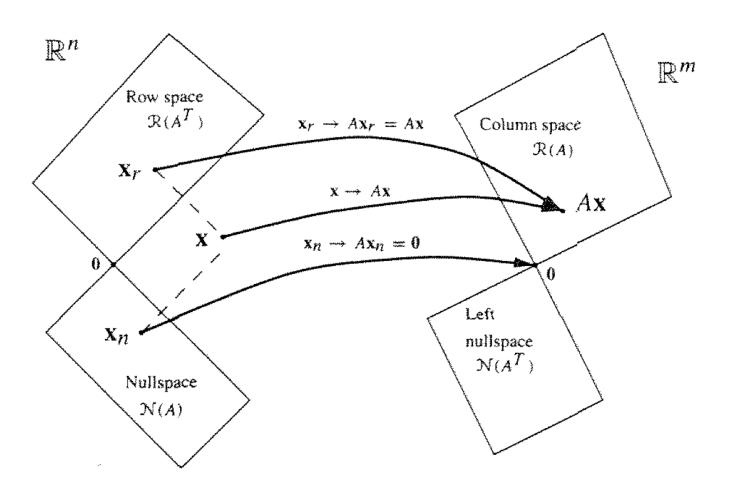
AMIR Exercises 2025/26

Linear Operators
Projections
Bases

Matrix operator algebra



The four fundamental subspaces of a matrix operator

DEFINITION 2.17 (LINEAR OPERATOR) A function $A: H_0 \to H_1$ is called a *linear* operator from H_0 to H_1 when, for all x, y in H_0 and α in \mathbb{C} (or \mathbb{R}):

- (i) Additivity: A(x+y) = Ax + Ay.
- (ii) Scalability: $A(\alpha x) = \alpha(Ax)$.

When domain H_0 and codomain H_1 are the same, A is also called a linear operator on H_0 .

Definition 2.18 (Operator norm and bounded linear operator) The operator norm of A, denoted by ||A||, is defined as

$$||A|| = \sup_{\|x\|=1} ||Ax||. \tag{2.45}$$

A linear operator is called *bounded* when its operator norm is finite.

DEFINITION 2.19 (INVERSE) A bounded linear operator $A: H_0 \to H_1$ is called invertible if there exists a bounded linear operator $B: H_1 \to H_0$ such that

$$BAx = x$$
, for every x in H_0 , and $(2.46a)$

$$ABy = y$$
, for every y in H_1 . (2.46b)

When such a B exists, it is unique, is denoted by A^{-1} , and is called the *inverse* of A; B is called a *left inverse* of A when (2.46a) holds, and B is called a *right inverse* of A when (2.46b) holds.

Definition 2.20 (Adjoint and Self-Adjoint operator) The linear operator $A^*: H_1 \to H_0$ is called the *adjoint* of the linear operator $A: H_0 \to H_1$ when

$$\langle Ax, y \rangle_{H_1} = \langle x, A^*y \rangle_{H_0}, \quad \text{for every } x \text{ in } H_0 \text{ and } y \text{ in } H_1.$$
 (2.48)

When $A = A^*$, the operator A is called *self-adjoint* or *Hermitian*.

Theorem 2.21 (Adjoint properties) Let $A: H_0 \to H_1$ be a bounded linear operator.

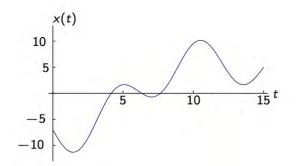
- (i) The adjoint A^* , defined through (2.48), exists.
- (ii) The adjoint A^* is unique.
- (iii) The adjoint of A^* equals the original operator, $(A^*)^* = A$.
- (iv) The operators AA^* and A^*A are self-adjoint.
- (v) The operator norms of A and A^* are equal, $||A^*|| = ||A||$.
- (vi) If A is invertible, the adjoint of the inverse and the inverse of the adjoint are equal, $(A^{-1})^* = (A^*)^{-1}$.
- (vii) Let $B: H_0 \to H_1$ be a bounded linear operator. Then $(A+B)^* = A^* + B^*$.
- (viii) Let $B: H_1 \to H_2$ be a bounded linear operator. Then $(BA)^* = A^*B^*$.

