AMIR Exercises 2025/26

Projections Bases

Theorem 2.30 (Orthogonal projection via pseudoinverse) Let $A: H_0 \to H_1$ be a bounded linear operator.

(i) If AA^* is invertible, then

$$B = A^* (AA^*)^{-1} (2.68a)$$

is the *pseudoinverse* of A, and $BA = A^*(AA^*)^{-1}A$ is the orthogonal projection operator onto the range of A^* .

(ii) If A^*A is invertible, then

$$B = (A^*A)^{-1}A^* (2.68b)$$

is the *pseudoinverse* of A, and $AB = A(A^*A)^{-1}A^*$ is the orthogonal projection operator onto the range of A.

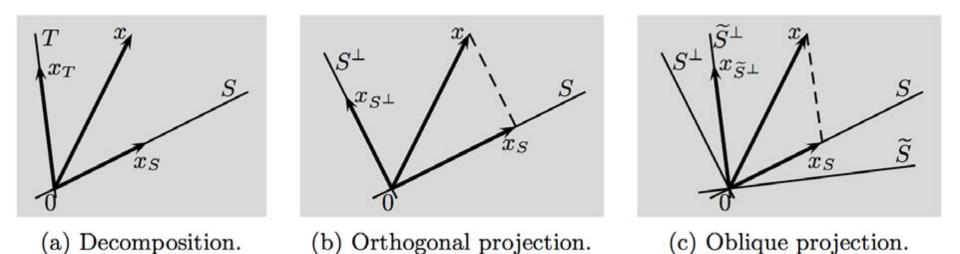


Figure 2.16 Decompositions and projections. (a) A vector space V is decomposed as a direct sum $S \oplus T$ when any $x \in V$ can be written uniquely as a sum of components in S and T. (b) An orthogonal projection operator generates an orthogonal direct sum decomposition of a Hilbert space. It decomposes vector x into $x_S \in S$ and $x_{S^{\perp}} \in S^{\perp}$. (c) An oblique projection operator generates a nonorthogonal direct sum decomposition of a Hilbert space. It decomposes vector x into $x_S \in S$ and $x_{\widetilde{S}^{\perp}} \in \widetilde{S}^{\perp}$.

DEFINITION 2.31 (DIRECT SUM AND DECOMPOSITION) A vector space V is a direct sum of subspaces S and T, denoted $V = S \oplus T$, when any nonzero vector $x \in V$ can be written uniquely as

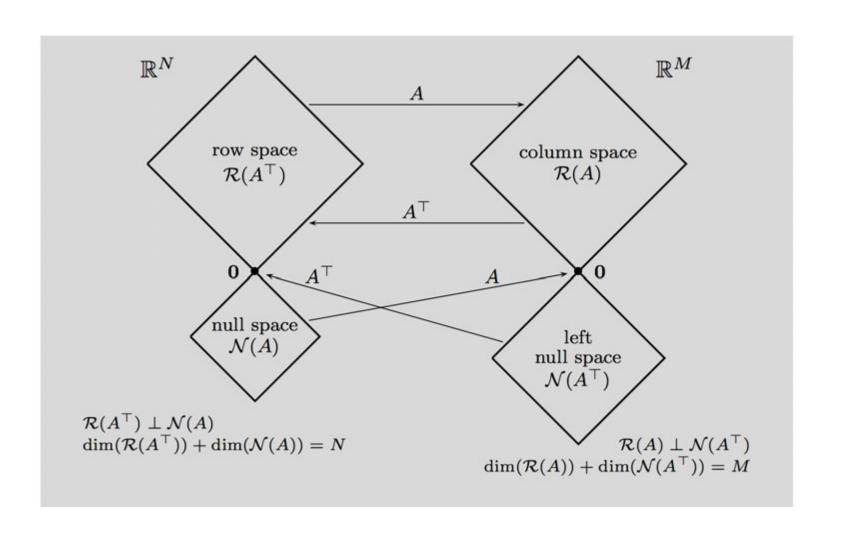
$$x = x_S + x_T$$
 where $x_S \in S$ and $x_T \in T$. (2.70)

The subspaces S and T form a decomposition of V, and the vectors x_S and x_T form a decomposition of x. When S and T are orthogonal, this is called an orthogonal decomposition.

Theorem 2.32 (Direct-sum decomposition from projection operator) Let H be a Hilbert space.

