Wavelets, Filter Banks and
Multiresolution Signal Processing

“It is with logic that one proves;
it is with intuition that one invents.”

Henri Poincaré
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A bit of history: from Fourier to Haar to wavelets

Old topic: representations of functions

1807: Joseph Fourier upsets the French Academy
A
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1898: Gibbs’ paper 1899: Gibbs’ correction

M
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1910: Alfred Haar discovers the Haar wavelet
dual to the Fourier construction

Why do this? What makes it work?
e basic atoms form an orthonormal set

Note
* sines/cosines and Haar functions are ON bases forL,(R)
* both are structured orthonormal bases
 they have different time and frequency behavior

Introduction - 3



1930: Heisenberg discovers that
you cannot have your cake and eat it too!
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1945: Gabor localizes the Fourier transform = STFT

1980: Morlet proposes the continuous wavelet transform
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Analogy with the musical score
Bach knew about wavelets!

e o o o o o

e e e

— —
@, @,

/NN [N N VANVAN
vV VvV V. VvV V. V V V V VOV V

Introduction - 6



Time-frequency tiling for a sine + Delta
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1983: Lena discovers pyramids
(actually, Burt and Adelson)
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1984: Lena gets critical
(subband coding)
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1986: Lena gets formal...
(multiresolution theory by Mallat, Meyer...)
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Wavelets, filter banks and multiresolution analysis

Wavelets
(applied mathematics)

Filter banks /Construction of bases T

(DSP) for
signal expansions

Eﬁ % k o

Multiresolution signal analysis
(computer vision)
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Wavelets...

“All this time, the guard was looking at her,
first through a telescope,

then through a microscope,

and then through an opera glass.”

Lewis Carroll, Through the Looking Glass
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. what are they and how to build them?

Orthonormal bases of wavelets
* Haar’s construction of a basis for L,(R) (1910)
- Meyer, Battle-Lemarié, Stromberg (1980’s)
« Mallat and Meyer’s multiresolution analysis (1986)

Wavelets from iterated filter banks
« Daubechies’ construction of compactly supported wavelets
* smooth wavelet bases for L,(®) and computational algorithms

Relation to other constructions
* successive refinements in graphics and interpolation
« multiresolution in computer vision
* multigrid methods in numerical analysis
 subband coding in speech and image processing

Goal: find y(t) such that its scales and shifts form an
orthonormal basis for L,(R).
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Why expand signals?

Suppose

coarse =+ detail

original

block1 =+ block 2

signal

signal =— X projection x elementary signals

Advantages
« easier to analyze signal in pieces: “divide and conquer”
« extracts important features
 pieces can be treated in an independent manner
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Example: Example: R2

« orthogonal basis
* biorthogonal basis
« tight frame

e € = @ 0
1
?q P :

Note

« orthonormal basis has successive approximation
property, biorthogonal basis and frames do not

 quantization in orthogonal case is easy,
unlike in the other cases
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Why not use Fourier?

Block Fourier transform: bad frequency localization
Gabor transform: ill-behaved for critical sampling

Balian-Low theorem: there is no local Fourier basis with
good time and frequency localization

* however: good local cosine bases!
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 shift and modulation
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How do filter banks expand signals?

analysis synthesis

H,
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...and multiresolution analysis?

IDEA: successive approximation/refinement of the signal

original

L lejep
1 1
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... how about wavelets?

“mother” wavelet y

i S

Who?

« families of functions obtained from “mother” wavelet
by dilation and translation

Why?
« well localized in time and frequency
* it has the ability to “zoom”
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Haar system

Basis functions

(1 0<t<0.5 T
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Haar system...
. as a basis for L,(%)
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Haar system...
. scaling function and wavelet

The Haar scaling function
(indicator of unit interval)

(t) = 1 0<t<1
@ 0 else

helps in the construction
of the wavelet, since

v(t) = o(2t)—p(2t—1)

and satisfies a
two-scale equation

o(t) = o(2t) + (2t 1)

Note:

« Haar wavelet a bit too
trivial to be useful...
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Discrete version of the wavelet transform

Compute WT on a discrete grid

scale » Shift
m=-1 e e e e e e e e e e o o

m=0 o o L ® [ [
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Perfect reconstruction filter banks

analysis synthesis
— Gy Gy

X0

Perfect reconstruction: GOHO+G1H1 =

Orthogonal system: (HO)*HO+(H1)*H1 =1G, = (Hl)*
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Daubechies’ construction...
. iterated filter banks

Iteration will generate an orthonormal basis for
the space of square-summable sequences 1,(3)

e
: (b G }
Nal 1
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..@%}

Consider equivalent basis sequences Gg)(z) and G(li)(z)
(generates octave-band frequency analysis)

O

/8 /4 /2

Interesting question: what happens in the limit?
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Daubechies’ construction...