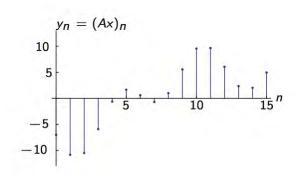
Adjoint operators: Local averaging

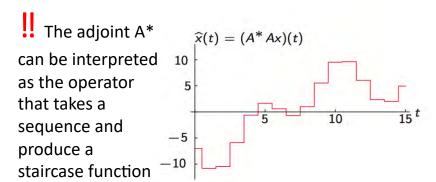
$$A: \mathcal{L}^2(\mathbb{R}) \to \ell^2(\mathbb{Z})$$
 $(Ax)_k = \int_{k-\frac{1}{2}}^{k+\frac{1}{2}} x(t)dt$

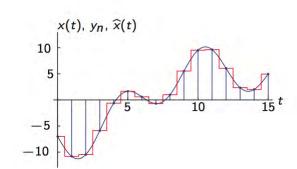
$$\langle Ax, y \rangle_{\ell^{2}} = \sum_{n \in \mathbb{Z}} (Ax)_{n} y_{n}^{*} = \sum_{n \in \mathbb{Z}} \left(\int_{n-1/2}^{n+1/2} x(t) dt \right) y_{n}^{*} = \sum_{n \in \mathbb{Z}} \int_{n-1/2}^{n+1/2} x(t) y_{n}^{*} dt$$

$$= \sum_{n \in \mathbb{Z}} \int_{n-1/2}^{n+1/2} x(t) \widehat{x}^{*}(t) dt = \int_{-\infty}^{\infty} x(t) \widehat{x}^{*}(t) dt = \langle x, \widehat{x} \rangle_{\mathcal{L}^{2}} = \langle x, A^{*}y \rangle_{\mathcal{L}^{2}}$$









I The adjoint A*
is not the inverse

Definition 2.22 (Unitary operator) A bounded linear operator $A: H_0 \rightarrow H_1$ is called *unitary* when

- (i) it is *invertible*; and
- (ii) it preserves inner products,

$$\langle Ax, Ay \rangle_{H_1} = \langle x, y \rangle_{H_0}$$
 for every x, y in H_0 . (2.54)

Theorem 2.23 (Unitary linear operator) A bounded linear operator $A: H_0 \to H_1$ is unitary if and only if $A^{-1} = A^*$.

Proof. Condition (2.54) is equivalent to A^* being a left inverse of A:

$$A^*A = I$$
 on H_0 . (2.56a)

To see that (2.54) implies (2.56a), note that

$$\langle A^*Ax, y \rangle \stackrel{(a)}{=} \langle Ax, Ay \rangle \stackrel{(b)}{=} \langle x, y \rangle,$$

where (a) follows from the definition of adjoint; and (b) from (2.54). Conversely, to see that (2.56a) implies (2.54), note that

$$\langle Ax, Ay \rangle \stackrel{(a)}{=} \langle x, A^*Ay \rangle \stackrel{(b)}{=} \langle x, y \rangle,$$

where (a) follows from the definition of adjoint; and (b) from (2.56a).

Combining (2.54) with invertibility gives that A^* is a right inverse of A:

$$AA^* = I \quad \text{on} \quad H_1. \tag{2.56b}$$

To verify (2.56b), note that for every x, y in H_1 ,

$$\langle AA^*x, y \rangle = \langle AA^*x, AA^{-1}y \rangle \stackrel{(a)}{=} \langle A^*x, A^{-1}y \rangle \stackrel{(b)}{=} \langle x, AA^{-1}y \rangle = \langle x, y \rangle,$$

where (a) follows from (2.54); and (b) from the definition of adjoint.

The desired equivalence follows: If A is unitary, then A is invertible and (2.54) holds, so both conditions (2.56) hold, so $A^{-1} = A^*$. Conversely, if $A^{-1} = A^*$, then A is invertible and (2.56a) holds, implying (2.54).

Definition 2.24 (Eigenvector of a linear operator) An eigenvector of a linear operator $A: H \to H$ is a nonzero vector $v \in H$ such that

$$Av = \lambda v, \tag{2.57}$$

for some $\lambda \in \mathbb{C}$. The constant λ is called the corresponding eigenvalue and (λ, v) is called an eigenpair.

Definition 2.25 (Definite linear operator) A self-adjoint operator $A: H \to H$ is called

(i) positive semidefinite or nonnegative definite, written $A \geq 0$, when

$$\langle Ax, x \rangle \ge 0 \quad \text{for all} \quad x \in H;$$
 (2.58a)

(ii) positive definite, written A > 0, when

$$\langle Ax, x \rangle > 0$$
 for all nonzero $x \in H$; (2.58b)

- (iii) negative semidefinite or nonpositive definite when -A is positive semidefinite; and
- (iv) negative definite when -A is positive definite.

