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Group: definition

• Group (G,*) 

It is an algebraic structure where the operation “*” between 

the elements of G is

1. associative, i.e. ∀ a,b,c ∈ G, (a * b) * c = a * (b * c)

2. ∃ a neutral element with respect to “*”, i.e. 

 ∀ a ∈ G, ∃e
*
∈ G, a * e

*
 = e

*
 * a = a

3. Every element of G has an inverse with respect to “*”, i.e.

 ∀ a ∈ G, ∃ b ∈ G, a * b = b * a = e
*

• If ∀ a,b ∈ G, a * b = b * a, (G,*) is said to be commutative (or 
abelian)
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Field: definition

• (K,+,.): algebraic structure over which 2 operations are defined, 
“+” and “.” such that:

– (K,+) forms an abelian group;

– (K\{e+},.) forms a group with neutral element e.

– “.” is distributive with respect to +, i.e. ∀ a,b,c ∈ K, a.(b+c) = a.b+a.c

• (ℂ,+,.) represents the field of complex numbers, with “+” and 
“.” being the addition/multiplication on complex numbers

• (ℝ,+,.) represents the field of real numbers, with “+” and “.”
being the addition/multiplication on real numbers
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Vector spaces: definition

• V forms a vector space on the field of complex numbers ℂ if

1. (V, +) forms a commutative group, where + identifies the “sum”
operation between the elements of V. Its neutral element is 0 e+.

2. ∃ an external product “.” between the elements of V and ℂ, for which

a) complex number multiplication “.” is interchangeable with respect to “.”,  i.e.

∀ a,b, ∈ ℂ, v ∈ V, (a.b).v = a.(b.v)

b) 1∈ ℂ is a neutral element for “.”, i.e. ∀ v ∈ V, 1.v = v

c) “.” is distributive with respect to the sum “+” of the elements in V, i.e. 

∀ a ∈ ℂ, x,y ∈ V, a.(x+y) = (a.x) + (a.y)

d) “.” is (sort of) distributive” with respect to the sum “+” defined over ℂ, i.e.
∀ a, b ∈ ℂ, x ∈ V, (a+b).x = (a.x) + (b.x)

• The elements of V are called “vectors”.
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Vector spaces: examples

• Space ℂN / ℝN of complex-/(real-)valued finite dimensional 
vectors

ℂN/ ℝN = { x = [ x0 x1 … xN-1 ]
T | xn∈ ℂ/ℝ , n = 0, 1, …, N-1 }

x + y [ x0+y0 x1+y1 … xN-1+yN-1 ]T

a.x [ a.x0 a.x1 … a.xN-1 ]T

• Space ℂℤ / ℝℤ of complex-/(real-)valued infinite sequences

ℂℤ/ ℝℤ = { x = [ … x-1 x0 x1 … ]T | xn∈ ℂ/ℝ , n ∈ ℤ }

x + y [ … x-1+y-1 x0+y0  x1+y1 … ]T

a.x [ … a.x-1 a.x0 a.x1 … a.xN-1 ]T
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Vector spaces: examples

• Space ℂℝ / ℝℝ of complex-/(real-)valued functions over ℝ
ℂℝ / ℝℝ = { x = x(t) | x(t)∈ ℂ/ℝ , t∈ ℝ }

x + y (x+y)(t) sum of functions

a.x (a.x)(t) external multiplication between a scalar and a function

• Space ℂℝ
+

of complex-valued functions defined over ℝ+

• Space ℂ[a,b] of complex-valued functions defined over [a,b]

• Space of polynomial functions of order N-1:
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Subspace: definition/examples

• A non-empty subset S of a vector space V is called a subspace of 
V, when it is closed with respect to the operations of vector 
addition “+“ and scalar multiplication “. “:

1. ∀ x,y ∈ S, x + y ∈ S

2. ∀ a ∈ ℂ, x ∈ S, a.x ∈ S

(alternatively, ∀ a,b ∈ ℂ, x,y ∈ S, a.x + b.y ∈ S)

• Examples of subspaces
– S1 = { x = a.x0 | fixed x0∈ V, ∀a ∈ ℂ }
– S2 = { x ∈ ℂℤ | xn = 0, ∀n ≠1,2,3 }, subspace of sequences having 0 

value for indices n ≠1,2,3

– S3 = { x ∈ ℂℝ | x(t) = -x(-t) }, subspace of odd complex-valued functions
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Affine subspace: definition/examples

• A non-empty subset T of a vector space V is called an affine 
subspace of V, when there exists a vector v0 ∈V, and a 
subspace S of V such that ∀ t ∈ T, ∃s ∈ S, t = s + v0

• Property

– An affine subspace is a subspace of a vector space V only if it contains 0

• Note: An affine subspace generalize the concept of a plane in 
Euclidean geometry.

