπ1 + µπ2 + νπ3 = 0,

where (λ, µ, ν) ̸= (0, 0, 0).

Of course, the same argument we used for pencils applies to bundles as well:
in the projective space there is no distinction between proper and improper
bundles because an improper bundle of lines/planes is simply a bundle of
lines/planes passing through an improper point.

8.7 Real and imaginary points

In this section, we focus on the case K = C.

Definition 8.7.1. A point P = (x1 : . . . : xn+1) ∈ Pn+1(C) is called real if
there exists λ ∈ C such that λxi ∈ R for every i = 1, . . . , n + 1. If P is
not real, then it is imaginary.

The conjugate of P is the point P = (x1 : . . . : xn+1).

Example 8.7.2. The point (i : i : i) ∈ P2(C) is real, since multiplying its
entries by −i we obtain (1 : 1 : 1) ∈ P2(R). The point (i : 1) ∈ P1(C) is
imaginary, since if there was λ ∈ C such that λi, λ ∈ R, then in particular
λ ∈ R and therefore λi /∈ R.

Note:-

The notion of conjugate is well-defined, that is, it does not depend on the
representative of the equivalence class of P . In fact suppose P = (x1 : . . . :
xn+1) ∈ Pn+1(C) and let λ ∈ C \ {0}, so that P = (λx1 : . . . : λxn+1). Then

λP = (λx1 : . . . : λxn+1) = λ(x1 : . . . : xn+1) = P .

Lemma 8.7.3. A point P = (x1 : . . . : xn+1) ∈ Pn+1(C) is real if and only
if P = P .

Proof. If P is real, then by definition we can write P = (y1 : . . . : yn+1)
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with yi ∈ R for every i, and therefore

P = (y1 : . . . : yn+1) = (y1 : . . . : yn+1) = P.

Conversely, suppose that P = P . Let i ∈ {1, . . . , n + 1} be such that
xi ̸= 0. Then

P = (x−1
i x1 : x

−1
i x2 : . . . : x

−1
i xi−1 : 1 : x−1

i xi+1 : . . . : x
−1
i xn+1)

and

P = (x−1
i x1 : x

−1
i x2 : . . . : x

−1
i xi−1 : 1 : x−1

i xi+1 : . . . : x
−1
i xn+1).

Since these points are equal, by definition there exists λ ∈ C such that

λ(x−1
i x1, x

−1
i x2, . . . , x

−1
i xi−1, 1, x

−1
i xi+1, . . . , x

−1
i xn+1) = P =

= (x−1
i x1, x

−1
i x2, . . . , x

−1
i xi−1, 1, x

−1
i xi+1, . . . , x

−1
i xn+1).

The i-th entry of the left hand side is λ, while the i-th entry of the right
hand side is 1. Therefore λ = 1, and x−1

i xj = xi
−1xj for every j. This

means that x−1
i xj ∈ R for every j ∈ {1, . . . , n}, and hence P is real.

Definition 8.7.4. Let L ⊆ Pn(C) be a linear subspace of dimension m,
defined by the kernel of an (n −m) × (n + 1) matrix A of rank n −m.
We say that L is real if

kerA = kerA,

where A is the matrix whose entries are the conjugates of the entries of
A. If L is not real, then we say that it is imaginary.

The conjugate of L is the linear subspace defined by kerA.

Equivalently, real subspaces can be characterized by the property explained
by the following lemma.

Lemma 8.7.5. Let L ⊆ Pn(K) be defined by a matrix A. Then L is real
if and only if for every P ∈ Pn(K) we have

P ∈ L⇐⇒ P ∈ L.

Proof. First suppose that L is real and let P = (x1 : . . . : xn+1) ∈
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Pn(K). Then P ∈ L if and only if A


x1

. . .

xn+1

 = 0, i.e. if and only if

(x1, . . . , xn+1) ∈ kerA. Since L is real then kerA = kerA, so this last
condition is equivalent to (x1, . . . , xn+1) ∈ kerA. Taking conjugates, this
becomes equivalent to P ∈ L.

Conversely, suppose that P ∈ L if and only if P ∈ L. Suppose that
(x1, . . . , xn+1) ∈ kerA. Then (x1 : . . . : xn+1) ∈ L, and hence (x1 :
. . . : xn+1) ∈ L. This implies that (x1, . . . , xn+1) ∈ kerA, and taking
conjugates (x1 : . . . : xn+1) ∈ kerA. Therefore kerA ⊆ kerA. The
symmetric argument shows that kerA ⊆ kerA.

Proposition 8.7.6. In P2(C), the following hold true.

1. A line ℓ : ax + by + cz = 0 is real if and only if (a : b : c) is a real
point of P2(C).

2. A line through two imaginary conjugate points is real.

3. If P is imaginary, there exists a unique real line ℓ with P ∈ ℓ.

4. If ℓ is an imaginary line, then ℓ ∩ ℓ is a single real point.

5. If ℓ is an imaginary line, then ℓ contains precisely one real point.

Proof. 1. ℓ is defined by kerA, with A =
(
a b c

)
.

If (a : b : c) is a real point of P2(C), then λa, λb, λc ∈ R for some

non-zero λ ∈ C. Clearly kerA = ker(λA), where λA =
(
λa λb λc

)
.

Taking conjugates, kerA = ker(λA), but λA is a real matrix, and hence
the latter is kerλA. It follows that kerA = kerA, so that ℓ is real.

Conversely, suppose that kerA = kerA. Without loss of generality,
suppose that a ̸= 0, so that another equation for ℓ is x + b′y + c′z = 0.
Assume by contradiction that (a : b : c) is an imaginary point: then at
least one between b′ and c′ is not real. Suppose it is b′. Then (−b′, 1, 0) ∈
kerA, and since kerA = kerA we must have (−b′, 1, 0) ∈ kerA. But
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A =
(
1 b′ c′

)
and hence

A


−b′

1

0

 = −b′ + b′,

which is not 0 since b′ is not real. This contradicts the fact that kerA =
kerA, and hence (a : b : c) must be real.

2. Let P = (x1 : x2 : x3) ∈ P2(C) be an imaginary point, and let P be
its conjugate. Let ℓ : ax+ by + cz = 0 be a line through P and P . Then{

ax1 + bx2 + cx3 = 0

ax1 + bx2 + cx3 = 0
.

Taking conjugates we get that{
ax1 + bx2 + cx3 = 0

ax1 + bx2 + cx3 = 0

and therefore ℓ also passes through P and P . However since P is imaginary
P and P are two distinct points, and there exists a unique line that passes
through them. Hence ℓ = ℓ.

3. Let ℓ be the line through P and P . By point 2., ℓ is real, so there
exists at least one real line that passes through P . On the other hand, if
ℓ′ : ax+by+cz = 0 is a real line (with a, b, c ∈ R) containing the imaginary
point P = (x1 : x2 : x3), then ax1 + bx2 + cx3 = 0 and taking conjugates
we get ax1 + bx2 + cx3 = 0. This means that ℓ′ passes through P as well,
and hence it must coincide with ℓ.

4. Let ℓ : ax+ by+ cz be an imaginary line, so that ℓ ̸= ℓ. If P = (x1 :
x2 : x3) ∈ P2(C) belongs to ℓ ∩ ℓ then{

ax1 + bx2 + cx3 = 0

ax1 + bx2 + cx3 = 0
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and taking conjugates we get{
ax1 + bx2 + cx3 = 0

ax1 + bx2 + cx3 = 0
,

showing that P ∈ ℓ ∩ ℓ. But since ℓ ̸= ℓ the intersection point is unique,
and so P = P .