Theorem 2.26 (Projection theorem) Let S be a closed subspace of Hilbert space H and let x be a vector in H.

- (i) Existence: There exists $\hat{x} \in S$ such that $||x \hat{x}|| \le ||x s||$ for all $s \in S$.
- (ii) Orthogonality: $x \hat{x} \perp S$ is necessary and sufficient for determining \hat{x} .
- (iii) Uniqueness: The vector \hat{x} is unique.
- (iv) Linearity: $\hat{x} = Px$ where P is a linear operator that depends on S and not on x.
- (v) Idempotency: P(Px) = Px for all $x \in H$.
- (vi) Self-adjointness: $P = P^*$.

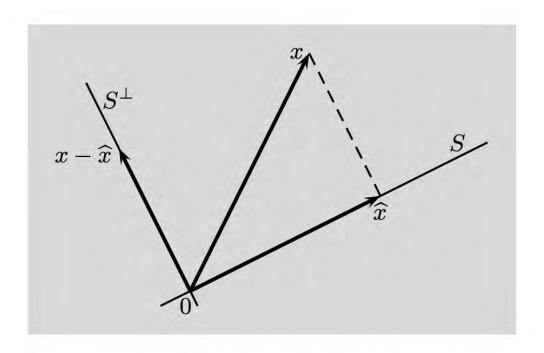


Figure 2.12 The best approximation of $x \in H$ within closed subspace S is uniquely determined by $x - \widehat{x} \perp S$. The solution generates an orthogonal decomposition of x into $\widehat{x} \in S$ and $x - \widehat{x} \in S^{\perp}$.

Definition 2.27 (Projection operator)

- (i) An *idempotent* operator P is an operator such that $P^2 = P$.
- (ii) A projection operator is a bounded linear operator that is idempotent.
- (iii) An orthogonal projection operator is a projection operator that is self-adjoint.
- (iv) An *oblique projection* operator is a projection operator that is not self-adjoint.

Theorem 2.28 (Orthogonal projection operator) A bounded linear operator P on a Hilbert space H satisfies

$$\langle x - Px, Py \rangle = 0 \quad \text{for all } x, y \in H$$
 (2.65)

if and only if P is an orthogonal projection operator.

Proof. Condition (2.65) is equivalent to having

$$0 = \langle x - Px, Py \rangle \stackrel{(a)}{=} \langle P^*(x - Px), y \rangle = \langle P^*(I - P)x, y \rangle \quad \text{for all } x, y \in H,$$

where (a) follows from the definition of adjoint. This then implies that $P^*(I-P) = 0$, so

$$P^* = P^* P. (2.66)$$

To show that this is equivalent to P being both idempotent and self-adjoint assume first that $P^* = P^*P$. Then,

$$P = (P^*)^* \stackrel{(a)}{=} (P^*P)^* = P^*P \stackrel{(b)}{=} P^*,$$

where (a) and (b) follow from (2.66); so P is self-adjoint. From this,

$$P^2 \stackrel{(a)}{=} P^*P \stackrel{(b)}{=} P^* \stackrel{(c)}{=} P,$$

where (a) and (c) follow from P being self-adjoint; and (b) from (2.66); so P is idempotent. Conversely, if P is idempotent and self-adjoint, then

$$P^*P \stackrel{(a)}{=} P^2 \stackrel{(b)}{=} P \stackrel{(c)}{=} P^*,$$

where (a) and (c) follow from P being self-adjoint; and (b) from P being idempotent.

Theorem 2.29 (Projection operators, adjoints and inverses) Let $A: H_0 \to H_1$ and $B: H_1 \to H_0$ be bounded linear operators. If A is a left inverse of B, then BA is a projection operator. If additionally $B = A^*$, then $BA = A^*A$ is an orthogonal projection operator.

Example 2.23 (Projection onto a subspace) Let

$$A = \frac{1}{2} \begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$.

Since A is a left inverse of B, we know from Theorem 2.29 that P = BA is a projection operator. Explicitly,

$$P = BA = rac{1}{2} \left[egin{matrix} 1 & 1 & -1 \ 0 & 2 & 0 \ -1 & 1 & 1 \end{matrix}
ight],$$

from which one can verify $P^2 = P$. A description of the 2-dimensional range of this projection operator is most transparent from B: it is the set of 3-tuples with middle component equal to the sum of the first and last (see Figure 2.14). Note that $P \neq P^*$, so the projection is oblique. Exercise 2.32 finds all A such that BA is a projection operator onto the range of B.