• Examples
– T1 = { x = a.x0+y0 | fixed x0,y0∈ V, ∀a ∈ ℂ }, it is a subspace iff y0 = 0

– T2 = { x ∈ ℂℤ | xn = 1, ∀n ≠1,2,3 }, affine subspace of ℂℤ, it is not a 
subspace of ℂℤ since the sequence of all “0”∉ T2
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Span/Linear independence: definition

• The span of a set of vectors S is the set of all finite linear 
combinations of vectors in S

• A set of vectors S = {jk, k=1, 2, …} is said linearly independent

when the system of linear equations admits as 

unique solution ak = 0 ∀k=1,2, …
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Dimension: definition

• A vector space V is said to have dimension N when it contains 
a linear independent set of cardinality N and any other set of 
higher cardinality is linearly dependent. If no finite N exists, 
the vector space is infinite dimensional.

• Examples

1. ℝN has dimension N

2. The vector space of polynomial functions of degree N has dimension 
N+1

3. ℂℤ, ℂ[a,b] are infinite dimensional vector spaces
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Inner product: definition
• An inner product on a vector space V over ℂ (or ℝ) is a 

complex-(real-)valued function defined on VxV satisfying the 
following properties ∀x,y,z ∈ V and a ∈ ℂ: 

a) <x+y,z> = <x,z> + <y,z> linearity
b) <a.x,y> = a.<x,y> homogeneity

[! <x,a.y> = a*.<x,y>]
c) <x,y> = <y,x>* [Hermitian symmetry]
d) <x,x> ≥ 0 and <x,x> = 0 iff x = 0 [positive definiteness]

• Examples for ∀ (x,y) ∈ ℂ2

1. <x,y> = x0y0
* + 5x1y1

* OK

2. <x,y> = x0
*y0 + x1

*y1 NO: violation of (b)

3. <x,y> = x0y0
* NO: violation of (d) ( <[0 1]T,[0 1] T> = 0)
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Inner product: standard definitions/orthogonality
• ℂN:

• Subspace of ℂℤ leading to a convergent series

• Subspace of ℂℝ leading to the existence of the integral

1. 2 vectors x and y ∈ V are said to be orthogonal (x⊥y)

 if <x,y> = 0

2. A set of vectors S is said orthogonal whenever x⊥y ∀x,y ∈ S
with x ≠ y
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x,y  =  xn.yn
*

n∈Z
∑ (x,y) ∈CZ

x,y = x(t).y*(t).dt
R
∫ (x,y) ∈CR

x,y  =  xn.yn
*

n=0

N−1

∑ (x,y) ∈CN



Inner product: orthogonality
3. A set of vectors S is said orthonormal whenever it is 

orthogonal and ∀x∈ S, <x,x> = 1

4. A vector x is said to be orthogonal to a set of vectors S (x⊥S) 
when  (x⊥s) ∀s ∈ S

5. Two sets of vectors S0 and S1 are said to be orthogonal (S0⊥S1) 
whenever x0⊥S1 ∀x0∈S0

6. Given a subspace S of a vector space V, the orthogonal 
complement of S, denoted S⊥, is the set {x ∈ V | x⊥S}

• Properties

– S⊥ is a subspace of V

– An orthonormal set {jk} is a linearly independent set

(proof: expand 0 in <0,ji> = 0)
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Inner product examples / Inner product space

• Example of an orthonormal set

j0(t) = 1 t ∈ [-½,½]

jk(t) = 2½ cos (2kpt) t ∈ [-½,½] k = 1, 2…

{jk(t), k = 0, 1, …} is orthogonal to the set of odd functions Sodd

defined over [-1/2,1/2]