5. If P ∈ ℓ is real, then P ∈ ℓ, but ℓ ∩ ℓ contains a unique real point
by 3.

The proof of the next proposition is very similar to that of Proposition 8.7.6.
We omit it, but encourage the interested reader in writing it down them-
selves.

Proposition 8.7.7. In P3(C), the following hold true.

1. A plane ax+ by + cz + dt = 0 is real if and only if (a : b : c : d) is a
real point of P3(C).

2. If P ∈ P3(C) is imaginary, the line through P and P is real.

3. If P ∈ P3(C) is imaginary, there exists a unique real line through P .

4. If a real line or a real plane contain an imaginary point, then they
contain the conjugate as well.

5. Two imaginary conjugate planes intersect in a real line.

6. An imaginary plane contains a unique real line.

7. An imaginary line contains at most one real point and there exists
at most one real plane containing it.

189



Andrea Ferraguti Chapter 9: Conics

Chapter 9: Conics

9.1 Algebraic curves, intersection multiplicities and tan-
gents

We denote by C[x, y, z] the set of polynomials in 3 variables over the complex
field. That is, elements of C[x, y, z] are expressions of the form

n∑
i,j,k=1

aijkx
iyjzk.

The degree of a term aijkx
iyjzk is i+ j + k.

Definition 9.1.1. A polynomial f ∈ C[x, y, z] is called homogeneous of
degree d if there exists a non-negative integer d such that every term of f
has degree d. That is, f is homogeneous of degree d if it has the form∑

i+j+k=d

aijkx
iyjzk.

Example 9.1.2.

• Homogeneous polynomials of degree 0 are constant polynomials.

• The polynomial x2 + 3xz − iz2 is homogeneous of degree 2.

• The polynomial x4 + zy3 + z2 + y4 is not homogeneous.

• The polynomial 2x5 + x3yz − 4y4z + 6z4x + iz3y2 is homogeneous
of degree 5.

Definition 9.1.3. An algebraic plane curve of degree d is a set of the form

{(x : y : z) ∈ P2(C) : f(x, y, z) = 0},

where f ∈ C[x, y, z] is a non-zero homogeneous polynomial of degree d.

Since all of our curves will be contained in P2(C), we will drop the adjective
”plane”.
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Note:-

The definition of algebraic curve makes sense only because f is homoge-
neous. In fact, if (x1 : x2 : x3) is such that f(x1, x2, x3) = 0, with f
homogeneous of the form

∑
i+j+k=d aijkx

iyjzk, then for every λ ∈ C we
have

f(λx1, λx2, λx3) =
∑

i+j+k=d

aijk(λx1)
i(λx2)

j(λx3)
k =

=
∑

i+j+k=d

λi+j+kaijkx
i
1x

j
2x

k
3 = λd

∑
i+j+k=d

aijkx
i
1x

j
2x

k
3 = λdf(x1, x2, x3) = 0.

Example 9.1.4. A line in P2(C) is defined by an equation of the form
ax+ by + cz = 0. Therefore, a line is an algebraic curve of degree 1.

Definition 9.1.5. An algebraic curve C : f(x, y, z) = 0 of degree d is re-
ducible if there exist homogeneous polynomials g, h ∈ C[x, y, z], each of
degree > 0, such that f = gh. If C is not reducible, then it is called
irreducible.

Example 9.1.6.

• If f, g are homogeneous polynomials, of degree d, e, respectively,
then gh is a homogeneous polynomial of degree d + e. Hence since
lines have degree 1, they are also irreducible.

• The curve x2 + xy + xz + yz = 0 is reducible, because

x2 + xy + xz + yz = (x+ y)(x+ z).

• The curve x2 + y2 = 0 is reducible, since x2 + y2 = (x+ iy)(x− iy).

• The curve x2 + y2 + z2 = 0 is irreducible.

Let C : f(x, y, z) = 0 be an algebraic curve of degree d, and write f =∑
i+j+k=d aijkx

iyjzk. Let P = (x0 : y0 : z0) ∈ P2(C) be a point of C, so that
f(x0, y0, z0) = 0 and let ℓ : ax + by + cz = 0 be a line through P . Since
(a, b, c) ̸= (0, 0, 0) we can assume without loss of generality that c ̸= 0, and
rewrite ℓ as z = αx+βy, where α = −a/c and β = −b/c, so that z0 = αx0+βy0.
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The equation
f(x, y, αx+ βy) = 0

certainly has a solution, because f(x0, y0, αx0 + βy0) = f(x0, y0, z0) = 0. On
the other hand, we have that

f(x, y, αx+ βy) =
∑

i+j+k=0

aijkx
iyj(αx+ βy)k.

Notice that (αx + βy)k =
∑k

h=0

(
k
h

)
αhβk−hxhyk−h is a homogeneous polyno-

mial of degree k. Hence every term aijkx
iyj(αx + βy)k of f(x, y, αx + βy)

is homogeneous of degree d, and in turn the polynomial f(x, y, αx + βy) is
homogeneous of degree d as well. Hence we can write

f(x, y, αx+ βy) =
d∑

h=0

ahx
hyd−h (39)

for some coefficients a0, . . . , ad ∈ C.
Now we need to make an important assumption: the fact that f(x, y, αx+

βy) is not the zero polynomial.

Remark 9.1.7. The fact that f(x, y, αx+ βy) = 0 is equivalent to saying
that every point of ℓ solves the equation f(x, y, z) = 0, that is in turn
equivalent to saying that ℓ ⊆ C. Conversely, if ℓ ⊆ C then of course
f(x, y, αx + βy) must be the zero polynomial. If one thinks of f(x, y, z)
as a polynomial in one variable z with coefficients in the ring C[x, y] (the
concept of ring has not been treated in these notes, but you can think of a
ring just as a field where not every element has a multiplicative inverse),
the fact that f(x, y, αx+βy) = 0 implies that the polynomial z−(αx+βy)
divides f(x, y, z), so that there exists a homogeneous polynomial h ∈
C[x, y, z] such that f(x, y, z) = h(x, y, z)(ax+ by + cz).

Next, notice that we cannot have x0 = y0 = 0, as otherwise z0 = 0. Suppose
without loss of generality that y0 ̸= 0. Since (x0, y0) solves the equation
f(x, y, αx + βy) = 0, also (y−1

0 x0, 1) does. Hence we can set y = 1 in (39)
(that is equivalent to dividing everything by y and then replacing x/y by x),
and look at the equation

d∑
h=0

ahx
h = 0, (40)

of which y−1
0 x0 is a solution.
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Definition 9.1.8. The multiplicity of y−1
0 x0 as a root of (40) is called

intersection multiplicity of ℓ and C in P and it is denoted by mP (C, ℓ).

Note:-

Since Equation (40) has degree d, the intersection multiplicity is at most d.
Moreover, it is also at least 1.

The definitoin of intersection multiplicity looks intricate at first, but in fact
computing it is rather easy. Let us see some examples.

Example 9.1.9.