. iteration algorithm

At ith steH)associate piecewise constant approximation of length 1/2i

with g,7[n]

—
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ime
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Fundamental link between discrete and continuous time!
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Daubechies’ construction...
...scaling function and wavelet

» Haar and sinc systems: either good time OR frequency localization
« Daubechies system: good time AND frequency localization

scaling
function

Frequency [radians]

wavelet

A
“\\\‘\\\\\fr/‘/’

15 2.0 2.5 3.0

Time

Finite length, continuous ¢(t) and y(t), based on L=4 iterated filter
Many other constructions: biorthogonal, lIR, multidimensional...
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Daubechies’ construction...
... two-scale equation

o(t) = > c o(2t—n)

Hat function

- -

Daubechies’ scaling function
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Not every discrete scheme leads to wavelets

33

biorthogonal
filter banks 0 0
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How do we know which ones will?... wait and see...
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Applications

“That which shrinks must first expand.”

Lao-Tzu, Tao Te Ching

Compression
Communications
Denoising
Graphics
In-painting
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What is multiresolution?

subtract info
High resolution

Low resolution

add info
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. and why use multiresolution?

A number of applications require signals to be processed
and transmitted at multiple resolutions and multiple rates

- digital audio and video coding

conversions between TV standards ~—
digital HDTV and audio broadcast
remote image databases with searching
storage media with random access

MR coding for multicast over the Internet
MR graphics

9 a
)

Compression: still a key technique in communications
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Multiresolution compression...
... the DCT versus wavelet game

Question
given Lena (you have never seen bebre), what is the “best”
transform to code it?

Fourier versus wavelet bases
* linear versus octave-band frequency scale
« DCT versus subband coding
« JPEG versus multiresolution

Multiresolution source coding
e successive approximation
* browsing
* progressive transmission
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Compression systems based on linear transforms

Goal: remove built-in redundancy, send only necessary
info

8 bits/pixel

LT

EC

— 0100101001

0.5 bits/pixel

* LT: linear transform (KLT, WT, SBC, DCT, STFT)

« Q: quantization
« EC: entropy coding
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Gibbs phenomenon

“Blocking” effect in image compression

Wavelets
« smooth transitions
* multiscale properties
* multiresolution
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A rate-distortion primer...

Compression: rate-distortion is fundamental trade-off
* more bitrate = distortion
. bitrate = more distortion

Standard image coder
« operates at one particular point on D(R) curve

Multiresolution coder (layered, scalable)
» travels rate-distortion curve (successive approximation)
« computation scalability

Adistortion
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Best image coder?
. wavelet based!

Shapiro’s embedded zero-tree algorithm (EZW)

DWT

_ : ._o_ ____  bitplane ____ zero adaptive >

coding trees entorpy
coding

« standard wavelet decomposition (biorthogonal)
* bit plane coding and zero-tree structure

« beats JPEG while achieving successive approximation
Adistortion
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Next image coding standard... JPEG 2000

All the best coders based on wavelets
« 24 full proposals and a few partial ones
« 18 used wavelets, 4 used DCT and 5 used others
« top 75% are wavelet-based
« top 5 use advanced wavelet oriented quantization
« systems requirements ask for multiresolution

Final JPEG 2000 standard is wavelet based
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Digital video coding

===l

T L MR variety of
HHHHA T |:> processing |:> scales and
T A block resolutions

signal decomposition for compression
compatible subchannels

tight control over coding error

easy joint source/channel coding
robustness to channel errors

easy random access for digital storage
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Conversion between TV formats

50Hz

60Hz Europeﬁ
« HDTV/NTSC
USA ’ 3
* interlaced/progressive %
§

[SSN
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Interaction of source and channel coding

-l B ? high priority

high protection

MR
coder

low priority
little protection

full reconstruction coarse reconstruction
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MR transmission for digital broadcast

Embedding of coarse information within detail
« cloud: carries

Ab, _ coarse info
oo cloud with - satellite: carries detail
®e® satellites . blend MR
- transmission with MR
a coding
:: Trade-off in broad-
cast ranges [miles]

SR IR MR: A =0.5,0.2

) [ @ ®
45 0 63

high/ resolution
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MR coding for multicast over the Internet

“l want to say a special welcome to everyone
that's climbed into the Internet tonight, and has got into the
MBone --- and | hope it doesn’t all collapse!”

Mick Jagger, Rollings Stones on Internet,11/18/94
Motivation: Internet is a heterogeneous mess!
Video multicast over Mbone

« video by VIC ‘ ‘| ’
 software encoder/decoder . LAN
LAN /
ATM

* learning experience
(seminars...)

Heterogeneous user population

On-going experience / ‘ \

1M 1M
1M
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MR coding for multicast over the Internet

Fact: different users receive different bit rates
* transmission heterogeneity

Different users absorb different bit rates
« computation heterogeneity

Solution: layered multicast trees
» different layers are transmitted over independent trees
« automatic subscribe/unsubscribe
« dynamic quality management
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Remote image databases with browsing
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Multiresolution graphics

Example: optimize quality (distortion) for a target rate
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