• Definition

A vector space equipped with an inner product is called an

inner product space
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Norm: definition
• A norm on a vector space V over ℂ (or ℝ) is a real-valued 

function ||.|| defined on V satisfying the following properties 
∀x,y ∈ V and a ∈ ℂ(or ℝ): 

a) ||x|| ≥ 0 and ||x|| = 0 iff x = 0 [positive definiteness]
b) ||a.x|| = |a|.||x|| [homogeneity]
c) ||x+y|| ≤ ||x|| + ||y|| [triangle inequality]
geometric interpretation: the length of any side of a triangle ≤ 
the sum of the lengths of the other two sides

• An inner product may be used to define a norm; in such a case 
the norm is said to be induced by the inner product

• Examples for ∀ x ∈ ℂ2

1. ||x|| = (|x0|
2 + 5|x1|

2)½ OK 3. ||x|| = |x0| NO: violation of (a)

2. ||x|| = |x0| + |x1| OK 4. ||x|| = max(|x0|, |x1|) OK
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Norm: standard definitions

• Euclidean norm in ℂN:

• Euclidean norm in subspace of ℂℤ for which the norm exists 

• Euclidean norm in subspace of ℂℝ for which the norm exists

• Or more generally

x
2

 =  xn
2

n∈Z
∑ x ∈CZ

x
2
= x(t) 2 .dt

R
∫ x ∈CR

x
2

 =  xn
2

n=0

N−1

∑ x ∈CN

x
2

2 = x, x
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Inner product induced norms: properties

• Pythagorean theorem

∀x,y ∈ V, such that x⊥y

proof: inner product properties + express

more generally

{xk}k∈K being an orthogonal set

• Parallelogram law

∀x,y ∈ V

– The parallelogram law is a necessary and sufficient condition for the 
norm to be induced by an inner product

x + y
2
= x 2

+ y
2

x + y, x + y

xkk∈K∑
2
= xk

2

k∈K∑

x + y
2
+ x − y

2
= 2 x 2

+ y
2( )

x

y

x + yx - y
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Inner product induced norms: properties

• Cauchy-Schwarz inequality

∀x,y ∈ V, 

– Equality holds when x = a.y

– proof: use non-negativity of ||k.x + y||2

Choosing k = - <x,y>* / ||x||2 leads to

x, y ≤ x . y

0 ≤ k.x + y
2

2
= k 2 x

2

2
+ y

2

2
+ 2.Re k.x, y{ }

= k 2 x
2

2
+ y

2

2
+ 2.Re k x, y{ }

x, y
* 2

x
2

2 + y
2

2
+ 2.Re −

x, y
2

x
2

2

"

#
$

%$

&

'
$

($
≥ 0

x, y
2

x
2

2 ≤ y
2

2

CVD

x
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q

cos(θ ) =
x, y
x . y
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Normed vector space

• Normed vector space: A vector space equipped with a norm is 
called a normed vector space

• Note: caution is necessary to limit the subspace of V for which 
the norm exists



Metric: definition
• In a normed vector space V over ℂ (or ℝ), the metric or 

distance between 2 vectors x and y is defined as the norm of 
the difference vector: d(x,y) = ||x-y||

• Given a vector space V over ℂ(or ℝ), a distance may be more 
generally defined even in the absence of a norm as the real-
valued function defined on VxV satisfying the following 
properties ∀x,y,z ∈ V

1. d(x,y) ≥ 0 [positivity]
2. d(x,y) = 0 ⇔ x = y
3. d(x,y) = d(y, x) [symmetric measure]
4. d(x,y) ≤ d(x,z) + d(z,y) [triangular inequality]

• Example of a distance not induced by a norm in ℝ
d(x,y) = | atan(x) – atan(y) |
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Standard spaces

• Standard inner product spaces
– Space of complex-valued finite dimensional vectors: ℂN

– Space of square-summable sequences: l2(ℤ) ⊂ ℂℤ (infinite dimensional)

– Space of square-integrable functions: L 2(ℝ) ⊂ ℂℝ (infinite dimensional)

– Space of square-integrable functions over [a,b]:L 2([a,b]) ⊂ ℂ[a,b]

– Space of continuous functions C[a,b] ⊂ ℂ[a,b]