• Let f = x2+y2+z2 and let C : f = 0 be the corresponding algebraic
curve. Let P = (1 : 0 : i) ∈ C and let ℓ : ix + y − z = 0 be a line
through P . First, we rewrite the equation of ℓ as z = ix+ y. Next,
we substitute this into f and we equate to 0, getting

f(x, y, ix+ y) = x2 + y2 + (ix+ y)2 = 2ixy + 2y2 = 0. (41)

Now we look at which coordinate of P , between the x-coordinate
and the y-coordinate, is 0. It is the first one, and therefore we can
set x = 1 in (41), getting

iy + y2 = 0.

Now this equation has, as a solution, x−1
0 y0, where x0 = 1 is the x-

coordinate of P and y0 is the y-coordinate. Notice that x−1
0 y0 = 0,

so we have to look at 0 as a root of the equation. This clearly has
multiplicity 1, and hence mP (C, ℓ) = 1.

• Let f = x2+y2+z2 and let C : f = 0 be the corresponding algebraic
curve. Let P = (1 : 0 : i) ∈ C and let ℓ : ix−z = 0 be a line through
P . Let us compute the intersection multiplicity of ℓ and C in P .
First, we rewrite the equation of ℓ as z = ix. Next, we substitute
in the equation of C, getting

x2 + y2 − x2 = y2 = 0. (42)
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Now we look at which coordinate of P is non-zero. It is clearly the
x-coordinate, so we need to look at the root y = x−1

0 y0 = 0 of (42).
This has multiplicity 2, and hence mP (C, ℓ) = 2.

• Let f = x3 − x2z − y2z and C : f = 0 be the corresponding curve.
Let P = (1 : 0 : 1) ∈ C and let x − z = 0 be a line through P . We
write ℓ as z = x and substitute, getting:

y2x = 0.

The non-zero coordinate of P , between x and y, is the x coordinate,
so we set x = 1 and look at 0 as a root of y2 = 0. This has
multiplicity 2, so mP (C, ℓ) = 2.

Definition 9.1.10. Let C be an algebraic curve, let P ∈ C be a point and
ℓ be a line that passes through P . We say that ℓ is a tangent in P if
mP (C, ℓ) ≥ 2.

Referring to 9.1.9, in the first example the line is not tangent, while in the
other two it is.

Definition 9.1.11. Let C be an algebraic curve. A point P ∈ C is called
smooth or non-singular if there exists a unique tangent in P . If P is not
smooth, then it is singular.

Example 9.1.12.

• Consider the curve x3−x2z− y2z = 0 and the point P = (0 : 0 : 1).
Let m ∈ C and consider the line y = mx through P . Substituting
in the equation of the curve, we get

x3 − x2z −m2x2z = 0.

The non-zero coordinate of P is the third one, so to understand
mP (C, ℓ) we need to look at x = 0 as a solution of

x3 − x2 −m2x2 = x3 − (1 +m2)x2 = 0.
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This has multiplicity at least 2 for every m, so every line through
P of the form y = mx is a tangent. Hence P is singular.

• Consider the curve x3−xz2− y2z = 0 and the point P = (0 : 0 : 1).
Let m ∈ C and consider a line y = mx through P . We get

x3 − xz2 −m2x2z = 0,

and since the z-coordinate of P is non-zero, we need to look at 0 as
a root of

x3 −m2x2 − x = 0.

This has multiplicity 1 for every m, so no line of the form y = mx
is a tangent in P .

The only other line through P is x = 0. Substituting, we get

y2z = 0,

and we get to look at the multiplicity of y = 0 as a root of y2 = 0.
This has multiplicity 2, and hence x = 0 is a tangent in P .

Theorem 9.1.13. Let C : f(x, y, z) = 0 be an algebraic curve and let P =
(x0 : y0 : z0) ∈ C. Then P is singular if and only if the following relations
hold true: 

f(x0, y0, z0) = 0
∂f
∂x
(x0, y0, z0) = 0

∂f
∂y
(x0, y0, z0) = 0

∂f
∂z
(x0, y0, z0) = 0

.

As a corollary of Theorem 9.1.13, one gets the following fundamental
fact.

Corollary 9.1.14. Let C : f(x, y, z) = 0 be an algebraic curve and let P =
(x0 : y0 : z0) ∈ C be a singular point. Then for every line ℓ through P we
have mP (C, ℓ) ≥ 2.

Theorem 9.1.15. Let C : f(x, y, z) = 0 be an algebraic curve and let P =
(x0 : y0 : z0) ∈ C. If P is smooth, then the tangent line in P is given by
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the equation

∂f

∂x
(x0, y0, z0)x+

∂f

∂y
(x0, y0, z0)y +

∂f

∂z
(x0, y0, z0)z = 0.

We close the section with a theorem that explains, in a precise sense, ”how
many” intersections does an algebraic curve of degree d have with a line.

Theorem 9.1.16. Let C : f(x, y, z) = 0 be an algebraic curve of degree d
and ℓ : ax+ by + cz = 0 be a line. Assume that ℓ ̸⊆ C. Then:∑

P∈C∩ℓ

mP (C, ℓ) = d.

Proof. Write f(x, y, z) =
∑

i+j+k=d aijkx
iyjzk. Intersecting C and ℓ means

studying the system {∑
i+j+k=d aijkx

iyjzk = 0

ax+ by + cz = 0
. (43)

Since (a, b, c) ̸= (0, 0, 0) we can assume without loss of generality that
c ̸= 0, and rewrite ℓ as z = αx + βy, where α = −a/c and β = −b/c.
Substituting in (43), we get

f(x, y, αx+ βy) = 0.

The polynomial f(x, y, αx+βy) cannot be the 0 polynomial, as otherwise
we would have ℓ ⊆ C, violating the hypotheses. Then, as we have already
noted in (39), the polynomial f(x, y, αx + βy) is homogeneous of degree
d, and hence we can write

f(x, y, αx+ βy) =
d∑

h=0

ahx
hyd−h

for some coefficients a0, . . . , ad ∈ C.
We know that in order to find the multiplicity of intersection at a point

(x0 : y0 : z0) ∈ C ∩ ℓ, we need to compute the multiplicity of (x0, y0) as a
root of

196



Andrea Ferraguti Chapter 9: Conics

d∑
h=0

ahx
hyd−h = 0. (44)

Therefore the theorem is proved if we can show that equation (44) has
exactly d solutions, when counted with multiplicity.

Suppose that (x0, y0) is a solution of (44). We can assume that (x0, y0) ̸=
(0, 0) because if x0 = 0 = y0 then z = αx0 + βy0 = 0, which does not
define a point of P2(C). Now suppose that y0 ̸= 0. Then (x0y

−1
0 , 1) is also

a solution of (44). On the other hand, if (x0, 0) is a solution than also
(1, 0) is. Since proportional pairs (x0, y0) and (λx0, λy0) give rise to the
same point P = (x0 : y0 : αx0 + βy0), we can just count solution of (44)
of the form (x0, 1) or (1, 0). Now, if

∑d
h=0 ahx

hyd−h = ady
d then we are

done, since (1, 0) is the unique root and it has multiplicity d. Otherwise,
there is a unique e ≥ 0 such that

d∑
h=0

ahx
hyd−h = ye

(
d∑

h=0

ahx
hyd−h−e

)

with ad−e ̸= 0. Then (1, 0) is a root with multiplicity e, and the equation

d∑
h=0

ahx
hyd−h−e = 0

has precisely d−e roots of the form (x0, 1), when counted with multiplicity.
All in all, we have e+ d− e = d roots.