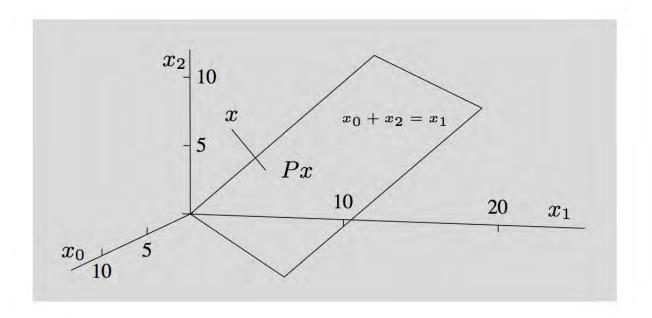
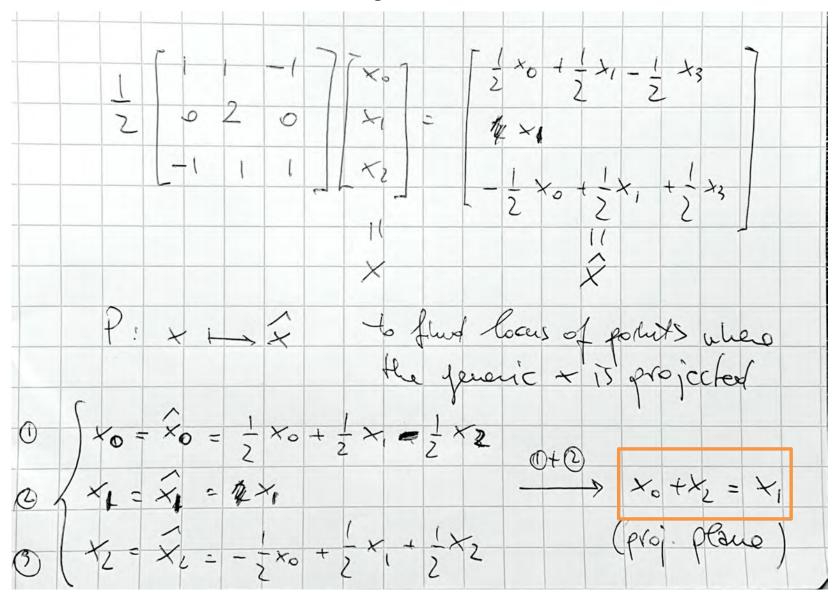


Figure 2.14 Two-dimensional range of the oblique projection operator P from Example 2.23. It is the plane $x_0 + x_2 = x_1$. For example, vector $x = \begin{bmatrix} 6 & 6 & 8 \end{bmatrix}^{\top}$ is projected via P onto $Px = \begin{bmatrix} 2 & 6 & 4 \end{bmatrix}$, not an orthogonal projection.



Exercises

2.32. Projection operators Let

$$B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

Find all projection operators onto the range of B; specify the orthogonal one.

In this case the =
$$R^3$$
 and $H_1 = R^2$

X

BA

BA

HER

ABY = Y

HER

HER

HER

HER

BAX = X

WITH $\hat{X} \in R(B) \subset R^3$ and $BA\hat{X} = \hat{X}$

From theorem 2.29 we know that for B: K2-1K3
and A: K3-1K2 left leverse of B, => BA is => BA is an orthogonal projection approacher. First we fool ALL possible left inverse of B. Thus

we write $AB = \begin{bmatrix} a_{\infty} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = I$ From this; an+an=1, an+an=0, an+an=0, an+an=1 and colling aq = q and a, = B

$$A = \begin{bmatrix} 1 - \alpha & \alpha & - \alpha \\ -\beta & \beta & 1 - \beta \end{bmatrix}$$

The orthogonal projection is the sup for which

$$(BA)^{+} = BA \longrightarrow \begin{cases} \alpha = 1 - (\alpha + \beta) \\ \alpha = \beta \end{cases} = \frac{1}{3}$$

$$\Rightarrow A = \frac{1}{3} \begin{bmatrix} 2 & 1 & -1 \\ -1 & 1 & 2 \end{bmatrix} \text{ and } BA = \frac{1}{3} \begin{bmatrix} 2 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{bmatrix}$$