– Space of continuous functions with q continuous derivatives

Cq[a,b] ⊂ Cq-1[a,b] ⊂ … ⊂ C0[a,b]=C[a,b]

Note: Cq[a,b] is not a complete space

– Space of polynomial functions ⊂ C∞[a,b]

– Space of random variables (RVs): inner product <X,Y> = E[XY*]

• The space of RVs with finite 2nd order moments is a normed vector space
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Standard spaces

• Standard normed spaces
– Space of complex-valued finite dimensional vectors: ℂN

• p-norm:

– p=1: Manhattan norm

– p=2: Euclidean norm

– p=∞:

– p∈[0,1) does not lead to a norm, but provides useful interpretation

– p=0, ||x||0 accounts for the number of non zero components in x

– Any two norms bound each other within a constant factor

– Only for p=2, the set of unit-norm vectors is invariant to a rotation of the 
coordinate system
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lp norms
• Set of unit-norm vectors in ℝ2 for different lp-measures
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lp(ℤ) spaces
• lp norm: p∈[1,∞)

– l∞ norm:

– for p∈[1,∞), the normed vector space lp(ℤ) ⊂ ℂℤ correspond to the 
subspace formed by vectors in ℂℤ with finite lp norm

– Property: p<q ⇒ lp(ℤ) ⊂ lq(ℤ)
• Corollary: If a sequence has finite l1-norm, it has finite l2-norm (the opposite is 

not necessarily true)
• Example: xn=1/n n=1,2,… and xn=0 n≤0

||x||2 = p2/6 whereas ||x||1 diverges
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L p(ℝ) spaces

• L p norm: p∈[1,∞)

– L ∞ norm:

– for p∈[1,∞), the normed vector space Lp(ℝ) ⊂ ℂℝ corresponds to 
the subspace formed by vectors in ℂℝ with finite Lp norm

• Property: if p<q, Lp(ℝ) ⊂ Lq(ℝ)
• It is possible to define similarly other Lp norm for other 

continuous time vector spaces such as ℂ[a,b]
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Convergence: definition

• Convergent sequence of vectors 

A sequence of vectors x0, x1, … in a normed vector space V

is said to converge to a vector v∈V when limk→∞ ||v-xk|| = 0

– In other words, given e>0, ∃Ke such that

– Note that the convergences may depend on the choice of the norm

• Consider

– This sequence of vectors converges to v(t)=0 for all L p norms with p<∞

– It does not converge for the L ∞ norm
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Closed subspace: definition

• A subspace S of a normed vector space V is said to be closed
when it contains all limits of sequence of vectors in S.

• Properties

– Subspaces of all finite-dimensional normed spaces are always closed

– Span of infinite set of vectors may not be closed

– The closure of a set is the set of all limit points of convergent 
sequences in the set

– The closure of the span of an infinite set of vectors is the set of all 
convergent infinite linear combination. The closure of the span of a set 
of vectors is always a closed subspace
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Completeness / Hilbert spaces

• Cauchy sequence of vectors

A sequence of vectors x0, x1, … in a normed vector space V

is called a Cauchy sequence when given e>0, ∃Ke such that

– The elements of a Cauchy sequence stay arbitrarily close to each other.

– For real-valued sequences, it must converge (but it may not be true for all 
normed vector spaces)

• A normed vector space V is said to be complete when every 
Cauchy sequence in V converges to a vector in V. A complete 
inner product space is called a Hilbert space.
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Completeness / Banach spaces

• A complete normed vector space is called a Banach space

• Properties

– ℚ is not a complete space since there are sequences in it converging to 
irrational numbers

– All finite-dimensional spaces are complete

– All lp(ℤ) spaces are complete; in particular l2(ℤ) is a Hilbert space

– All L p(ℝ) spaces are complete; in particular L 2(ℝ) is a Hilbert space 
(p<∞)

– Cq([a,b]) are not complete under the L p norm for p∈[0,∞)

– The inner product space of random variables are complete and thus 
forms Hilbert space
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Complete and non complete normed spaces
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Relationship between different vector spaces. (V,d) is any vector space with a metric 



Separability: definition

• A space is called separable when it contains a countable 
dense subset

• A Hilbert space contains a countable basis if and only if it is 
separable

– A closed subspace of a separable Hilbert space is separable
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