9.2 Conics

Definition 9.2.1. A conic is a plane algebraic curve of degree 2.

Equivalently, a conic is a plane algebraic curve given by an equation of the
form

C : a11x2 + 2a12xy + 2a13xz + a22y
2 + 2a23yz + a33z

2 = 0,

where aij ∈ C are not all zero.
There is a convenient way to rewrite the above equation. Namely, a conic

is the set of points (x0 : y0 : z0) ∈ P2(C) that satisfy
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(
x0 y0 z0

)
a11 a12 a13

a12 a22 a23

a13 a23 a33



x0

y0

z0

 = 0.

The matrix A =


a11 a12 a13

a12 a22 a23

a13 a23 a33

 is the matrix associated to the conic C.

Setting X =


x

y

z

 we can write the equation of C as:

tXAX = 0.

Definition 9.2.2. Let C be a conic. We say that C is:

1. generic if it has no singular points;

2. simply degenerate if it has exactly one singular point;

3. doubly degenerate if all of its points are singular.

Theorem 9.2.3. Let C : tAX = 0 be a conic. Then C is:

1. generic if detA ̸= 0 or, equivalently, if rk(A) = 3;

2. simply degenerate if rk(A) = 2;

3. doubly degenerate if rk(A) = 1.

Proof. Let

f = a11x
2 + 2a12xy + 2a13xz + a22y

2 + 2a23yz + a33z
2

be the equation of C. By Theorem 9.1.13, a point (x0 : y0 : z0) ∈ C is
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singular if and only if: 
∂f
∂x
(x0, y0, z0) = 0

∂f
∂y
(x0, y0, z0) = 0

∂f
∂z
(x0, y0, z0) = 0

.

Now notice that: 
∂f
∂x

= 2a11x+ 2a12y + 2a13z
∂f
∂y

= 2a12x+ 2a22y + 2a23z
∂f
∂z

= 2a13x+ 2a23y + 2a33z

So that (x0 : y0 : z0) ∈ C is singular if and only if

A


x0

y0

z0

 =


a11 a12 a13

a12 a22 a23

a13 a23 a33



x0

y0

z0

 = 0.

Namely, in order to find singular points we need to solve the homogenous
linear system

AX = 0. (45)

Notice that any non-zero solution of (45) automatically yields a point of
the conic, since if AX = 0 then clearly tXAX = 0.

If detA ̸= 0, then by Theorem 3.1.5, system (45) only has the trivial
solution X = 0. But this does not define a point of P2(C), and therefore
C has no singular points.

If rk(A) = 2, the solutions of system (45) form a 1-dimensional C-
vector space, generated by a non-zero vector (x0, y0, z0) ∈ C3. This means
that (x0 : y0 : z0) is the unique singular point of the conic, and hence C is
simply degenerate.

If rk(A) = 1, the solutions of system (45) form a 2-dimensional C-
vector space. This gives rise, in P2(C), to a line ℓ made entirely of singular
points. The line ℓ is entirely contained in C. We claim that the converse
is also true, namely, every point of C belongs to ℓ. In fact, if this was not
true then let P ∈ C \ ℓ and let Q ∈ ℓ. Now consider the line r through P
and Q: its intersection multiplicity with C at Q is ≥ 2, since Q is singular.
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Its intersection multiplicity with C at P is at least 1. But then∑
R∈C∩ℓ

mR(C, r) ≥ 2 + 1 = 3,

contradicting Theorem 9.1.16. Since every point of C is a point of ℓ, and
points of ℓ are all singular, C is doubly degenerate.

Next, we see what it means geometrically to be generic, simply degenerate and
doubly degenerate.

Lemma 9.2.4. Let C : f(x, y, z) = 0 be a conic.

1. C is generic if and only if it is irreducible.

2. C is simply degenerate if and only if there exist two distinct lines
ℓ : ax+ by + cz = 0, ℓ′ : a′x+ b′y + c′z = 0 such that

f(x, y, z) = (ax+ by + cz)(a′x+ b′y + c′z).

3. C is doubly degenerate if and only if there exists a line ℓ : ax+ by +
cz = 0 such that f(x, y, z) = (ax+ by + cz)2.

Proof. 1. First, let C be irreducible. By contradiction, assume that it is
not generic. Then it has (at least) a singular point P ∈ C. Now let Q be
another point of C. Let ℓ : ax+ by + cz = 0 be the line through P and Q.
If ℓ ̸⊆ C, then by Theorem 9.1.16 we have∑

R∈ℓ∩C

mR(C, ℓ) = 2, (46)

butmP (C, ℓ) ≥ 2 since P is singular andmQ(C, ℓ) ≥ 1, and this contradicts
(46). Therefore we must have ℓ ⊆ C, and by Remark 9.1.7 this implies that
f(x, y, z) = (ax + by + cz)h(x, y, z), so that C is reducible, contradicting
our assumption. Hence C is generic.

Conversely, let C be generic. By contradiction, assume that it is re-
ducible. Then there are lines ℓ : ax+by+cz = 0 and ℓ′ : a′x+b′y+c′z = 0
such that

f(x, y, z) = (ax+ by + cz)(a′x+ b′y + c′z). (47)

Now let P = (x0 : y0 : z0) ∈ ℓ∩ ℓ′. Assume without loss of generality that
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x0 ̸= 0 and consider the line r : z0x− x0z = 0 through P . We claim that
mP (C, r) ≥ 2. To compute the multiplicity, write r as z = z0

x0
x, substitute

in (47) and equate to 0, getting:

((ax0 + cz0)x+ bx0y)((a
′x0 + c′z0)x+ b′x0y) = 0.

Since x0 ̸= 0, in order to find the intersection multiplicity we have to solve

((ax0 + cz0) + bx0y)((a
′x0 + c′z0) + b′x0y) = 0.

But both factors have x−1
0 y0 as a root, and hence mP (C, r) ≥ 2. On the

other hand, one can repeat the same argument with the line r′ : x0y−y0x =
0, finding that mP (C, r′) ≥ 2. Hence there are at least two tangent lines
in P ; in other words, P is singular. This contradicts the fact that C is
generic.

2. We have proved in 1. that if C decomposes as the product of two
lines, the intersection point is singular. Hence if f(x, y, z) = (ax + by +
cz)(a′x+ b′y + c′z) with ax+ by + cz = 0 and a′x+ b′y + c′z = 0 distinct
lines, their unique intersection point P is singular. On the other hand, no
other point Q can be singular, as otherwise if ℓ is the line through P,Q
then mp(C, ℓ) +mQ(C, ℓ) ≥ 3, contradicting Theorem 9.1.16. Conversely,
suppose that C is simply degenerate. Then by 1. it must be reducible,
and since deg f = 2, we can only have f(x, y, z) = g(x, y, z)h(x, y, z) with
g, h homogeneous polynomials of degree 1. If g = 0 and h = 0 define the
same line, then any point on such line is singular, but then every point of
C would be singular. Hence g = 0 and h = 0 must define distinct lines.

3. If f = (ax + by + cz)2, then every point of C is singular, and so
C is doubly degenerate. Conversely, if C is doubly degenerate then it is
reducible, and we showed in 2. that if it decomposes as the product of
two distinct lines then there is a unique singular point. Then it must
decompose as the square of a line.