- (i) Let P be a projection operator on H. It generates a direct-sum decomposition of H into its range $\mathcal{R}(P)$ and null space $\mathcal{N}(P)$: $H = S \oplus T$, where $S = \mathcal{R}(P)$ and $T = \mathcal{N}(P)$.
- (ii) Conversely, let closed subspaces S and T satisfy $H = S \oplus T$. Then there exists a projection operator on H such that $S = \mathcal{R}(P)$ and $T = \mathcal{N}(P)$.

Matrix operator algebra



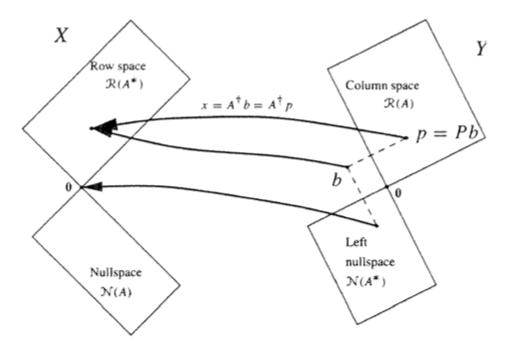


Figure 4.5: Operation of the pseudoinverse

$$x = (A * A)^{-1} A * p = (A * A)^{-1} A * Pb = (A * A)^{-1} A * A(A * A)^{-1} A * b = (A * A)^{-1} A * b$$

The operation of the pseudoinverse operator is shown in figure 4.5. The pseudoinverse operator takes a point from Y back to a point in $\hat{x} \in \mathcal{R}(A^*)$, in such a way that \hat{x} has minimum norm. The operation of the pseudoinverse operation on a point $b \notin \mathcal{R}(A)$ is to first project b onto $\mathcal{R}(A)$ using the projection P, then to map back to $\mathcal{R}(A^*)$ to a vector \hat{x} of minimum length; by this projection onto $\mathcal{R}(A)$ the error $b - A\hat{x}$ is minimized.

DEFINITION 2.34 (BASIS) The set of vectors $\Phi = \{\varphi_k\}_{k \in \mathcal{K}} \subset V$, where \mathcal{K} is finite or countably infinite, is called a *basis* for a normed vector space V when

(i) it is *complete* in V, meaning for any $x \in V$, there is a sequence $\alpha \in \mathbb{C}^{\mathcal{K}}$ such that

$$x = \sum_{k \in \mathcal{K}} \alpha_k \varphi_k; \tag{2.86}$$

and

(ii) for any $x \in V$, the sequence α satisfying (2.86) is unique.

Definition 2.35 (Riesz basis) The set of vectors $\Phi = \{\varphi_k\}_{k \in \mathcal{K}} \subset H$, where \mathcal{K} is finite or countably infinite, is called a *Riesz basis* for Hilbert space H when

- (i) it is a *basis* for H; and
- (ii) there exist stability constants λ_{\min} and λ_{\max} satisfying $0 < \lambda_{\min} \le \lambda_{\max} < \infty$ such that, for any x in H, the expansion of x with respect to the basis Φ , $x = \sum_{k \in \mathcal{K}} \alpha_k \varphi_k$, satisfies

$$\lambda_{\min} \|x\|^2 \le \sum_{k \in \mathcal{K}} |\alpha_k|^2 \le \lambda_{\max} \|x\|^2.$$
 (2.88)

The largest such λ_{\min} and smallest such λ_{\max} are called *optimal stability* constants of Φ .