The next lemma shows how to compute tangent lines in smooth points of
conics.

Lemma 9.2.5. Let C : tXAX = 0 be a conic, whereA =


a11 a12 a13

a12 a22 a23

a13 a23 a33

 ∈
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M3(C). Let P = (xP : yP : zP ) ∈ C be a smooth point. Then the unique
tangent in P is the line

(
xP yP zP

)
A


x

y

z

 = 0.

Proof. By Theorem 9.1.15, the tangent line in P is given by the equation

∂f

∂x
(P )x+

∂f

∂y
(P )y +

∂f

∂z
(P )z = 0,

where f(x, y, z) = a11x
2+2a12xy+2a13xz+a22y

2+2a23yz+a33z
2. Hence

we just need to verify that this expression coincides with that of the claim.
We compute:

∂f

∂x
(P ) = 2a11xP + 2a12yP + 2a13zP

∂f

∂y
(P ) = 2a22yP + 2a12xP + 2a23zP

∂f

∂z
(P ) = 2a33zP + 2a13xP + 2a23yP

so that the equation of the tangent line in P is given by:

(a11xP+a12yP+a13zP )x+(a22yP+a12xP+a23zP )y+(a33zP+a13xP+a23yP )z = 0.

On the other hand,

(
xP yP zP

)
a11 a12 a13

a12 a22 a23

a13 a23 a33

 =

=
(
a11xP + a12yP + a13 a22yP + a12xP + a23zP a33zP + a13xP + a23yP

)
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so that when we multiply the above matrix by


x

y

z

 and we equate to 0

we obtain precisely the equation of the tangent line.

Definition 9.2.6. Let C : f(x, y, z) = 0 be a conic. The improper points
of C are the intersections of C with the line z = 0.

If C is general, an asymptote of C is a proper tangent in an improper
point of C.

Remark 9.2.7. To find the improper points of C one simply needs to
solve the equation f(x, y, 0) = 0. By Theorem 9.1.16, a conic either
has two distinct improper points or it has a unique improper point with
multiplicity 2; in the latter case, the line z = 0 is tangent in such point.

If C is general and it has 2 improper points, then these are smooth
and z = 0 is not tangent in either of them, since otherwise we would
contradict Theorem 9.1.16. Hence the tangents in the improper points
must be proper, and the conic has two asymptotes.

If C is general and it has only one improper point, then this is smooth
and z = 0 is tangent in such point; it follows that the conic has no
asymptotes.

Example 9.2.8.

• Let C : x2 + 2y2 + z2 = 0. To find the improper points, we need
to solve x2 + 2y2 = 0. It follows that the two improper points are:
P = (i

√
2 : 1 : 0) and P = (−i

√
2 : 1 : 0). Since C is a general

conic, there is a unique tangent line in both P and P . To compute
these tangents, we use Lemma 9.2.5. The tangent in P is given by:

(
i
√
2 1 0

)
1 0 0

0 2 0

0 0 1



x

y

z

 = 0,
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that is,
i
√
2x+ 2y = 0.

Similarly, the line
−i

√
2x+ 2y = 0

is the tangent in P . Since these lines are proper, they are the
asymptotes of C.

• Let C : x2+4xy+4y2−2xz+z2 = 0. To find the improper points, we
need to solve x2+4xy+4y2 = 0. This is equivalent to (x+2y)2 = 0,
so this conic has a unique improper point that is P = (2 : −1 : 0).
Its tangent line has equation:

(
2 −1 0

)
1 2 −1

2 4 0

−1 0 1



x

y

z

 = 0,

that is just z = 0. This means that the tangent line in P is improper,
and hence it is not an asymptote.

9.3 Real conics

Definition 9.3.1. A real conic is a conic C which has a defining equation
f(x, y, z) = 0 with f(x, y, z) ∈ R[x, y, z].

The conic C is called:

1. An ellipse if it has two imaginary conjugate improper points;

2. A hyperbola if it has two real distinct improper points;

3. A parabola if it has one real improper point with multiplicity 2.

By Remark 9.2.7, ellipses and hyperbolas have two asymptotes, while parabo-
las have no asymptotes.
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Theorem 9.3.2. Let C : tXAX = 0 be a real general conic, where

A =


a11 a12 a13

a12 a22 a23

a13 a23 a33

 ∈M3(R).

Let

Ã =

a11 a12

a12 a22

 .

Then C is:

1. an ellipse if det Ã > 0;

2. a hyperbola if det Ã < 0;

3. a parabola if det Ã = 0.

Proof. In order to find improper points of C we need to solve

(
x y 0

)
a11 a12 a13

a12 a22 a23

a13 a23 a33



x

y

0

 = 0,

that is,
a11x

2 + 2a12xy + a22y
2 = 0. (48)

Now we need to consider three cases. First, if a11 = a22 = 0 then it
must be a12 ̸= 0, because if it was also a12 = 0 then the first two rows
of A would be linearly dependent, so that rk(A) < 3 and A would not
be general. Then the equation becomes xy = 0, so the conic has two
improper points (1 : 0 : 0) and (0 : 1 : 0), hence it is a hyperbola and

det Ã = −a212 < 0, as required.
Next, if a11 ̸= 0 then y = 0 does not yield a solution of (48). Hence

we can assume that y = 1 and look at the equation

a11x
2 + 2a12x+ a22 = 0,
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that has two real solutions precisely when ∆ = a212−a11a22 > 0, it has one
solution with multiplicity two when a212−a11a22 = 0 and has two imaginary

conjugate solutions when a212 − a11a22 < 0. Since a212 − a11a22 = − det Ã,
we are done.

Finally, if a22 ̸= 0 then x = 0 does not yield any solution of (48), so
we can just set x = 1 and reason like in the previous case.

Definition 9.3.3. Let C : tXAX = 0 be a real general conic, where

A =


a11 a12 a13

a12 a22 a23

a13 a23 a33

 ∈M3(R).

Let P = (xP : yP : zP ) ∈ P2(C) be any point. A point Q = (xQ : yQ :
zQ) ∈ P2(C) is said to be conjugate to P with respect to C if

(
xP yP zP

)
a11 a12 a13

a12 a22 a23

a13 a23 a33



xQ

yQ

zQ

 = 0.

We write the above equation as tPAQ = 0, with a slight abuse of notation.

Remark 9.3.4. Notice that P is conjugate to Q with respect to C if and
only if Q is conjugate to P with respect to P . In fact,

tPAQ = 0 ⇐⇒ t(tPAQ) = 0 ⇐⇒ tQtAP = 0 ⇐⇒ tQAP = 0,

using the fact that tA = A.

Definition 9.3.5. Let C be a real general conic and let P ∈ P2(C). The
set of points of P2(C) that are conjugate to P with respect to C is called
the polar of P with respect to C.
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Proposition 9.3.6. Let C : tXAX = 0 be a real general conic.

1. Let P ∈ P2(C). Then the polar of P with respect to C is a line.

2. Let P,Q ∈ P2(C) be such that P ̸= Q, and let ℓP , ℓQ be the polar of
P,Q with respect to C, respectively. Then ℓP ̸= ℓQ.

Proof. 1. The polar is the set of points that solve the equation

(
xP yP zP

)
a11 a12 a13

a12 a22 a23

a13 a23 a33



x

y

z

 = 0,

where P = (xP : yP : zP ). This clearly defines a line unless

(
xP yP zP

)
a11 a12 a13

a12 a22 a23

a13 a23 a33

 = 0,

namely unless tPA = 0. Transposing and using the fact that A is sym-
metric, the latter condition is equivalent to AP = 0. Since the vector of
the coordinates of P cannot be the zero vector because (0 : 0 : 0) is not
a point of the projective plane, in order for this to happen we need kerA
to be non-zero, but this happens precisely when detA = 0, namely when
A is not general.

2. Let P = (xP : yP : zP ) and Q = (xQ : yQ : zQ). Since P ̸= Q as
points of P2(C), the vectors (xP , yP , zP ) and (xQ, yQ, zQ) are not linearly
dependent in C3. Suppose by contradiction that ℓP = ℓQ. Then AP and
AQ are proportional vectors, i.e. there exists λ ∈ C such that AP = λAQ
and hence AP = A(λQ), that implies

A(P − λQ) = 0.

In other words, P − λQ ∈ kerA. But kerA = {0} since C is general, and
hence P = λQ, contradicting the hypothesis.
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Definition 9.3.7. Let C be a real general conic and let ℓ ⊆ P2(C) be a
line. We say that a point P ∈ P2(C) is a pole of ℓ if the polar of P with
respect to C is ℓ.

Proposition 9.3.8. Let C be a real general conic and let ℓ ⊆ P2(C) be a
line. Then ℓ has a unique pole.

Proof. Let ℓ : ax+by+cz = 0 and let A =
(
xP yP zP

)
a11 a12 a13

a12 a22 a23

a13 a23 a33


be the matrix associated to C. Then a point P = (xP : yP : zP ) ∈ P2(C)
is a pole of ℓ if and only if

(
xP yP zP

)
A is proportional to

(
a b c

)

or, equivalently (transposing), if A


xP

yP

zP

 is proportional to B =


a

b

c

.

Now the linear system AX = B has exactly one solution by Theorem
3.1.5, because being C general the matrix A has non-zero determinant. It
follows that ℓ has a pole P . Such pole is unique because of Proposition
9.3.6: if Q was another pole for ℓ then P and Q would be distinct points
with the same polar.

Therefore we have proven that given a general real conic C, the polar of
every point P ∈ P2(C) with respect to C is a line and every line has a unique
pole in P2(C).

Theorem 9.3.9 (Reciprocity principle). Let C be a general real conic, let
P ∈ P2(C) and let p be the polar of P with respect to C.

1. If Q ∈ p, the polar of Q with respect to C passes through P .

2. If ℓ is a line containing P , its pole belongs to p.

Proof. Let C have equation tXAX = 0.
1. Since p is the set of points that are conjugate to P with respect

to C, if Q ∈ p then we have tPAQ = 0. Transposing and using the fact
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that A is symmetric, we get tQAP = 0, so that P is conjugate to Q with
respect to C. But this means precisely that P belongs to the polar of Q
with respect to C.

2. Let Q be the pole of ℓ. This means that ℓ is the set of points of
P2(C) that are conjugate to Q with respect to C. Since P ∈ ℓ, then P
is conjugate to Q with respect to C, i.e. tQAP = 0. Transposing, we get
that tPAQ = 0, namely, Q is conjugate to P with respect to C. But then
by definition Q belongs to the polar of P , that is p.

Proposition 9.3.10. Let C be a general real conic, let P ∈ P2(C) and let
p be the polar of P with respect to C.

1. P ∈ p if and only if P ∈ C, and in such case the polar of P is the
tangent line in P .

2. If P /∈ C, there exist exactly two lines ℓ1 and ℓ2 through P that are
tangent to C, and p is the line through the two points ℓ1 ∩ C and
ℓ2 ∩ C.

Proof. 1. P ∈ p if and only if P is conjugate to itself with respect to C,
namely if and only if tPAP = 0. But this is equivalent to saying that
P ∈ C. Lemma 9.2.5 shows that in this case the equation of the polar is
precisely the equation of the tangent line.

2. Consider p∩C. By theorem 9.1.16, this consists either of two distinct
points or of a single point with multiplicity 2. Suppose that the latter
holds, and let Q = p ∩ C. Since the intersection multiplicity of p and C in
Q is 2, p is tangent to C in Q, and hence by 1. the line p is the polar of
Q. But a line has a unique pole by Proposition 9.3.8, and hence P = Q.
But then P ∈ C, contradicting the hypothesis. Hence p∩C consists of two
distinct points P1, P2. Now let ℓi be the tangent in Pi, for i = 1, 2. Since
Pi ∈ C, by Theorem 9.3.9 we have that P ∈ ℓi, for i = 1, 2.

So we proved that there exist two lines ℓ1, ℓ2 through P that are tangent
to C, and p is the line through ℓ1 ∩ C and ℓ2 ∩ C. It remains to show that
there are no other lines through P that are tangent to C. Let ℓ3 be another
line with such property and let P3 = ℓ3 ∩ C. Then ℓ3 is the polar of P3,
and since P ∈ ℓ3, by Theorem 9.3.9 we have that P3 ∈ p. But then
{P1, P2, P3} ⊆ p ∩ C, contradicting Theorem 9.1.16 since the three points
are all distinct.
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Definition 9.3.11. Let C be a general real conic. The center of C is the
pole of the improper line z = 0. The diameters of C are the polars of the
improper points of P2(C).

Remark 9.3.12. Let C be a general real conic. Then every diameter of C
passes through the center of C. In fact, if P is the center of C then by
definition the polar of P is z = 0. Hence by Theorem 9.3.9, the polars of
the points lying on z = 0, that are the diameters, pass through P .

Proposition 9.3.13. Let C be a general real conic with defining matrix

A =


a11 a12 a13

a12 a22 a23

a13 a23 a33

.

1. The center of C is the unique point (xP : yP : zP ) ∈ P2(C) such that:{
a11xP + a12yP + a13zP = 0

a12xP + a22yP + a23zP = 0
.

2. The center of C is improper if and only if C is a parabola, and in
this case its center is the unique improper point of C.

3. If C is not a parabola, the asymptotes of C are the lines through the
center and the improper points of C.

Proof. 1. By Remark 9.3.12, in order to compute the center we can com-
pute the polars of the points (1 : 0 : 0) and (0 : 1 : 0) and intersect them.
These polars are, respectively,

a11x+ a12y + a13z = 0 and a12x+ a22y + a23z = 0.

Hence the center is given by the unique solution of the system{
a11x+ a12y + a13z = 0

a12x+ a22y + a23z = 0
(49)
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(notice that the solution is unique because since C is general, the rows of
A are linearly independent, hence all solutions of (49) are proportional to
each other).

2. System (49) has a solution of the form (xP : yP : 0) if and only if
(xP , yP ) solves the system{

a11x+ a12y = 0

a12x+ a22y = 0
. (50)

But this is a homogeneous system of two equations in two indetermi-
nates, and therefore by Theorem 3.1.5 it has a non-zero solution if and

only if det

a11 a12

a12 a22

 = 0, namely if and only if C is a parabola by

Theorem 9.3.2.
Suppose then that C is a parabola. Its center then is (xP : yP : 0)

where (xP , yP ) solves (51). Since C is a parabola, a11a22 − a212 = 0, so the
two equations are linearly dependent. Now if (a11, a12) ̸= (0, 0) then the
solution is (−a12 : a11 : 0). Otherwise we must have a22 ̸= 0, since C is
general, and the center is (1 : 0 : 0).