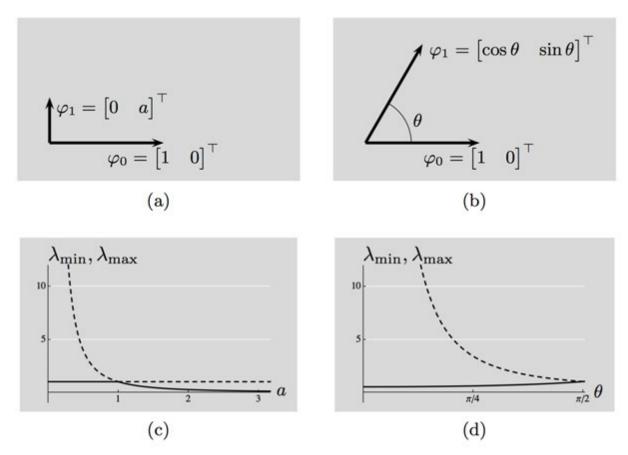


Figure 2.18 Two families of bases in \mathbb{R}^2 that deviate from the standard basis $\{e_0, e_1\}$ and their optimal stability constants λ_{\min} (solid) and λ_{\max} (dashed). (a) φ_1 is orthogonal to φ_0 but not necessarily of unit length. (b) φ_1 is of unit length but not necessarily orthogonal to φ_0 . (c) λ_{\min} and λ_{\max} for the basis in (a) as a function of a. (d) λ_{\min} and λ_{\max} for the basis in (b) as a function of θ .

2.33. Riesz bases

- (i) Prove that the standard basis in $\ell^2(\mathbb{Z})$ is a Riesz basis with optimal stability constants $\lambda_{\min} = \lambda_{\max} = 1$.
- (ii) Let $\{e_k\}_{k\in\mathbb{Z}}$ denote the standard basis in $\ell^2(\mathbb{Z})$ and define the following scaled version:

$$\varphi_k = 2^k e_k, \quad k \in \mathbb{Z}.$$

Prove that $\{\varphi_k\}_{k\in\mathbb{Z}}$ is a basis, but there is neither a positive λ_{\min} nor a finite λ_{\max} such that (2.88) in the definition of Riesz basis holds.

(iii) Let

$$\psi_k = \cos(k) e_k, \qquad k \in \mathbb{Z}.$$

Prove or disprove that $\{\psi_k\}_{k\in\mathbb{Z}}$ is a basis for $\ell^2(\mathbb{Z})$, and prove or disprove that $\{\psi_k\}_{k\in\mathbb{Z}}$ is a Riesz basis for $\ell^2(\mathbb{Z})$.

(i) the standard besis for l'(Z) is fen fueZ uith en = [...- 000 1000 ----]

K-th position => dy = <n, ex> > we need to bound $\sum_{k \in \mathbb{Z}} |d_k|^2 = \sum_{k \in \mathbb{Z}} |\langle n, e_k \rangle|^2 = \sum_{k \in \mathbb{Z}} |n_k|^2 = \|n\|^2$ => the standard basis is a Riesz basis whith $\lambda_{\text{min}} = \lambda_{\text{max}} = 1$

(ii) the set of of scaled en remains a haris since the vectors are still limenty hudependent we can uvik

Let $n = e_m$ for some $m \in \mathbb{Z}$ => there is only one expansion coefficient $a_m = 2^{-m}$, and $n = a_m y_m = 2^{-m} \cdot 2^m e_m$

Thus $L_K |d_K|^2 = 2^{-2M}$. Since M is an arbitrary integer

m -> 0 shows that there is no positive bound & mulu and the hour satisfying the here is no finite Amax satisfying the Riesz basis condition 0< July 2 >) was < 00, the

(iii) $\gamma_n = G_S(n) e_N$ γ_n Box's? γ_n hiest box's? Since 0 < | cos(K) | < 1 + K = 1 => vector> 21e still linear hudependent and multiplied by a mon zero coefficients => 4 is still a basis for l'(I) with $n = \sum_{K \in \mathbb{Z}} n_K e_K = \sum_{K \in \mathbb{Z}} n_K \frac{1}{CosK} \gamma_K = \sum_{K \in \mathbb{Z}} \beta_K \gamma_K$ Since $0 < cos^2 K \le 1$ Coefficients

Let $1^2 = 1$ INEZ | PX |2 = I | I NX | = I COSTA | NX |2 = I NX |2 = => the lover bound for stability of the basis is \ \munin = 1

But there is no upper bound \munin < 00 since cos2h can be

21 bitronily close to zero.

DEFINITION 2.36 (BASIS SYNTHESIS OPERATOR) Given a Riesz basis $\{\varphi_k\}_{k\in\mathcal{K}}$ for Hilbert space H, the synthesis operator associated with it is

$$\Phi: \ell^2(\mathcal{K}) \to H, \quad \text{with} \quad \Phi \alpha = \sum_{k \in \mathcal{K}} \alpha_k \varphi_k.$$
 (2.89)

Definition 2.37 (Basis analysis operator) Given a Riesz basis $\{\varphi_k\}_{k\in\mathcal{K}}$ for Hilbert space H, the analysis operator associated with it is

$$\Phi^*: H \to \ell^2(\mathcal{K}), \quad \text{with} \quad (\Phi^* x)_k = \langle x, \varphi_k \rangle, \quad k \in \mathcal{K}.$$
 (2.90)

Definition 2.38 (Orthonormal basis) The set of vectors $\Phi = \{\varphi_k\}_{k \in \mathcal{K}} \subset H$, where \mathcal{K} is finite or countably infinite, is called an *orthonormal basis* for the Hilbert space H when

- (i) it is a *basis* for H; and
- (ii) it is orthonormal,

$$\langle \varphi_i, \varphi_k \rangle = \delta_{i-k}$$
 for every $i, k \in \mathcal{K}$. (2.91)

Theorem 2.39 (Orthonormal basis expansions) Let $\Phi = \{\varphi_k\}_{k \in \mathcal{K}}$ be an orthonormal basis for Hilbert space H. The unique expansion with respect to Φ of any x in H has expansion coefficients

$$\alpha_k = \langle x, \varphi_k \rangle \quad \text{for } k \in \mathcal{K}, \quad \text{or,}$$
 (2.92a)

$$\alpha = \Phi^* x. \tag{2.92b}$$

Synthesis with these coefficients yields

$$x = \sum_{k \in \mathcal{K}} \langle x, \varphi_k \rangle \varphi_k$$
 (2.93a)
= $\Phi \alpha = \Phi \Phi^* x$. (2.93b)

$$= \Phi \alpha = \Phi \Phi^* x. \tag{2.93b}$$

THEOREM 2.40 (PARSEVAL'S EQUALITIES) Let $\Phi = \{\varphi_k\}_{k \in \mathcal{K}}$ be an orthonormal basis for Hilbert space H. Expansion with coefficients (2.92) satisfies Parseval's equality,

$$||x||^2 = \sum_{k \in \mathcal{K}} |\langle x, \varphi_k \rangle|^2 \tag{2.95a}$$

$$= \|\Phi^* x\|^2 = \|\alpha\|^2, \tag{2.95b}$$

and the generalized Parseval's equality,

$$\langle x, y \rangle = \sum_{k \in \mathcal{K}} \langle x, \varphi_k \rangle \langle y, \varphi_k \rangle^*$$
 (2.96a)

$$= \langle \Phi^* x, \Phi^* y \rangle = \langle \alpha, \beta \rangle. \tag{2.96b}$$

Theorem 2.41 (Orthogonal projection onto a subspace) Given an orthonormal set $\Phi = \{\varphi_k\}_{k \in \mathcal{I}} \subset H$,

$$P_{\mathcal{I}} x = \sum_{k \in \mathcal{I}} \langle x, \varphi_k \rangle \varphi_k \tag{2.105a}$$

$$= \Phi_{\mathcal{I}} \Phi_{\mathcal{I}}^* x \tag{2.105b}$$

is the orthogonal projection of x onto $S_{\mathcal{I}} = \overline{\operatorname{span}}(\{\varphi_k\}_{k \in \mathcal{I}})$.

THEOREM 2.42 (BESSEL'S INEQUALITY) Given an orthonormal set $\Phi = \{\varphi_k\}_{k \in \mathcal{I}}$ in a Hilbert space H, Bessel's inequality holds:

$$||x||^2 \ge \sum_{k \in \mathcal{I}} |\langle x, \varphi_k \rangle|^2 \tag{2.108a}$$

$$= \|\Phi_{\mathcal{I}}^* x\|^2. \tag{2.108b}$$

Equality for every x in H implies that the set Φ is complete in H, so the orthonormal set is an orthonormal basis for H; (2.108) is then Parseval's equality (2.95).

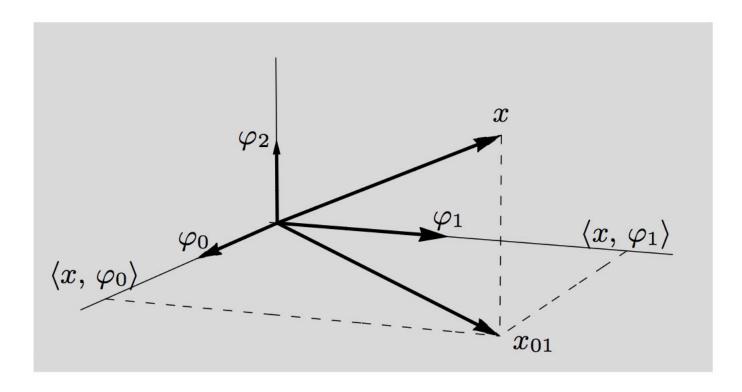


Figure 2.20 Illustration of Bessel's inequality in \mathbb{R}^3 .