On the other hand, to find the improper points of C we need to solve

a11x
2 + 2a12xy + a22y

2 = 0 (51)

If (a11, a12) ̸= (0, 0) then plugging in x = −a12 and y = a11 in the above
expression we get −a11a212 + a22a

2
11 = a11(−a212 + a11a22), that is 0 since

C is a parabola. If (a11, a12) = (0, 0) then as we have seen the center is
(1 : 0 : 0) and (51) becomes a22y

2 = 0, that is satisfied by (1 : 0 : 0). In
any case, the center coincides with the unique improper point.

3. Since C is not a parabola, it has two distinct improper points P1 and
P2. The polar pi of Pi is the tangent line in Pi for i = 1, 2 by Proposition
9.3.10, and hence p1 and p2 are the asymptotes of C. By Remark 9.3.12,
they pass through the center, and hence they must be the lines through
the center and the improper points.

Remark 9.3.14. The center of a real general conic C is a point of C if and
only if C is a parabola. In fact, if C is a parabola then by Proposition
9.3.13 its center lies on it. If C is not a parabola, by Proposition 9.3.13
the center P is proper. Hence if it was a point of C, by Proposition 9.3.10
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its polar would be the tangent in P , that is a proper line. But this is
impossible since the polar of the center is the improper line by definition.

Example 9.3.15. Let C : x2 − 2xy+ 2y2 + 4xz − 2z2 = 0. By Proposition
9.3.13, the center is found by solving the system{

x− y + 2z = 0

−x+ 2y = 0
,

that yields the point (−4 : −2 : 1).
Of course one can also compute the center by using its very definition,

namely that of being the pole of the improper line. So P = (xP : yP : zP )
is the center of C if and only if its polar is z = 0, namely if and only if

(
xP yP zP

)
1 −1 2

−1 2 0

2 0 −2



x

y

z

 = 0

is the improper line. The above line has equation

(xP − yP + 2zP )x+ (−xP + 2yP )y + (2xP − 2zP )z = 0,

which is the equation of the improper line if and only if{
xP − yP + 2zP = 0

−xP + 2yP = 0
,

that is the very same system we already solved.

Proposition 9.3.16. Let C be a general real conic. The diameters of C
constitute the pencil of lines through the center of C.

Proof. Every diameter passes through the center, by Remark 9.3.12. Con-
versely, let ℓ be a line through the center P of C. By Theorem 9.3.9, the
pole of ℓ must lie on the polar of P . But this is the improper line, by
definition of center. Hence ℓ is the polar of an improper point.
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Remark 9.3.17. When looking at the affine part of a general real conic C, if
C is not a parabola then its center is proper, and therefore the diameters
will be the pencil of affine lines through such proper point. If C is a
parabola, since the center is improper the affine part of the diameters will
constitute a pencil of parallel lines, all with direction (−a12 : a11 : 0) by
Proposition 9.3.13.

9.4 Conics in E2(R)

Definition 9.4.1. A conic in E2(R) is the set of solutions of an equation
of the form:

C : a11x2 + 2a12xy + 2a13x+ a22y
2 + 2a23y + a33 = 0,

where aij ∈ R for every i, j and a11, a12, a22 are not all 0.

Of course by homogeneizing the equation of a conic in E2(R) one obtains

the equation of a real conic C̃ in P2(C). However, we maintain the concepts
distinct, in a formal way, in order to be able to talk about orthogonality, that
is a notion that makes no sense in P2.

Every notion we have seen in the previous sections for conics in P2(C)
carries over to conics in E2(R); to make sense of such notions we’ll think of

them as associated to the conic C̃. For example, if x2 + y2 + 1 is a conic in
E2(R), we can talk of its improper points: these will be the improper points
in P2(C) of the conic x2 + y2 + z2 = 0.

In the Euclidean setting we distinguish (for reasons that will not be treated
in these notes) circles from ellipses, although the former are a special case of
the latter.

Definition 9.4.2. A circle in E2(R) is a conic with equation

C : a11x2 + a11y
2 + 2a13x+ 2a23y + a33 = 0,

with a11 ̸= 0.

Therefore, in the Euclidean setting we will use the word ”ellipse” to denote
an ellipse that is not a circle.
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Definition 9.4.3. The cyclic points in P2(C) are (1 : i : 0) and (1 : −i : 0).

Lemma 9.4.4. A general conic C ⊆ E2(R) is a circle if and only C̃ passes
through the cyclic points.

Proof. Simply impose to the general equation of a conic the passage
through the cyclic points. This yields:

a11 ± 2ia12 − a22 = 0,

so that we must have a11 = a22 and a12 = 0.

Definition 9.4.5. Let C ⊆ E2(R) be a hyperbola. We say that C is equi-
lateral if its asymptotes are orthogonal.

Proposition 9.4.6. Let

C : a11x2 + 2a12xy + 2a13x+ a22y
2 + 2a23y + a33 = 0

be a hyperbola in E2(R). Then C is equilateral if and only if a11+a22 = 0.

Proof. To find the improper points of C we need to solve the equation

a11x
2 + 2a12xy + a22y

2 = 0. (52)

Since C is a hyperbola, we know that this equation will yield two real
distinct improper points: (x0 : y0 : 0) and (x′0 : y′0 : 0). Let P be the
center of C, that is proper by Proposition 9.3.13. Since the asymptotes are
the lines through P and the improper points, again by Proposition 9.3.13,
their directions are (x0, y0) and (x′0, y

′
0). Hence they are orthogonal if and

only if
x0x

′
0 + y0y

′
0 = 0. (53)

If, without loss of generality, we assume that a22 ̸= 0, then x0 ̸= 0 as
otherwise to solve (52) we would also need y0 = 0. For the same reason,
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x′0 ̸= 0. Hence (53) can be rewritten as:

y0
x0

· y
′
0

x′0
= −1.

Now since y0
x0

and
y′0
x′
0
are the roots of the equation

a22t
2 + 2a12t+ a11 = 0,

their product is −1 if and only if a11
a22

= −1, that is if and only if a11+a22 =
0.

Definition 9.4.7. Let C ⊆ E2(R) be a general conic. An axis of C is a
proper diameter whose direction is orthogonal to that of its own pole. If
ℓ is an axis of C and P ∈ ℓ ∩ C is proper, then it is called a vertex of C.

Proposition 9.4.8. Let C ⊆ E2(R) be a general conic.

1. If C is a circle, all diameters are axes and all proper points of C are
vertices.

2. If C is a hyperbola or an ellipse, then its has 2 axes and 4 vertices.

3. If C is a parabola, there is a unique axis and a unique vertex and
the tangent in the vertex is orthogonal to the axis.

Proof. Let A =


a11 a12 a13

a12 a22 a23

a13 a23 a33

 be the matrix of the associated projec-

tive conic C̃. Let (xP : yP : 0) be an improper point. Its polar is given by
the equation:

(xPa11 + yPa12)x+ (xPa12 + yPa22)y + (xPa13 + yPa23)z = 0.