DEFINITION 2.43 (BIORTHOGONAL PAIR OF BASES) The sets of vectors $\Phi = \{\varphi_k\}_{k \in \mathcal{K}} \subset H \text{ and } \widetilde{\Phi} = \{\widetilde{\varphi}_k\}_{k \in \mathcal{K}} \subset H, \text{ where } \mathcal{K} \text{ is finite or countably infinite, are called a biorthogonal pair of bases for Hilbert space <math>H$ when

- (i) each is a *basis* for H; and
- (ii) they are biorthogonal, meaning

$$\langle \varphi_i, \widetilde{\varphi}_k \rangle = \delta_{i-k} \quad \text{for every } i, k \in \mathcal{K}.$$
 (2.110)

Theorem 2.44 (Biorthogonal basis expansions) Let $\Phi = \{\varphi_k\}_{k \in \mathcal{K}}$ and $\widetilde{\Phi} = \{\widetilde{\varphi}_k\}_{k \in \mathcal{K}}$ be a biorthogonal pair of bases for Hilbert space H. The unique expansion with respect to the basis Φ of any x in H has expansion coefficients

$$\alpha_k = \langle x, \widetilde{\varphi}_k \rangle$$
 for $k \in \mathcal{K}$, or, (2.112a)
 $\alpha = \widetilde{\Phi}^* x$. (2.112b)

$$\mathbf{a}_1 = \begin{bmatrix} 2 & 1 \end{bmatrix}^T$$
$$\mathbf{a}_2 = \begin{bmatrix} 1 & 2 \end{bmatrix}^T$$

$$\langle \mathbf{a}_1, \mathbf{b}_1 \rangle = 1$$

 $\langle \mathbf{a}_2, \mathbf{b}_2 \rangle = 1$
 $\langle \mathbf{a}_1, \mathbf{b}_2 \rangle = 0$
 $\langle \mathbf{a}_2, \mathbf{b}_1 \rangle = 0$

$$x = \begin{bmatrix} 1 & 1 \end{bmatrix}^T \qquad x = \alpha_1 a_1 + \alpha_2 a_2$$
$$\alpha_1 = \langle x, b_1 \rangle / \langle a_1, b_1 \rangle = 1/3$$

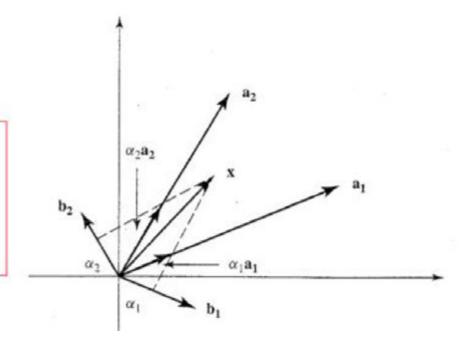
$$\alpha_2 = \langle x, b_2 \rangle / \langle a_2, b_2 \rangle = 1/3$$

a₁-a₂ and b₁-b₂ are biorthogonal

Dual Bases

$$b_1 = \begin{bmatrix} 2/3 & -1/3 \end{bmatrix}^T$$

 $b_2 = \begin{bmatrix} -1/3 & 2/3 \end{bmatrix}^T$



Synthesis with these coefficients yields

$$x = \sum_{k \in \mathcal{K}} \langle x, \, \widetilde{\varphi}_k \rangle \varphi_k \tag{2.113a}$$

$$= \Phi \alpha = \Phi \widetilde{\Phi}^* x. \tag{2.113b}$$

Theorem 2.45 (Parseval's equalities for Biorthogonal pairs of Bases) Let $\Phi = \{\varphi_k\}_{k \in \mathcal{K}}$ and $\widetilde{\Phi} = \{\widetilde{\varphi}_k\}_{k \in \mathcal{K}}$ be a biorthogonal pair of bases for Hilbert space H. Expansion with respect to the bases Φ and $\widetilde{\Phi}$ with coefficients (2.112) and (2.114) satisfies

$$||x||^2 = \sum_{k \in \mathcal{K}} \langle x, \varphi_k \rangle \langle x, \widetilde{\varphi}_k \rangle^*$$
 (2.117a)

$$= \langle \Phi^* x, \widetilde{\Phi}^* x \rangle = \langle \widetilde{\alpha}, \alpha \rangle. \tag{2.117b}$$

THEOREM 2.46 (DUAL BASIS) Let $\Phi = \{\varphi_k\}_{k \in \mathcal{K}}$ be a Riesz basis for Hilbert space H, and let $A : \ell^2(\mathcal{K}) \to \ell^2(\mathcal{K})$ be the inverse of the Gram matrix of Φ , that is, $A = (\Phi^*\Phi)^{-1}$. Then the set $\widetilde{\Phi} = \{\widetilde{\varphi}_k\}_{k \in \mathcal{K}}$ defined via

$$\widetilde{\varphi}_k = \sum_{\ell \in \mathcal{K}} a_{\ell,k} \varphi_{\ell}, \quad \text{for each } k \in \mathcal{K},$$
 (2.130a)

together with Φ forms a biorthogonal pair of bases for H. The synthesis operator for this basis is given by

$$\widetilde{\Phi} = \Phi A = \Phi(\Phi^*\Phi)^{-1},$$
 (2.130b)

the pseudoinverse of Φ^* .

2.39. Dual bases

Let $\Phi = \{\varphi_k\}_{k \in \mathcal{K}}$ be a Riesz basis for Hilbert space H with optimal stability constants λ_{\min} and λ_{\max} .

- (i) Show that the dual of the dual of Φ is Φ .
- (ii) Show that the dual of Φ is Φ if and only if Φ is an orthonormal basis.
- (iii) Show that the dual of Φ is a Riesz basis with optimal stability constants $1/\lambda_{\rm max}$ and $1/\lambda_{\rm min}$.

(i) According to Theorem 2.46, given Φ , its unique dual is

$$\widetilde{\Phi} = \Phi(\Phi^*\Phi)^{-1}.$$

Its dual is then

$$\widetilde{\widetilde{\Phi}} = \widetilde{\Phi}(\widetilde{\Phi}^*\widetilde{\Phi})^{-1} = \Phi(\Phi^*\Phi)^{-1}((\Phi(\Phi^*\Phi)^{-1})^*(\Phi(\Phi^*\Phi)^{-1}))^{-1}
= \Phi(\Phi^*\Phi)^{-1}(((\Phi^*\Phi)^{-1})^*\Phi^*\Phi(\Phi^*\Phi)^{-1})^{-1}
= \Phi(\Phi^*\Phi)^{-1}(((\Phi^*\Phi)^*)^{-1})^{-1} = \Phi(\Phi^*\Phi)^{-1}\Phi^*\Phi = \Phi.$$

(ii) We can express the statement that the dual of Φ is Φ as

$$\Phi(\Phi^*\Phi)^{-1} = \Phi.$$

Since Φ is a basis by assumption, we can multiply both sides by the inverse of Φ ,

$$\Phi^*\Phi = I,$$

or, in other words, Φ is unitary (orthonormal basis).

(iii) We use (2.112b) to write (2.88) as follows:

$$\lambda_{\min} x^* x \leq (\widetilde{\Phi}^* x)^* (\widetilde{\Phi}^* x) = x^* \widetilde{\Phi} \widetilde{\Phi}^* x \leq \lambda_{\max} x^* x.$$

Similarly, for the dual basis, we want to bound $x^*\Phi\Phi^*x$. Since $\Phi\Phi^*$ is a positive definite matrix, according to (2.243), it can be bounded from below and above by its minimum and maximum eigenvalues. Because

$$\Phi\Phi^* = (\widetilde{\Phi}^*)^{-1}\widetilde{\Phi}^{-1} = (\widetilde{\Phi}\widetilde{\Phi}^*)^{-1},$$

and the eigenvalues of $\Phi\Phi^*$ and its inverse are inverses of each other,

$$\frac{1}{\lambda_{\max}} x^* x \leq x^* \Phi \Phi^* x \leq \frac{1}{\lambda_{\min}} x^* x.$$