The direction of such polar is (xPa12+ yPa22,−xPa11− yPa12), while that
of the pole is (xP , yP ). Hence in order for them to be orthogonal we need
(xPa12 + yPa22)xP − (xPa11 + yPa12)yP = 0 or, in other words,
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a12x
2
P + (a22 − a11)xPyP − a12y

2
P = 0. (54)

1. If C is a circle, then a11 = a22 and a12 = 0, so that (54) is satisfied
by every pair (xP , yP ). This is equivalent to saying that every diameter is
an axis.

If Q is the center of C and R is a point of C, by Theorem 9.3.9 the pole
of the line ℓ through Q and R is improper. Therefore ℓ is a diameter, and
it is an axis by what we said above. Hence R is a vertex.

2. If a12 = 0, then the two solutions of (54) yield the points P1 = (1 :
0 : 0) and P2 = (0 : 1 : 0). If a12 ̸= 0, then the solutions to (54) yield two
points P1 = (xP : yP : 0) and P2 = (−yP : xP : 0). These points coincide
if and only if yP = ixP , and if this happens then it must be xP ̸= 0. Then
(54) becomes:

x2P (2a12 + (a22 − a11)i) = 0,

and since the aij’s are all real and xP ̸= 0 it must be a11 = a22 and a12 = 0,
contradicting the hypothesis that C is a hyperbola or an ellipse. Therefore
P1 ̸= P2.

Now we need to prove that the polars of P1, P2 are proper. Let ℓi be
the polar of Pi, for i = 1, 2. If ℓi was the improper line, then Pi ∈ ℓi,
which implies that Pi ∈ C by Proposition 9.3.10. But the polar of a point
of C is its tangent, by the same proposition, so that the improper line
would be tangent in an improper point of C. This would imply that C is
a parabola by Remark 9.2.7, contradicting the hypothesis. Therefore, ℓ1
and ℓ2 are proper, and hence they are the axes of C. They are distinct by
Proposition 9.3.6, because they are polars of two distinct points.

Next, we need to prove that ℓi∩C consists of two distinct proper points.
Let i ∈ {1, 2}. If ℓi was tangent to C in a point Q, then ℓi would be the
polar of Q by Proposition 9.3.10. But since the pole of ℓi is improper,
then Q would be improper and its direction would be the same as that
of ℓi, which is impossible. Hence ℓi ∩ C consists of two distinct points for
i = 1, 2. If ℓ1 ∩ C contains an improper point P ′, then by Theorem 9.3.9
the polar of P ′ would pass by P2. But the polar of P

′ is the tangent line in
P ′, and since P ′ and P2 are both improper, this means that the improper
line z = 0 is tangent to C. Hence C should a parabola, contradicting the
hypothesis. This shows that ℓ1 ∩ C consists of two distinct proper points,
and with a simmetric argument also ℓ2 ∩ C does.

Let then ℓ1 ∩ C = {Q1, Q2} and ℓ2 ∩ C = {R1, R2} with Q1, Q2, R1, R2

proper points with Q1 ̸= Q2 and R1 ̸= R2. If it was Q1 = R1, then
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Q1 would be the center of the conic, since all diameters pass through
the center. But Q1 ∈ C, and this contradicts Remark 9.3.14. Hence
{Q1, Q2} ∩ {R1, R2} = ∅, proving that C has 4 vertices.

3. By Theorem 9.3.13, diameters of a parabola are exactly the lines
that pass through its unique improper point. If a11 ̸= 0 or a12 ̸= 0, the
improper point is (a12 : −a11 : 0). Otherwise, we must have a22 ̸= 0 as

otherwise C̃ would be degenerate, and the improper point is (1 : 0 : 0).
Let us assume that we are in the first case, the other case can be treated
similarly. Then all diameters have equation

a11x+ a12y + kz = 0,

for some k ∈ C. Therefore the unique improper point whose direction is
orthogonal to that of its own diameter is (a11 : a12 : 0). Since one between
a11 and a12 is non-zero, the corresponding diameter is proper, and it is
therefore the unique axis. One intersection with C̃ is (a12 : −a11 : 0), and
hence the second intersection must be proper, as otherwise the whole axis
would be improper. Hence there is a unique vertex. By Theorem 9.3.9,
the polar of the vertex, that is tangent to C therein, passes through the
pole of the axis, that is (a11 : a12 : 0), and hence its direction is orthogonal
to that of the axis.

Example 9.4.9.

• Let C : x2 + 2y2 − 2x− 2y + 3 = 0. This is an ellipse, so it has two
axes and four vertices. Let us compute them. To find axes, we first
need to solve equation (54), that in this case is:

xy = 0.

Hence the points P1 = (1 : 0 : 0) and P2 = (0 : 1 : 0) are

such that their polars are the axes of C. Since the matrix of C̃

is


1 0 −1

0 2 −1

−1 −1 3

, the axes have equation

x− z = 0 and 2y − z = 0
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or, in affine coordinates,

x− 1 = 0 and 2y − 1 = 0.

In order to find the vertices, we simply need to intersect the axes
with C. Hence we have to solve{
1 + 2y2 − 2− 2y + 3 = 0

x = 1
and

{
x2 + 1/2− 2x− 1 + 3 = 0

y = 1/2
,

which yield the points (1 : (1±i
√
3)/2 : 1) and (1±i

√
3/2 : 1/2 : 1).

These are the four vertices of C. Notice that they are all imaginary
points! One can prove easily that C̃ has no real point.

• Let C : x2 − y2 − 2xy + 3 = 0. This is a hyperbola, so it has two

axes and four vertices. The matrix of C̃ reads as:


1 −1 0

−1 −1 0

0 0 3

,

and equation (54) becomes:

−x2 − 2xy + y2 = 0,

which yields the two points (1 : 1±
√
2 : 0). Now the axes of C are

the polars of these points, namely the lines:

√
2x+ (2 +

√
2)y = 0 and

√
2x− (2−

√
2)y = 0.

To find the vertices, we need to solve:{
((
√
2 + 1)y)2 − y2 + 2y(

√
2 + 1)y + 3 = 0

x = −(
√
2 + 1)y

and {
((
√
2− 1)y)2 − y2 + 2y(

√
2− 1)y + 3 = 0

x = (
√
2− 1)y

,
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finding the four points(
(
√
2 + 1)

√
3− 3

√
2 : −

√
3− 3

√
2 : 2

)
,

(
−(

√
2 + 1)

√
3− 3

√
2 :

√
3− 3

√
2 : 2

)
,(

(
√
2− 1)

√
3 + 3

√
2 :

√
3 + 3

√
2 : 2

)
,(

(
√
2− 1)

√
3 + 3

√
2 :

√
3 + 3

√
2 : −2

)
.

These are the four vertices of C; notice that the first two are imagi-
nary, since 3− 3

√
2 < 0 while the other two are real.

• Let C : x2+2xy+ y2+2y+3 = 0. This is a parabola, and therefore

it has one axis and one vertex. The matrix of C̃ is


1 1 0

1 1 1

0 1 3

 and

the axes equation (54) is:

x2 − y2 = 0,

yielding the points (1 : 1 : 0) and (1 : −1 : 0). Their polars are:

x+ y = 0 and z = 0,

so the only axis is x+ y = 0. Intersecting it with C we find{
−2x+ 3 = 0

y = −x
,

and hence the unique vertex is (3 : −3 : 2).
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Notes
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